mirror of https://github.com/ArduPilot/ardupilot
Rover: wheel encoder sends alternate sensors on each update
This commit is contained in:
parent
b4a8691a9e
commit
a7eea2a4e3
|
@ -289,7 +289,7 @@ void Rover::send_wheel_encoder_distance(const mavlink_channel_t chan)
|
|||
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
|
||||
distances[i] = wheel_encoder_last_distance_m[i];
|
||||
}
|
||||
mavlink_msg_wheel_distance_send(chan, 1000UL * wheel_encoder_last_ekf_update_ms, g2.wheel_encoder.num_sensors(), distances);
|
||||
mavlink_msg_wheel_distance_send(chan, 1000UL * AP_HAL::millis(), g2.wheel_encoder.num_sensors(), distances);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -267,11 +267,12 @@ private:
|
|||
// Store the time the last GPS message was received.
|
||||
uint32_t last_gps_msg_ms{0};
|
||||
|
||||
// last wheel encoder update times
|
||||
// latest wheel encoder values
|
||||
float wheel_encoder_last_distance_m[WHEELENCODER_MAX_INSTANCES]; // total distance recorded by wheel encoder (for reporting to GCS)
|
||||
bool wheel_encoder_initialised; // true once arrays below have been initialised to sensors initial values
|
||||
float wheel_encoder_last_angle_rad[WHEELENCODER_MAX_INSTANCES]; // distance in radians at time of last update to EKF
|
||||
float wheel_encoder_last_distance_m[WHEELENCODER_MAX_INSTANCES]; // distance in meters at time of last update to EKF (for reporting to GCS)
|
||||
uint32_t wheel_encoder_last_update_ms[WHEELENCODER_MAX_INSTANCES]; // system time of last ping from each encoder
|
||||
uint32_t wheel_encoder_last_ekf_update_ms; // system time of last encoder data push to EKF
|
||||
uint32_t wheel_encoder_last_reading_ms[WHEELENCODER_MAX_INSTANCES]; // system time of last ping from each encoder
|
||||
uint8_t wheel_encoder_last_index_sent; // index of the last wheel encoder sent to the EKF
|
||||
|
||||
// True when we are doing motor test
|
||||
bool motor_test;
|
||||
|
|
|
@ -43,57 +43,59 @@ void Rover::update_wheel_encoder()
|
|||
// update encoders
|
||||
g2.wheel_encoder.update();
|
||||
|
||||
// save cumulative distances at current time (in meters) for reporting to GCS
|
||||
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
|
||||
wheel_encoder_last_distance_m[i] = g2.wheel_encoder.get_distance(i);
|
||||
}
|
||||
|
||||
// send wheel encoder delta angle and delta time to EKF
|
||||
// this should not be done at more than 50hz
|
||||
// initialise on first iteration
|
||||
const uint32_t now = AP_HAL::millis();
|
||||
if (wheel_encoder_last_ekf_update_ms == 0) {
|
||||
wheel_encoder_last_ekf_update_ms = now;
|
||||
if (!wheel_encoder_initialised) {
|
||||
wheel_encoder_initialised = true;
|
||||
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
|
||||
wheel_encoder_last_angle_rad[i] = g2.wheel_encoder.get_delta_angle(i);
|
||||
wheel_encoder_last_update_ms[i] = g2.wheel_encoder.get_last_reading_ms(i);
|
||||
wheel_encoder_last_reading_ms[i] = g2.wheel_encoder.get_last_reading_ms(i);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// calculate delta angle and delta time and send to EKF
|
||||
// use time of last ping from wheel encoder
|
||||
// send delta time (time between this wheel encoder time and previous wheel encoder time)
|
||||
// in case where wheel hasn't moved, count = 0 (cap the delta time at 50ms - or system time)
|
||||
// use system clock of last update instead of time of last ping
|
||||
const float system_dt = (now - wheel_encoder_last_ekf_update_ms) / 1000.0f;
|
||||
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
|
||||
// calculate angular change (in radians)
|
||||
const float curr_angle_rad = g2.wheel_encoder.get_delta_angle(i);
|
||||
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad[i];
|
