ardupilot/Rover/GCS_Mavlink.cpp

1148 lines
38 KiB
C++
Raw Normal View History

2015-05-13 00:16:45 -03:00
#include "Rover.h"
#include "GCS_Mavlink.h"
#include <AP_RPM/AP_RPM_config.h>
#include <AP_RangeFinder/AP_RangeFinder_Backend.h>
#include <AP_EFI/AP_EFI_config.h>
#include <AC_Avoidance/AP_OADatabase.h>
MAV_TYPE GCS_Rover::frame_type() const
{
if (rover.is_boat()) {
return MAV_TYPE_SURFACE_BOAT;
2013-02-08 22:11:43 -04:00
}
return MAV_TYPE_GROUND_ROVER;
}
MAV_MODE GCS_MAVLINK_Rover::base_mode() const
{
2018-04-03 11:35:23 -03:00
uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
if (rover.control_mode->has_manual_input()) {
2018-04-03 11:35:23 -03:00
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
if (rover.control_mode->is_autopilot_mode()) {
2018-04-03 11:35:23 -03:00
_base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
2017-07-18 23:19:08 -03:00
}
2019-04-20 20:10:51 -03:00
if (rover.g2.stick_mixing > 0 && rover.control_mode != &rover.mode_initializing) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
2018-04-03 11:35:23 -03:00
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
// we are armed if we are not initialising
if (rover.control_mode != &rover.mode_initializing && rover.arming.is_armed()) {
2018-04-03 11:35:23 -03:00
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
2018-04-03 11:35:23 -03:00
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
return (MAV_MODE)_base_mode;
}
uint32_t GCS_Rover::custom_mode() const
{
2023-09-21 12:47:41 -03:00
return (uint32_t)rover.control_mode->mode_number();
}
MAV_STATE GCS_MAVLINK_Rover::vehicle_system_status() const
{
if ((rover.failsafe.triggered != 0) || rover.failsafe.ekf) {
return MAV_STATE_CRITICAL;
}
if (rover.control_mode == &rover.mode_initializing) {
return MAV_STATE_CALIBRATING;
}
if (rover.control_mode == &rover.mode_hold) {
return MAV_STATE_STANDBY;
}
return MAV_STATE_ACTIVE;
}
void GCS_MAVLINK_Rover::send_position_target_global_int()
{
Location target;
if (!rover.control_mode->get_desired_location(target)) {
return;
}
static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000;
static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE |
POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE |
POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE;
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL, // targets are always global altitude
TYPE_MASK, // ignore everything except the x/y/z components
target.lat, // latitude as 1e7
target.lng, // longitude as 1e7
target.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
void GCS_MAVLINK_Rover::send_nav_controller_output() const
{
if (!rover.control_mode->is_autopilot_mode()) {
return;
}
const Mode *control_mode = rover.control_mode;
mavlink_msg_nav_controller_output_send(
chan,
0, // roll
degrees(rover.g2.attitude_control.get_desired_pitch()),
control_mode->nav_bearing(),
control_mode->wp_bearing(),
MIN(control_mode->get_distance_to_destination(), UINT16_MAX),
0,
control_mode->speed_error(),
control_mode->crosstrack_error());
}
void GCS_MAVLINK_Rover::send_servo_out()
{
float motor1, motor3;
if (rover.g2.motors.have_skid_steering()) {
motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleLeft) * 0.001f);
motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleRight) * 0.001f);
} else {
motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_steering) / 4500.0f);
motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) * 0.01f);
}
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
motor1,
0,
motor3,
0,
0,
0,
0,
0,
#if AP_RSSI_ENABLED
receiver_rssi()
#else
255
#endif
);
}
2018-01-30 22:11:27 -04:00
int16_t GCS_MAVLINK_Rover::vfr_hud_throttle() const
{
2018-01-30 22:11:27 -04:00
return rover.g2.motors.get_throttle();
}
#if AP_RANGEFINDER_ENABLED
void GCS_MAVLINK_Rover::send_rangefinder() const
{
float distance = 0;
float voltage = 0;
bool got_one = false;
// report smaller distance of all rangefinders
for (uint8_t i=0; i<rover.rangefinder.num_sensors(); i++) {
AP_RangeFinder_Backend *s = rover.rangefinder.get_backend(i);
if (s == nullptr) {
continue;
}
if (!got_one ||
s->distance() < distance) {
distance = s->distance();
voltage = s->voltage_mv();
got_one = true;
}
}
if (!got_one) {
// no relevant data found
return;
}
mavlink_msg_rangefinder_send(
chan,
distance,
voltage);
}
#endif // AP_RANGEFINDER_ENABLED
/*
send PID tuning message
*/
void GCS_MAVLINK_Rover::send_pid_tuning()
{
Parameters &g = rover.g;
ParametersG2 &g2 = rover.g2;
const AP_PIDInfo *pid_info;
// steering PID
if (g.gcs_pid_mask & 1) {
pid_info = &g2.attitude_control.get_steering_rate_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_STEER,
degrees(pid_info->target),
2020-05-17 14:16:36 -03:00
degrees(pid_info->actual),
2016-05-29 20:44:23 -03:00
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
2016-05-29 20:44:23 -03:00
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// speed to throttle PID
if (g.gcs_pid_mask & 2) {
pid_info = &g2.attitude_control.get_throttle_speed_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ,
pid_info->target,
2020-05-17 14:16:36 -03:00
pid_info->actual,
pid_info->FF,
2016-05-29 20:44:23 -03:00
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// pitch to throttle pid
if (g.gcs_pid_mask & 4) {
pid_info = &g2.attitude_control.get_pitch_to_throttle_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH,
degrees(pid_info->target),
2020-05-17 14:16:36 -03:00
degrees(pid_info->actual),
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// left wheel rate control pid
if (g.gcs_pid_mask & 8) {
pid_info = &g2.wheel_rate_control.get_pid(0).get_pid_info();
mavlink_msg_pid_tuning_send(chan, 7,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// right wheel rate control pid
if (g.gcs_pid_mask & 16) {
pid_info = &g2.wheel_rate_control.get_pid(1).get_pid_info();
mavlink_msg_pid_tuning_send(chan, 8,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
2018-09-25 10:09:47 -03:00
// sailboat heel to mainsail pid
if (g.gcs_pid_mask & 32) {
pid_info = &g2.attitude_control.get_sailboat_heel_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, 9,
pid_info->target,
2018-09-25 10:09:47 -03:00
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
2018-09-25 10:09:47 -03:00
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// Position Controller Velocity North PID
if (g.gcs_pid_mask & 64) {
pid_info = &g2.pos_control.get_vel_pid().get_pid_info_x();
mavlink_msg_pid_tuning_send(chan, 10,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// Position Controller Velocity East PID
if (g.gcs_pid_mask & 128) {
pid_info = &g2.pos_control.get_vel_pid().get_pid_info_y();
