ardupilot/ArduPlane/GCS_Mavlink.cpp

2252 lines
72 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "GCS_Mavlink.h"
2015-05-13 03:09:36 -03:00
#include "Plane.h"
#include "version.h"
2015-05-13 03:09:36 -03:00
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS | MAV_SYS_STATUS_SENSOR_RC_RECEIVER)
2015-05-13 03:09:36 -03:00
void Plane::send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status;
uint32_t custom_mode = control_mode;
2013-02-08 22:11:26 -04:00
if (failsafe.state != FAILSAFE_NONE) {
2013-02-08 22:11:26 -04:00
system_status = MAV_STATE_CRITICAL;
} else if (plane.crash_state.is_crashed) {
system_status = MAV_STATE_EMERGENCY;
} else if (is_flying()) {
system_status = MAV_STATE_ACTIVE;
} else {
system_status = MAV_STATE_STANDBY;
2013-02-08 22:11:26 -04:00
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (control_mode) {
case MANUAL:
case TRAINING:
case ACRO:
base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case FLY_BY_WIRE_B:
case QSTABILIZE:
case QHOVER:
case QLOITER:
case QLAND:
case CRUISE:
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
case QRTL:
base_mode = MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
system_status = MAV_STATE_CALIBRATING;
break;
}
if (!training_manual_pitch || !training_manual_roll) {
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (control_mode != MANUAL && control_mode != INITIALISING) {
// stabiliser of some form is enabled
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (g.stick_mixing != STICK_MIXING_DISABLED && control_mode != INITIALISING) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
#if HIL_SUPPORT
if (g.hil_mode == 1) {
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
}
#endif
// we are armed if we are not initialising
if (control_mode != INITIALISING && arming.is_armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
2016-05-16 19:43:41 -03:00
gcs[chan-MAVLINK_COMM_0].send_heartbeat(MAV_TYPE_FIXED_WING,
base_mode,
custom_mode,
system_status);
}
2015-05-13 03:09:36 -03:00
void Plane::send_attitude(mavlink_channel_t chan)
{
const Vector3f &omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch - radians(g.pitch_trim_cd*0.01f),
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
#if GEOFENCE_ENABLED == ENABLED
2015-05-13 03:09:36 -03:00
void Plane::send_fence_status(mavlink_channel_t chan)
{
geofence_send_status(chan);
}
#endif
2015-05-13 03:09:36 -03:00
void Plane::send_extended_status1(mavlink_channel_t chan)
{
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
2013-10-29 19:03:20 -03:00
if (airspeed.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
2014-03-28 16:52:48 -03:00
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (geofence_present()) {
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
}
if (aparm.throttle_min < 0) {
control_sensors_present |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence and motor output which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE);
2013-10-29 19:03:20 -03:00
if (airspeed.enabled() && airspeed.use()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (geofence_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
}
switch (control_mode) {
case MANUAL:
break;
case ACRO:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case QSTABILIZE:
case QHOVER:
case QLAND:
case QLOITER:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case FLY_BY_WIRE_B:
case CRUISE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case TRAINING:
if (!training_manual_roll || !training_manual_pitch) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
}
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
case QRTL:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
break;
case INITIALISING:
break;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
2014-08-13 02:00:19 -03:00
// default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy.
