new param: LAND_ABORT_DEG
@Description: This parameter is used when using a rangefinder during landing for altitude correction from baro drift (RNGFND_LANDING=1) and the altitude correction indicates your altitude is higher than the intended slope path. Steeper slopes can result in crashes so this allows the option to remember the baro offset and self-abort the landing and come around for a another landing with the correct baro offset applied for a perfect slope. An auto-abort go-around will only happen once, next attempt will not auto-abort again. This operation happens entirely automatically in AUTO mode. This value is the delta degrees threshold to trigger the go-around. Example: if set to 5 deg and the mission planned slope is 15 deg then if the new slope is 21 then it will go-around. Set to 0 to disable. Requires LAND_SLOPE_RCALC > 0.
New param: LAND_SLOPE_RCALC
@Description: This parameter is used when using a rangefinder during landing for altitude correction from baro drift (RNGFND_LANDING=1) and the altitude correction indicates your altitude is lower than the intended slope path. This value is the threshold of the correction to re-calculate the landing approach slope. Set to zero to keep the original slope all the way down and any detected baro drift will be corrected by pitching/throttling up to snap back to resume the original slope path. Otherwise, when a rangefinder altitude correction exceeds this threshold it will trigger a slope re-calculate to give a shallower slope. This also smoothes out the approach when flying over objects such as trees. Recommend a value of 2m.
default value is 2 (so, enabled by default)
Further to refactor of RC_Channel class which included
adding get_xx set_xx methods, change reads and writes to the public members
to calls to get and set functionsss
old public member(int16_t) get function -> int16_t set function (int16_t)
(expression where c is an object of type RC_Channel)
c.radio_in c.get_radio_in() c.set_radio_in(v)
c.control_in c.get_control_in() c.set_control_in(v)
c.servo_out c.get_servo_out() c.set_servo_out(v)
c.pwm_out c.get_pwm_out() // use existing
c.radio_out c.get_radio_out() c.set_radio_out(v)
c.radio_max c.get_radio_max() c.set_radio_max(v)
c.radio_min c.get_radio_min() c.set_radio_min(v)
c.radio_trim c.get_radio_trim() c.set_radio_trim(v);
c.min_max_configured() // return true if min and max are configured
Because data members of RC_Channels are now private and so cannot be written directly
some overloads are provided in the Plane classes to provide the old functionality
new overload Plane::stick_mix_channel(RC_Channel *channel)
which forwards to the previously existing
void stick_mix_channel(RC_Channel *channel, int16_t &servo_out);
new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const
which forwards to
(uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const;
Rename functions
RC_Channel_aux::set_radio_trim(Aux_servo_function_t function)
to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function)
RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value)
to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value)
Rationale:
RC_Channel is a complicated class, which combines
several functionalities dealing with stick inputs
in pwm and logical units, logical and actual actuator
outputs, unit conversion etc, etc
The intent of this PR is to clarify existing use of
the class. At the basic level it should now be possible
to grep all places where private variable is set by
searching for the set_xx function.
(The wider purpose is to provide a more generic and
logically simpler method of output mixing. This is a small step)
This has no side effects, but since all implementations were basically
the same, move the implementation to GCS_Common and the only part that
adjusts the rate based on which which stream to each individual
GCS_MAVLINK implementation.
This header is used by waf to contain the generated version macros,
particularly using the git hash. For waf it's better to be in a separate
header since it then can keep track of changes on it a trigger
recompilation.
For the make build system, a dummy ap_version.h file has been added in
the missing/ folder so both implementations can co-exist.
Having the version macro in the config.h and consequently in the main
vehicle header means that whenever the version changes we need to
compiler the whole vehicle again. This would not be so bad if we weren't
also appending the git hash in the version. In this case, whenever we
commit to the repository we would need to recompile everything.
Move to a separate header that is include only by its users. Then
instead of compiling everything we will compile just a few files.
Ran into a bug on our physical plane where failsafe.last_valid_rc_ms was not recognizing that the transmitter had failed. This is likely due to how the standard failsafe works in receiving lower-than-possible throttle values. So in order to account for this, I added a new variable to the failsafe, AFS_last_valid_rc_ms, and I update it only if the ch3_failsafe (the throttle failsafe) is not on. If the throttle failsafe is on, that means that the plane has indeed lost transmitter input, so the AFS needs to recognize that.