mavlink_msg_pid_tuning_send(chan, 11,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
}
void Rover::send_wheel_encoder_distance(const mavlink_channel_t chan)
{
// send wheel encoder data using wheel_distance message
if (g2.wheel_encoder.num_sensors() > 0) {
double distances[MAVLINK_MSG_WHEEL_DISTANCE_FIELD_DISTANCE_LEN] {};
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
distances[i] = wheel_encoder_last_distance_m[i];
}
mavlink_msg_wheel_distance_send(chan, 1000UL * AP_HAL::millis(), g2.wheel_encoder.num_sensors(), distances);
}
}
uint8_t GCS_MAVLINK_Rover::sysid_my_gcs() const
{
return rover.g.sysid_my_gcs;
}
bool GCS_MAVLINK_Rover::sysid_enforce() const
{
return rover.g2.sysid_enforce;
}
uint32_t GCS_MAVLINK_Rover::telem_delay() const
2012-08-29 20:36:18 -03:00
{
2017-03-30 11:07:24 -03:00
return static_cast<uint32_t>(rover.g.telem_delay);
2012-08-29 20:36:18 -03:00
}
bool GCS_Rover::vehicle_initialised() const
{
return rover.control_mode != &rover.mode_initializing;
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK_Rover::try_send_message(enum ap_message id)
{
switch (id) {
case MSG_SERVO_OUT:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out();
break;
case MSG_WHEEL_DISTANCE:
CHECK_PAYLOAD_SIZE(WHEEL_DISTANCE);
rover.send_wheel_encoder_distance(chan);
break;
2018-09-25 10:09:47 -03:00
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
2018-11-01 02:27:25 -03:00
rover.g2.windvane.send_wind(chan);
2015-01-06 00:17:56 -04:00
break;
2015-01-06 00:28:38 -04:00
#if AP_OADATABASE_ENABLED
case MSG_ADSB_VEHICLE: {
AP_OADatabase *oadb = AP::oadatabase();
if (oadb != nullptr) {
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
uint16_t interval_ms = 0;
if (get_ap_message_interval(id, interval_ms)) {
oadb->send_adsb_vehicle(chan, interval_ms);
}
}
break;
}
#endif
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
void GCS_MAVLINK_Rover::packetReceived(const mavlink_status_t &status, const mavlink_message_t &msg)
{
2023-08-11 09:28:32 -03:00
#if AP_FOLLOW_ENABLED
// pass message to follow library
rover.g2.follow.handle_msg(msg);
2023-08-11 09:28:32 -03:00
#endif
GCS_MAVLINK::packetReceived(status, msg);
}
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
2022-10-16 20:00:46 -03:00
// @Description: MAVLink Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, and SCALED_PRESSURE3
// @Units: Hz
2021-02-19 11:33:15 -04:00
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 1),
// @Param: EXT_STAT
2022-10-16 20:00:46 -03:00
// @DisplayName: Extended status stream rate
// @Description: MAVLink Stream rate of SYS_STATUS, POWER_STATUS, MCU_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW_INT (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, FENCE_STATUS, and GLOBAL_TARGET_POS_INT
// @Units: Hz
2021-02-19 11:33:15 -04:00
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 1),
// @Param: RC_CHAN
2022-10-16 20:00:46 -03:00
// @DisplayName: RC Channel stream rate
// @Description: MAVLink Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS
// @Units: Hz
2021-02-19 11:33:15 -04:00
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 1),
// @Param: RAW_CTRL
2022-10-16 20:00:46 -03:00
// @DisplayName: Raw Control stream rate
// @Description: MAVLink Raw Control stream rate of SERVO_OUT
// @Units: Hz
2021-02-19 11:33:15 -04:00
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 1),
// @Param: POSITION