control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE |
MAV_SYS_STATUS_SENSOR_3D_MAG |
2013-10-29 19:03:20 -03:00
MAV_SYS_STATUS_SENSOR_GPS |
MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE);
control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;
if (ahrs.initialised() && !ahrs.healthy()) {
2014-05-15 07:53:18 -03:00
// AHRS subsystem is unhealthy
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
2015-05-12 03:19:15 -03:00
if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) {
// trying to use EKF without properly calibrated accelerometers
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (barometer.all_healthy()) {
2014-08-13 02:00:19 -03:00
control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
2014-03-28 16:52:48 -03:00
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
if (!ins.get_accel_health_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
2013-10-29 19:03:20 -03:00
}
if (airspeed.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
2015-06-20 01:52:42 -03:00
#if GEOFENCE_ENABLED
if (geofence_breached()) {
control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE;
}
2015-06-20 01:52:42 -03:00
#endif
if (millis() - failsafe.last_valid_rc_ms < 200) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
} else {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.has_current() && battery.healthy()) {
2013-09-29 09:54:39 -03:00
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
#if AP_TERRAIN_AVAILABLE
2014-07-24 07:16:18 -03:00
switch (terrain.status()) {
case AP_Terrain::TerrainStatusDisabled:
break;
case AP_Terrain::TerrainStatusUnhealthy:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
break;
case AP_Terrain::TerrainStatusOK:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
control_sensors_health |= MAV_SYS_STATUS_TERRAIN;
break;
}
#endif
#if RANGEFINDER_ENABLED == ENABLED
if (rangefinder.num_sensors() > 0) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
if (g.rangefinder_landing) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
if (rangefinder.has_data()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
}
#endif
ArduPlane: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:33:02 -03:00
if (aparm.throttle_min < 0 && channel_throttle->get_servo_out() < 0) {
control_sensors_enabled |= MAV_SYS_STATUS_REVERSE_MOTOR;
control_sensors_health |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
if (AP_Notify::flags.initialising) {
// while initialising the gyros and accels are not enabled
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(scheduler.load_average(20000) * 1000),
2013-09-29 09:54:39 -03:00
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
2015-05-13 03:09:36 -03:00
void Plane::send_location(mavlink_channel_t chan)
{
2014-03-28 16:52:48 -03:00
uint32_t fix_time_ms;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
2014-03-28 16:52:48 -03:00
if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) {
fix_time_ms = gps.last_fix_time_ms();
} else {
fix_time_ms = millis();
}
2014-03-28 16:52:48 -03:00
const Vector3f &vel = gps.velocity();
mavlink_msg_global_position_int_send(
chan,
2014-03-28 16:52:48 -03:00
fix_time_ms,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
current_loc.alt * 10UL, // millimeters above sea level
relative_altitude() * 1.0e3f, // millimeters above ground
2014-03-28 16:52:48 -03:00
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor);
}
2015-05-13 03:09:36 -03:00
void Plane::send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
nav_roll_cd * 0.01f,
nav_pitch_cd * 0.01f,
nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f,
auto_state.wp_distance,
altitude_error_cm * 0.01f,
airspeed_error * 100,
nav_controller->crosstrack_error());
}
void Plane::send_position_target_global_int(mavlink_channel_t chan)
{
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL_INT, // targets are always global altitude
0xFFF8, // ignore everything except the x/y/z components
next_WP_loc.lat, // latitude as 1e7
next_WP_loc.lng, // longitude as 1e7
next_WP_loc.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
2015-05-13 03:09:36 -03:00
void Plane::send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with
// HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
10000 * channel_roll->norm_output() * (channel_roll->get_reverse()?-1:1),
10000 * channel_pitch->norm_output() * (channel_pitch->get_reverse()?-1:1),
10000 * channel_throttle->norm_output() * (channel_throttle->get_reverse()?-1:1),
10000 * channel_rudder->norm_output() * (channel_rudder->get_reverse()?-1:1),
0,
0,
0,
0,
receiver_rssi);
}
2015-05-13 03:09:36 -03:00
void Plane::send_radio_out(mavlink_channel_t chan)
{
#if HIL_SUPPORT
if (g.hil_mode==1 && !g.hil_servos) {