@Description: This parameter reduces the pitch minimum limit of an auto-takeoff just a few seconds before it reaches the target altitude. This reduces overshoot by allowing the flight controller to start leveling off a few seconds before reaching the target height. When set to zero, the mission pitch min is enforced all the way to and through the target altitude, otherwise the pitch min slowly reduces to zero in the final segment. This is the pitch_min, not the demand. The flight controller should still be commanding to gain altitude to finish the takeoff but with this param it is not forcing it higher than it wants to be. (+1 squashed commits)
the glide_slope gets calculated every time there's a major event such as mission item change or wp_proportion change so its good to update the flight stage then too because.
also logging stage when stage changes, might as well get an extra data point in there when it's timely
- fixes bug where a bungee launch is configured but the aircraft gets bumped and triggers the prop to spin up. This will now detect that and "crash' and disable the motor
I had an issue in SITL where my plane would round the last WP staring
its landing approach and immediately limit the roll to 5degress even
before the plane had finished turning the corner so it would go WAY
off course. For a high value of LAND_FLARE_SEC (mine was 5) the math
works out the plane has landed if
height <= sink_rate * land_flare_sec
During the banking of the last corner the plane started to decend and
quickly set itself up for a 6.1m/s sink rate which is normal. It was
at 30 meters altitude. As you can see at this point the math thinks
the plane has landed so limits the roll. The solution was to ensure
the plane had covered at least 50% of the distance toward the final
waypoint before allowing a flare to happen. Note that LAND_FLARE_SEC
above 2 is considered very high and this normally wouldn't occur.
this makes for an easier startup test for a quadplane, allowing a
single MAVLink command to test that all motors are working correctly
in the right sequence
Currently we need to build a different binary for each type of copter frame.
This is a preparation for setting all those binaries to a group called
"copter". We create the groups for the rest of the main products for
consistency.
/ardupilot/ArduPlane/quadplane.cpp:773:107: warning: implicit conversion from 'float' to 'double' when passing argument to function [-Wdouble-promotion]
// @Description: When enabled, after an autoland and auto-disarm via LAND_DISARMDELAY happens then set all servos to neutral. This is helpful when an aircraft has a rough landing upside down or a crazy angle causing the servos to strain.
// @Description: When zero, the flare sink rate (TECS_LAND_SINK) is a fixed sink demand. With this enabled the flare sinkrate will increase/decrease the flare sink demand as you get further beyond the LAND waypoint. Has no effect before the waypoint. This value is added to TECS_LAND_SINK proportional to distance traveled after wp. With an increasing sink rate you can still land in a given distance if you're traveling too fast and cruise passed the land point. A positive value will force the plane to land sooner proportional to distance passed land point. A negative number will tell the plane to slowly climb allowing for a pitched-up stall landing. Recommend 0.2 as initial value.
Reverse thrust for controlled landings, even with much steeper approach slopes. This is achieved by allowing throttle demand to go negative to maintain a target airspeed. A Pre-Flare stage was added, triggered by an altitude, to allow for a slower airspeed just before land. That lower airspeed can be near stall.
new params LAND_PF_ALT, LAND_PF_SEC, LAND_PF_ARSPD, USE_REV_THRUST
Added update_trigger and check_digital_pin functions
added camera trigger precise time mark
detect camera feedback pin status
added support for simple digital pin
included support for digital pin. Already included in
added support for TRIGGER MSG
The task generator for the mavlink headers is given a name 'mavlink' and is
added as a dependency to all local static libraries, because all of them use
sources that include mavlink headers. It would be nice to have a good way to
detect sources that use mavlink headers or to declare list of libraries that
use the headers, so that the dependency could be added automatically.
Additionally, there's a minor change in syntax for the task generator: using
strings directly instead of lists.