2022-10-16 20:00:46 -03:00
// @DisplayName: Position stream rate
// @Description: MAVLink Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED
// @Units: Hz
2021-02-19 11:33:15 -04:00
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
2022-10-16 20:00:46 -03:00
// @Description: MAVLink Stream rate of ATTITUDE, SIMSTATE (SIM only), AHRS2 and PID_TUNING
// @Units: Hz
2021-02-19 11:33:15 -04:00
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 1),
// @Param: EXTRA2
2022-10-16 20:00:46 -03:00
// @DisplayName: Extra data type 2 stream rate
// @Description: MAVLink Stream rate of VFR_HUD
// @Units: Hz
2021-02-19 11:33:15 -04:00
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 1),
// @Param: EXTRA3
2022-10-16 20:00:46 -03:00
// @DisplayName: Extra data type 3 stream rate
// @Description: MAVLink Stream rate of AHRS, SYSTEM_TIME, WIND, RANGEFINDER, DISTANCE_SENSOR, BATTERY2, BATTERY_STATUS, GIMBAL_DEVICE_ATTITUDE_STATUS, OPTICAL_FLOW, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION, RPM, ESC TELEMETRY, and WHEEL_DISTANCE
// @Units: Hz
2021-02-19 11:33:15 -04:00
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 1),
// @Param: PARAMS
2022-10-16 20:00:46 -03:00
// @DisplayName: Parameter stream rate
// @Description: MAVLink Stream rate of PARAM_VALUE
// @Units: Hz
2021-02-19 11:33:15 -04:00
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 10),
// @Param: ADSB
2022-10-16 20:00:46 -03:00
// @DisplayName: ADSB stream rate
// @Description: MAVLink ADSB (AIS) stream rate
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("ADSB", 9, GCS_MAVLINK_Parameters, streamRates[9], 0),
AP_GROUPEND
};
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
MSG_RAW_IMU,
MSG_SCALED_IMU2,
MSG_SCALED_IMU3,
MSG_SCALED_PRESSURE,
MSG_SCALED_PRESSURE2,
MSG_SCALED_PRESSURE3,
2017-08-21 02:53:37 -03:00
};
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
MSG_SYS_STATUS,
MSG_POWER_STATUS,
#if HAL_WITH_MCU_MONITORING
2021-08-23 01:56:22 -03:00
MSG_MCU_STATUS,
#endif
MSG_MEMINFO,
2017-08-21 02:53:37 -03:00
MSG_CURRENT_WAYPOINT,
MSG_GPS_RAW,
MSG_GPS_RTK,
2023-10-25 01:24:00 -03:00
#if GPS_MAX_RECEIVERS > 1
2017-08-21 02:53:37 -03:00
MSG_GPS2_RAW,
MSG_GPS2_RTK,
2023-10-25 01:24:00 -03:00
#endif
2017-08-21 02:53:37 -03:00
MSG_NAV_CONTROLLER_OUTPUT,
#if AP_FENCE_ENABLED
2017-08-21 02:53:37 -03:00
MSG_FENCE_STATUS,
#endif
MSG_POSITION_TARGET_GLOBAL_INT,
2017-08-21 02:53:37 -03:00
};
static const ap_message STREAM_POSITION_msgs[] = {
2017-08-21 02:53:37 -03:00
MSG_LOCATION,
MSG_LOCAL_POSITION
};
static const ap_message STREAM_RAW_CONTROLLER_msgs[] = {
2017-08-21 02:53:37 -03:00
MSG_SERVO_OUT,
};
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
2017-08-21 02:53:37 -03:00
MSG_SERVO_OUTPUT_RAW,
MSG_RC_CHANNELS,
#if AP_MAVLINK_MSG_RC_CHANNELS_RAW_ENABLED
MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection
#endif
2017-08-21 02:53:37 -03:00
};
static const ap_message STREAM_EXTRA1_msgs[] = {
2017-08-21 02:53:37 -03:00
MSG_ATTITUDE,
#if AP_SIM_ENABLED
MSG_SIMSTATE,
#endif
MSG_AHRS2,
2017-08-21 02:53:37 -03:00
MSG_PID_TUNING,
};
static const ap_message STREAM_EXTRA2_msgs[] = {
2017-08-21 02:53:37 -03:00
MSG_VFR_HUD
};
static const ap_message STREAM_EXTRA3_msgs[] = {
2017-08-21 02:53:37 -03:00
MSG_AHRS,
2018-09-25 10:09:47 -03:00
MSG_WIND,
#if AP_RANGEFINDER_ENABLED
2017-08-21 02:53:37 -03:00