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
ArduPlane: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:33:02 -03:00
RC_Channel::rc_channel(0)->get_radio_out(),
RC_Channel::rc_channel(1)->get_radio_out(),
RC_Channel::rc_channel(2)->get_radio_out(),
RC_Channel::rc_channel(3)->get_radio_out(),
RC_Channel::rc_channel(4)->get_radio_out(),
RC_Channel::rc_channel(5)->get_radio_out(),
RC_Channel::rc_channel(6)->get_radio_out(),
RC_Channel::rc_channel(7)->get_radio_out());
return;
}
#endif
2012-08-21 23:19:51 -03:00
mavlink_msg_servo_output_raw_send(
chan,
micros(),
2012-08-21 23:19:51 -03:00
0, // port
2012-12-04 18:22:21 -04:00
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
}
2015-05-13 03:09:36 -03:00
void Plane::send_vfr_hud(mavlink_channel_t chan)
{
float aspeed;
if (airspeed.enabled()) {
aspeed = airspeed.get_airspeed();
} else if (!ahrs.airspeed_estimate(&aspeed)) {
aspeed = 0;
}
mavlink_msg_vfr_hud_send(
chan,
aspeed,
2014-03-28 16:52:48 -03:00
gps.ground_speed(),
(ahrs.yaw_sensor / 100) % 360,
abs(throttle_percentage()),
current_loc.alt / 100.0f,
2012-07-04 22:11:07 -03:00
barometer.get_climb_rate());
}
/*
keep last HIL_STATE message to allow sending SIM_STATE
*/
#if HIL_SUPPORT
static mavlink_hil_state_t last_hil_state;
#endif
// report simulator state
2015-05-13 03:09:36 -03:00
void Plane::send_simstate(mavlink_channel_t chan)
{
2015-05-04 03:18:55 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.simstate_send(chan);
#elif HIL_SUPPORT
if (g.hil_mode == 1) {
mavlink_msg_simstate_send(chan,
last_hil_state.roll,
last_hil_state.pitch,
last_hil_state.yaw,
last_hil_state.xacc*0.001f*GRAVITY_MSS,
last_hil_state.yacc*0.001f*GRAVITY_MSS,
last_hil_state.zacc*0.001f*GRAVITY_MSS,
last_hil_state.rollspeed,
last_hil_state.pitchspeed,
last_hil_state.yawspeed,
last_hil_state.lat,
last_hil_state.lon);
}
#endif
}
2015-05-13 03:09:36 -03:00
void Plane::send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
2014-02-13 02:08:09 -04:00
hal.analogin->board_voltage()*1000,
2012-12-04 18:22:21 -04:00
hal.i2c->lockup_count());
}
2015-05-13 03:09:36 -03:00
void Plane::send_wind(mavlink_channel_t chan)
2012-08-11 02:57:13 -03:00
{
Vector3f wind = ahrs.wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)), // use negative, to give
// direction wind is coming from
2012-12-18 22:36:00 -04:00
wind.length(),
2012-08-11 02:57:13 -03:00
wind.z);
}
/*
send RPM packet
*/
void NOINLINE Plane::send_rpm(mavlink_channel_t chan)
{
if (rpm_sensor.healthy(0) || rpm_sensor.healthy(1)) {
mavlink_msg_rpm_send(
chan,
rpm_sensor.get_rpm(0),
rpm_sensor.get_rpm(1));
}
}
/*
send PID tuning message
*/
void Plane::send_pid_tuning(mavlink_channel_t chan)
{
const Vector3f &gyro = ahrs.get_gyro();
2016-02-28 23:10:20 -04:00
const DataFlash_Class::PID_Info *pid_info;
if (g.gcs_pid_mask & 1) {
2016-02-28 23:10:20 -04:00
if (quadplane.in_vtol_mode()) {
pid_info = &quadplane.attitude_control->get_rate_roll_pid().get_pid_info();
2016-02-28 23:10:20 -04:00
} else {
pid_info = &rollController.get_pid_info();
}
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ROLL,
2016-02-28 23:10:20 -04:00
pid_info->desired,
degrees(gyro.x),
2016-02-28 23:10:20 -04:00
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 2) {
2016-02-28 23:10:20 -04:00
if (quadplane.in_vtol_mode()) {
pid_info = &quadplane.attitude_control->get_rate_pitch_pid().get_pid_info();
2016-02-28 23:10:20 -04:00
} else {
pid_info = &pitchController.get_pid_info();
}
mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH,
2016-02-28 23:10:20 -04:00
pid_info->desired,
degrees(gyro.y),
2016-02-28 23:10:20 -04:00
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 4) {
2016-02-28 23:10:20 -04:00
if (quadplane.in_vtol_mode()) {
pid_info = &quadplane.attitude_control->get_rate_yaw_pid().get_pid_info();
2016-02-28 23:10:20 -04:00
} else {
pid_info = &yawController.get_pid_info();
}
mavlink_msg_pid_tuning_send(chan, PID_TUNING_YAW,
2016-02-28 23:10:20 -04:00
pid_info->desired,
degrees(gyro.z),
2016-02-28 23:10:20 -04:00
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 8) {
2016-02-28 23:10:20 -04:00
pid_info = &steerController.get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_STEER,
2016-02-28 23:10:20 -04:00
pid_info->desired,
degrees(gyro.z),
2016-02-28 23:10:20 -04:00
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
}
2015-05-13 03:09:36 -03:00
void Plane::send_rangefinder(mavlink_channel_t chan)
2013-10-30 19:54:45 -03:00
{
#if RANGEFINDER_ENABLED == ENABLED
if (!rangefinder.has_data()) {
2013-10-30 19:54:45 -03:00
// no sonar to report
return;
}
mavlink_msg_rangefinder_send(
chan,
rangefinder.distance_cm() * 0.01f,
rangefinder.voltage_mv()*0.001f);
#endif
2013-10-30 19:54:45 -03:00
}
2015-05-13 03:09:36 -03:00
void Plane::send_current_waypoint(mavlink_channel_t chan)