@Description: X-Axis deceleration threshold to notify the crash detector that there was a possible impact which helps disarm the motor quickly after a crash. This value should be much higher than normal negative x-axis forces during normal flight, check flight log files to determine the average IMU.x values for your aircraft and motor type. Higher value means less sensative (triggers on higher impact). For electric planes that don't vibrate much during fight a value of 25 is good (that's about 2.5G). For petrol/nitro planes you'll want a higher value. Set to 0 to disable the collision detector.
- inhibit crash detection warnings when disabled by param so now it can be completely disabled
- reset is_crashed when disabled by param
- fixed pre-takeoff detection bug by adding in_preLaunch_flight_stage() where we are actually in FLIGHT_NORMAL instead of FLIGHT_TAKEOFF during setup of bungee launches. This now detects if we're in that state
- simplified the use of been_auto_flying to check across all flight stages. before it was excluded to handle hand-launches which can now be detected with in_preLaunch_flight_stage()
- added impact detector timer to clamp is_flying a few seconds after an impact
- logging new impact detector as "STAT.Hit"
The problem with using min() and max() is that they conflict with some
C++ headers. Name the macros in uppercase instead. We may go case by
case later converting them to be typesafe.
Changes generated with:
git ls-files '*.cpp' '*.h' -z | xargs -0 sed -i 's/\([^_[:alnum:]]\)max(/\1MAX(/g'
git ls-files '*.cpp' '*.h' -z | xargs -0 sed -i 's/\([^_[:alnum:]]\)min(/\1MIN(/g'
- parse MAVLINK_MSG_ADSB_VEHICLE msg
- new 1Hz adsb_update task to compare list against for threat detection
- perform object avoidance via loiter or loiter_and_descend. More methods are welcome!
- moved terrain alt rangefinder power-off trigger from trerrain thread to rangefinder thread
- allow rangefinder to power-off using baro if terrain data not available
There is no crosstrack concept in the loiter navigation so when going from waypoint to loiter you will not converge onto the line between those two points. This commit adds crosstracking by performing normal waypoint navigation until you get near it.
Remove the checks for HAL_CPU_CLASS > HAL_CPU_CLASS_16 and
HAL_CPU_CLASS >= HAL_CPU_CLASS_75. Corresponding dead code will be
removed on separate commits.
"%S" is used for wide string, but we are passing a char*. Use lowercase
in this case to remove warnings like this:
libraries/AP_InertialSensor/AP_InertialSensor.cpp: In member function
'bool AP_InertialSensor::calibrate_accel(AP_InertialSensor_UserInteract*, float&, float&)':
libraries/AP_InertialSensor/AP_InertialSensor.cpp:620:61: warning:
format '%S' expects argument of type 'wchar_t*', but argument 3 has type 'const char*' [-Wformat=]
"Place vehicle %S and press any key.\n", msg);
^
Most of AP_Progmem is already gone so we can stop including it in most
of the places. The only places that need it are the ones using
pgm_read_*() APIs.
In some cases the header needed to be added in the .cpp since it was
removed from the .h to reduce scope. In those cases the headers were
also reordered.
prog_char and prog_char_t are now the same as char on supported
platforms. So, just change all places that use them and prefer char
instead.
AVR-specific places were not changed.
Now variables don't have to be declared with PROGMEM anymore, so remove
them. This was automated with:
git grep -l -z PROGMEM | xargs -0 sed -i 's/ PROGMEM / /g'
git grep -l -z PROGMEM | xargs -0 sed -i 's/PROGMEM//g'
The 2 commands were done so we don't leave behind spurious spaces.
AVR-specific places were not changed.
The PSTR is already define as a NOP for all supported platforms. It's
only needed for AVR so here we remove all the uses throughout the
codebase.
This was automated with a simple python script so it also converts
places which spans to multiple lines, removing the matching parentheses.
AVR-specific places were not changed.
- inhibit switching from FLIGHT_NORMAL to FLIGHT_LAND_APPROACH until we meet stricter criteria other than just that LAND is next waypoint
- requires: nav bearing error < 10deg && have traveled path forward 30% of path && are below top of approach in case we hit waypoint while still descending
- exceptions: traveled path forward > 80% which basically means we're getting close to the flare point and better get into approach mode ASAP