MSG_RANGEFINDER,
#endif
MSG_DISTANCE_SENSOR,
2017-08-21 02:53:37 -03:00
MSG_SYSTEM_TIME,
#if AP_BATTERY_ENABLED
2017-08-21 02:53:37 -03:00
MSG_BATTERY_STATUS,
#endif
#if HAL_MOUNT_ENABLED
MSG_GIMBAL_DEVICE_ATTITUDE_STATUS,
#endif
#if AP_OPTICALFLOW_ENABLED
2022-09-07 03:49:51 -03:00
MSG_OPTICAL_FLOW,
#endif
#if COMPASS_CAL_ENABLED
2017-08-21 02:53:37 -03:00
MSG_MAG_CAL_REPORT,
MSG_MAG_CAL_PROGRESS,
#endif
2017-08-21 02:53:37 -03:00
MSG_EKF_STATUS_REPORT,
MSG_VIBRATION,
#if AP_RPM_ENABLED
MSG_RPM,
#endif
MSG_WHEEL_DISTANCE,
#if HAL_WITH_ESC_TELEM
MSG_ESC_TELEMETRY,
#endif
#if HAL_EFI_ENABLED
MSG_EFI_STATUS,
#endif
2017-08-21 02:53:37 -03:00
};
static const ap_message STREAM_PARAMS_msgs[] = {
MSG_NEXT_PARAM
};
static const ap_message STREAM_ADSB_msgs[] = {
2020-03-17 17:57:23 -03:00
MSG_ADSB_VEHICLE,
#if AP_AIS_ENABLED
2020-03-17 17:57:23 -03:00
MSG_AIS_VESSEL,
#endif
};
2017-08-21 02:53:37 -03:00
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
MAV_STREAM_ENTRY(STREAM_POSITION),
MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER),
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
MAV_STREAM_ENTRY(STREAM_EXTRA1),
MAV_STREAM_ENTRY(STREAM_EXTRA2),
MAV_STREAM_ENTRY(STREAM_EXTRA3),
MAV_STREAM_ENTRY(STREAM_ADSB),
MAV_STREAM_ENTRY(STREAM_PARAMS),
2017-08-21 02:53:37 -03:00
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
};
bool GCS_MAVLINK_Rover::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
if (!rover.control_mode->in_guided_mode()) {
// only accept position updates when in GUIDED mode
return false;
}
// make any new wp uploaded instant (in case we are already in Guided mode)
return rover.mode_guided.set_desired_location(cmd.content.location);
}
MAV_RESULT GCS_MAVLINK_Rover::_handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
if (packet.y == 1) {
if (rover.g2.windvane.start_direction_calibration()) {
return MAV_RESULT_ACCEPTED;
} else {
return MAV_RESULT_FAILED;
}
} else if (packet.y == 2) {
if (rover.g2.windvane.start_speed_calibration()) {
return MAV_RESULT_ACCEPTED;
} else {
return MAV_RESULT_FAILED;
}
}
return GCS_MAVLINK::_handle_command_preflight_calibration(packet, msg);
}
MAV_RESULT GCS_MAVLINK_Rover::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
switch (packet.command) {
case MAV_CMD_DO_CHANGE_SPEED:
// param1 : unused
// param2 : new speed in m/s
if (!rover.control_mode->set_desired_speed(packet.param2)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_DO_REPOSITION:
return handle_command_int_do_reposition(packet);
case MAV_CMD_DO_SET_REVERSE:
// param1 : Direction (0=Forward, 1=Reverse)
rover.control_mode->set_reversed(is_equal(packet.param1,1.0f));
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
if (rover.set_mode(rover.mode_rtl, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
return rover.mavlink_motor_test_start(*this,
(AP_MotorsUGV::motor_test_order)packet.param1,
static_cast<uint8_t>(packet.param2),
static_cast<int16_t>(packet.param3),
packet.param4);
case MAV_CMD_MISSION_START:
if (!is_zero(packet.param1) || !is_zero(packet.param2)) {
// first-item/last item not supported
return MAV_RESULT_DENIED;
}
if (rover.set_mode(rover.mode_auto, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
#if AP_MAVLINK_MAV_CMD_NAV_SET_YAW_SPEED_ENABLED
case MAV_CMD_NAV_SET_YAW_SPEED:
send_received_message_deprecation_warning("MAV_CMD_NAV_SET_YAW_SPEED");