||||
wheel_encoder_last_angle_rad[i] = curr_angle_rad;
|
||||
|
||||
// save cumulative distances at current time (in meters)
|
||||
wheel_encoder_last_distance_m[i] = g2.wheel_encoder.get_distance(i);
|
||||
|
||||
// calculate delta time
|
||||
float delta_time;
|
||||
const uint32_t latest_sensor_update_ms = g2.wheel_encoder.get_last_reading_ms(i);
|
||||
const uint32_t sensor_diff_ms = latest_sensor_update_ms - wheel_encoder_last_update_ms[i];
|
||||
|
||||
// if we have not received any sensor updates, or time difference is too high then use time since last update to the ekf
|
||||
// check for old or insane sensor update times
|
||||
if (sensor_diff_ms == 0 || sensor_diff_ms > 100) {
|
||||
delta_time = system_dt;
|
||||
wheel_encoder_last_update_ms[i] = wheel_encoder_last_ekf_update_ms;
|
||||
} else {
|
||||
delta_time = sensor_diff_ms / 1000.0f;
|
||||
wheel_encoder_last_update_ms[i] = latest_sensor_update_ms;
|
||||
}
|
||||
|
||||
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad)
|
||||
* delTime is the time interval for the measurement of delAng (sec)
|
||||
* timeStamp_ms is the time when the rotation was last measured (msec)
|
||||
* posOffset is the XYZ body frame position of the wheel hub (m)
|
||||
*/
|
||||
EKF3.writeWheelOdom(delta_angle, delta_time, wheel_encoder_last_update_ms[i], g2.wheel_encoder.get_pos_offset(i), g2.wheel_encoder.get_wheel_radius(i));
|
||||
// on each iteration send data from alternative wheel encoders
|
||||
wheel_encoder_last_index_sent++;
|
||||
if (wheel_encoder_last_index_sent >= g2.wheel_encoder.num_sensors()) {
|
||||
wheel_encoder_last_index_sent = 0;
|
||||
}
|
||||
|
||||
// record system time update for next iteration
|
||||
wheel_encoder_last_ekf_update_ms = now;
|
||||
// get current time, total delta angle (since startup) and update time from sensor
|
||||
const float curr_angle_rad = g2.wheel_encoder.get_delta_angle(wheel_encoder_last_index_sent);
|
||||
const uint32_t sensor_reading_ms = g2.wheel_encoder.get_last_reading_ms(wheel_encoder_last_index_sent);
|
||||
const uint32_t now_ms = AP_HAL::millis();
|
||||
|
||||
// calculate angular change (in radians)
|
||||
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad[wheel_encoder_last_index_sent];
|
||||
wheel_encoder_last_angle_rad[wheel_encoder_last_index_sent] = curr_angle_rad;
|
||||
|
||||
// calculate delta time using time between sensor readings or time since last send to ekf (whichever is shorter)
|
||||
uint32_t sensor_diff_ms = sensor_reading_ms - wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent];
|
||||
if (sensor_diff_ms == 0 || sensor_diff_ms > 100) {
|
||||
// if no sensor update or time difference between sensor readings is too long use time since last send to ekf
|
||||
sensor_diff_ms = now_ms - wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent];
|
||||
wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent] = now_ms;
|
||||
} else {
|
||||
wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent] = sensor_reading_ms;
|
||||
}
|
||||
const float delta_time = sensor_diff_ms * 0.001f;
|
||||
|
||||
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad)
|
||||
* delTime is the time interval for the measurement of delAng (sec)
|
||||
* timeStamp_ms is the time when the rotation was last measured (msec)
|
||||
* posOffset is the XYZ body frame position of the wheel hub (m)
|
||||
*/
|
||||
EKF3.writeWheelOdom(delta_angle,
|
||||
delta_time,
|
||||
wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent],
|
||||
g2.wheel_encoder.get_pos_offset(wheel_encoder_last_index_sent),
|
||||
g2.wheel_encoder.get_wheel_radius(wheel_encoder_last_index_sent));
|
||||
}
|
||||
|
||||
// Accel calibration
|
||||
|
|
Loading…
Reference in New Issue