return handle_command_nav_set_yaw_speed(packet, msg);
#endif
default:
return GCS_MAVLINK::handle_command_int_packet(packet, msg);
}
}
#if AP_MAVLINK_MAV_CMD_NAV_SET_YAW_SPEED_ENABLED
MAV_RESULT GCS_MAVLINK_Rover::handle_command_nav_set_yaw_speed(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
// param1 : yaw angle (may be absolute or relative)
// param2 : Speed - in metres/second
// param3 : 0 = param1 is absolute, 1 = param1 is relative
// exit if vehicle is not in Guided mode
if (!rover.control_mode->in_guided_mode()) {
return MAV_RESULT_FAILED;
}
// get final angle, 1 = Relative, 0 = Absolute
if (packet.param3 > 0) {
// relative angle
rover.mode_guided.set_desired_heading_delta_and_speed(packet.param1 * 100.0f, packet.param2);
} else {
// absolute angle
rover.mode_guided.set_desired_heading_and_speed(packet.param1 * 100.0f, packet.param2);
}
return MAV_RESULT_ACCEPTED;
}
#endif
MAV_RESULT GCS_MAVLINK_Rover::handle_command_int_do_reposition(const mavlink_command_int_t &packet)
{
const bool change_modes = ((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) == MAV_DO_REPOSITION_FLAGS_CHANGE_MODE;
if (!rover.control_mode->in_guided_mode() && !change_modes) {
return MAV_RESULT_DENIED;
}
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
return MAV_RESULT_DENIED;
}
if (packet.x == 0 && packet.y == 0) {
return MAV_RESULT_DENIED;
}
Location requested_location {};
if (!location_from_command_t(packet, requested_location)) {
return MAV_RESULT_DENIED;
}
if (!rover.control_mode->in_guided_mode()) {
if (!rover.set_mode(Mode::Number::GUIDED, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
}
if (is_positive(packet.param1)) {
if (!rover.control_mode->set_desired_speed(packet.param1)) {
return MAV_RESULT_FAILED;
}
}
// set the destination
if (!rover.mode_guided.set_desired_location(requested_location)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
void GCS_MAVLINK_Rover::handle_message(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET:
handle_set_attitude_target(msg);
break;
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED:
handle_set_position_target_local_ned(msg);
break;
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT:
handle_set_position_target_global_int(msg);
break;
default:
GCS_MAVLINK::handle_message(msg);
break;
}
}
void GCS_MAVLINK_Rover::handle_manual_control_axes(const mavlink_manual_control_t &packet, const uint32_t tnow)
{
manual_override(rover.channel_steer, packet.y, 1000, 2000, tnow);
manual_override(rover.channel_throttle, packet.z, 1000, 2000, tnow);
}
void GCS_MAVLINK_Rover::handle_set_attitude_target(const mavlink_message_t &msg)
{
// decode packet
mavlink_set_attitude_target_t packet;
mavlink_msg_set_attitude_target_decode(&msg, &packet);
2017-05-03 11:21:58 -03:00
// exit if vehicle is not in Guided mode
if (!rover.control_mode->in_guided_mode()) {
return;
}
2017-05-03 11:21:58 -03:00
// ensure type_mask specifies to use thrust
if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_THROTTLE_IGNORE) != 0) {
return;
}
// convert thrust to ground speed
packet.thrust = constrain_float(packet.thrust, -1.0f, 1.0f);
const float target_speed = rover.control_mode->get_speed_default() * packet.thrust;
// if the body_yaw_rate field is ignored, convert quaternion to heading
if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_YAW_RATE_IGNORE) != 0) {
// convert quaternion to heading
float target_heading_cd = degrees(Quaternion(packet.q[0], packet.q[1], packet.q[2], packet.q[3]).get_euler_yaw()) * 100.0f;
rover.mode_guided.set_desired_heading_and_speed(target_heading_cd, target_speed);
} else {
// use body_yaw_rate field
rover.mode_guided.set_desired_turn_rate_and_speed((RAD_TO_DEG * packet.body_yaw_rate) * 100.0f, target_speed);
}
}
2017-05-03 11:21:58 -03:00
void GCS_MAVLINK_Rover::handle_set_position_target_local_ned(const mavlink_message_t &msg)
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(&msg, &packet);
// exit if vehicle is not in Guided mode
if (!rover.control_mode->in_guided_mode()) {
return;
}
// need ekf origin
Location ekf_origin;
if (!rover.ahrs.get_origin(ekf_origin)) {
return;
}
// check for supported coordinate frames
switch (packet.coordinate_frame) {
case MAV_FRAME_LOCAL_NED:
case MAV_FRAME_LOCAL_OFFSET_NED:
case MAV_FRAME_BODY_NED:
case MAV_FRAME_BODY_OFFSET_NED:
break;
default:
return;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
// prepare target position
Location target_loc = rover.current_loc;
if (!pos_ignore) {
switch (packet.coordinate_frame) {
case MAV_FRAME_BODY_NED:
case MAV_FRAME_BODY_OFFSET_NED: {
// rotate from body-frame to NE frame
const float ne_x = packet.x * rover.ahrs.cos_yaw() - packet.y * rover.ahrs.sin_yaw();
const float ne_y = packet.x * rover.ahrs.sin_yaw() + packet.y * rover.ahrs.cos_yaw();
// add offset to current location
target_loc.offset(ne_x, ne_y);
}
break;
case MAV_FRAME_LOCAL_OFFSET_NED:
// add offset to current location
target_loc.offset(packet.x, packet.y);
break;
case MAV_FRAME_LOCAL_NED:
default:
// MAV_FRAME_LOCAL_NED is interpreted as an offset from EKF origin
target_loc = ekf_origin;
target_loc.offset(packet.x, packet.y);
break;
}
}
float target_speed = 0.0f;
float target_yaw_cd = 0.0f;
// consume velocity and convert to target speed and heading
if (!vel_ignore) {
const float speed_max = rover.control_mode->get_speed_default();
// convert vector length into a speed
target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max);
// convert vector direction to target yaw
target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f;
// rotate target yaw if provided in body-frame
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor);
}
}
// consume yaw heading
if (!yaw_ignore) {
target_yaw_cd = ToDeg(packet.yaw) * 100.0f;
// rotate target yaw if provided in body-frame
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor);
}
}
// consume yaw rate
float target_turn_rate_cds = 0.0f;
if (!yaw_rate_ignore) {
target_turn_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
// handling case when both velocity and either yaw or yaw-rate are provided
// by default, we consider that the rover will drive forward
float speed_dir = 1.0f;
if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) {
// Note: we are using the x-axis velocity to determine direction even though
// the frame may have been provided in MAV_FRAME_LOCAL_OFFSET_NED or MAV_FRAME_LOCAL_NED
if (is_negative(packet.vx)) {
speed_dir = -1.0f;
}
}
// set guided mode targets
if (!pos_ignore) {
// consume position target
if (!rover.mode_guided.set_desired_location(target_loc)) {
// GCS will need to monitor desired location to
// see if they are having an effect.
}
} else if (!vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (!vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume velocity and turn rate
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed);
} else if (!vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume velocity and heading
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume just target heading (probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f);
} else if (vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume just turn rate (probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f);
}
}
void GCS_MAVLINK_Rover::handle_set_position_target_global_int(const mavlink_message_t &msg)
{
// decode packet
mavlink_set_position_target_global_int_t packet;
mavlink_msg_set_position_target_global_int_decode(&msg, &packet);
// exit if vehicle is not in Guided mode
if (!rover.control_mode->in_guided_mode()) {
return;
}
// check for supported coordinate frames
switch (packet.coordinate_frame) {
case MAV_FRAME_GLOBAL:
case MAV_FRAME_GLOBAL_INT:
case MAV_FRAME_GLOBAL_RELATIVE_ALT:
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
case MAV_FRAME_GLOBAL_TERRAIN_ALT:
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
break;
default:
return;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
// prepare target position
Location target_loc = rover.current_loc;
if (!pos_ignore) {
// sanity check location
if (!check_latlng(packet.lat_int, packet.lon_int)) {
// result = MAV_RESULT_FAILED;
return;
}
target_loc.lat = packet.lat_int;
target_loc.lng = packet.lon_int;
}
float target_speed = 0.0f;
float target_yaw_cd = 0.0f;
// consume velocity and convert to target speed and heading
if (!vel_ignore) {
const float speed_max = rover.control_mode->get_speed_default();
// convert vector length into a speed
target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max);
// convert vector direction to target yaw
target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f;
}
// consume yaw heading
if (!yaw_ignore) {
target_yaw_cd = ToDeg(packet.yaw) * 100.0f;
}
// consume yaw rate
float target_turn_rate_cds = 0.0f;
if (!yaw_rate_ignore) {
target_turn_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
// handling case when both velocity and either yaw or yaw-rate are provided
// by default, we consider that the rover will drive forward
float speed_dir = 1.0f;
if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) {
// Note: we are using the x-axis velocity to determine direction even though
// the frame is provided in MAV_FRAME_GLOBAL_xxx
if (is_negative(packet.vx)) {
speed_dir = -1.0f;
}
}
// set guided mode targets
if (!pos_ignore) {
// consume position target
if (!rover.mode_guided.set_desired_location(target_loc)) {
// GCS will just need to look at desired location
// outputs to see if it having an effect.
}
} else if (!vel_ignore && acc_ignore && yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (!vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume velocity and turn rate
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed);
} else if (!vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (vel_ignore && acc_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume just target heading (probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f);
} else if (vel_ignore && acc_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume just turn rate(probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f);
}
}
/*
handle a LANDING_TARGET command. The timestamp has been jitter corrected
*/
void GCS_MAVLINK_Rover::handle_landing_target(const mavlink_landing_target_t &packet, uint32_t timestamp_ms)
{
#if AC_PRECLAND_ENABLED
rover.precland.handle_msg(packet, timestamp_ms);
#endif
}
uint64_t GCS_MAVLINK_Rover::capabilities() const
{
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
MAV_PROTOCOL_CAPABILITY_COMMAND_INT |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
GCS_MAVLINK::capabilities());
}
#if HAL_HIGH_LATENCY2_ENABLED
uint8_t GCS_MAVLINK_Rover::high_latency_tgt_heading() const
{
const Mode *control_mode = rover.control_mode;
if (rover.control_mode->is_autopilot_mode()) {
// need to convert -180->180 to 0->360/2
return wrap_360(control_mode->wp_bearing()) / 2;
}
2022-02-14 08:09:10 -04:00
return 0;
}
uint16_t GCS_MAVLINK_Rover::high_latency_tgt_dist() const
{
const Mode *control_mode = rover.control_mode;
if (rover.control_mode->is_autopilot_mode()) {
// return units are dm
return MIN((control_mode->get_distance_to_destination()) / 10, UINT16_MAX);
}
2022-02-14 08:09:10 -04:00
return 0;
}
uint8_t GCS_MAVLINK_Rover::high_latency_tgt_airspeed() const
{
const Mode *control_mode = rover.control_mode;
if (rover.control_mode->is_autopilot_mode()) {
// return units are m/s*5
return MIN((vfr_hud_airspeed() - control_mode->speed_error()) * 5, UINT8_MAX);
}
return 0;
}
uint8_t GCS_MAVLINK_Rover::high_latency_wind_speed() const
{
if (rover.g2.windvane.enabled()) {
// return units are m/s*5
return MIN(rover.g2.windvane.get_true_wind_speed() * 5, UINT8_MAX);
}
2022-02-14 08:09:10 -04:00
return 0;
}
uint8_t GCS_MAVLINK_Rover::high_latency_wind_direction() const
{
if (rover.g2.windvane.enabled()) {
// return units are deg/2
return wrap_360(degrees(rover.g2.windvane.get_true_wind_direction_rad())) / 2;
}
2022-02-14 08:09:10 -04:00
return 0;
}
#endif // HAL_HIGH_LATENCY2_ENABLED