{
2014-04-21 22:38:03 -03:00
mavlink_msg_mission_current_send(chan, mission.get_current_nav_index());
}
uint32_t GCS_MAVLINK_Plane::telem_delay() const
{
return (uint32_t)(plane.g.telem_delay);
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK_Plane::try_send_message(enum ap_message id)
{
if (telemetry_delayed(chan)) {
return false;
}
// if we don't have at least 0.2ms remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
if (!plane.in_mavlink_delay && plane.scheduler.time_available_usec() < 200) {
2015-05-13 03:09:36 -03:00
plane.gcs_out_of_time = true;
return false;
}
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
last_heartbeat_time = AP_HAL::millis();
2015-05-13 03:09:36 -03:00
plane.send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
2015-05-13 03:09:36 -03:00
plane.send_extended_status1(chan);
2015-06-20 00:26:34 -03:00
CHECK_PAYLOAD_SIZE2(POWER_STATUS);
send_power_status();
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo();
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
2015-05-13 03:09:36 -03:00
plane.send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
2015-05-13 03:09:36 -03:00
plane.send_location(chan);
break;
case MSG_LOCAL_POSITION:
CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED);
2015-05-13 03:09:36 -03:00
send_local_position(plane.ahrs);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
2015-05-13 03:09:36 -03:00
if (plane.control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
2015-05-13 03:09:36 -03:00
plane.send_nav_controller_output(chan);
}
break;
case MSG_POSITION_TARGET_GLOBAL_INT:
if (plane.control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(POSITION_TARGET_GLOBAL_INT);
plane.send_position_target_global_int(chan);
}
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
send_gps_raw(plane.gps);
break;
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
send_system_time(plane.gps);
break;
case MSG_SERVO_OUT:
#if HIL_SUPPORT
2015-05-13 03:09:36 -03:00
if (plane.g.hil_mode == 1) {
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
2015-05-13 03:09:36 -03:00
plane.send_servo_out(chan);
}
#endif
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_radio_in(plane.receiver_rssi);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
2015-05-13 03:09:36 -03:00
plane.send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
2015-05-13 03:09:36 -03:00
plane.send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu(plane.ins, plane.compass);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_scaled_pressure(plane.barometer);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_sensor_offsets(plane.ins, plane.compass, plane.barometer);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
2015-05-13 03:09:36 -03:00
plane.send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
queued_param_send();
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
queued_waypoint_send();
break;
case MSG_STATUSTEXT:
// depreciated, use GCS_MAVLINK::send_statustext*
return false;
case MSG_FENCE_STATUS:
#if GEOFENCE_ENABLED == ENABLED
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
2015-05-13 03:09:36 -03:00
plane.send_fence_status(chan);
#endif
break;
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(plane.ahrs);
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
2015-05-13 03:09:36 -03:00
plane.send_simstate(chan);
2015-06-20 00:26:34 -03:00
CHECK_PAYLOAD_SIZE2(AHRS2);
send_ahrs2(plane.ahrs);
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
2015-05-13 03:09:36 -03:00
plane.send_hwstatus(chan);
break;
2013-10-30 19:54:45 -03:00
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
2015-05-13 03:09:36 -03:00
plane.send_rangefinder(chan);
2013-10-30 19:54:45 -03:00
break;
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
2015-05-13 03:09:36 -03:00
plane.terrain.send_request(chan);
#endif
break;
case MSG_CAMERA_FEEDBACK:
#if CAMERA == ENABLED
CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK);
2015-05-13 03:09:36 -03:00
plane.camera.send_feedback(chan, plane.gps, plane.ahrs, plane.current_loc);
#endif
break;
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
send_battery2(plane.battery);
break;
2012-08-11 02:57:13 -03:00
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
2015-05-13 03:09:36 -03:00
plane.send_wind(chan);
2012-08-11 02:57:13 -03:00
break;
case MSG_MOUNT_STATUS:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(MOUNT_STATUS);
2015-05-13 03:09:36 -03:00
plane.camera_mount.status_msg(chan);
#endif // MOUNT == ENABLED
break;
2014-12-08 01:07:49 -04:00
case MSG_OPTICAL_FLOW:
#if OPTFLOW == ENABLED
CHECK_PAYLOAD_SIZE(OPTICAL_FLOW);
send_opticalflow(plane.ahrs, plane.optflow);
2014-12-08 01:07:49 -04:00
#endif
break;
case MSG_EKF_STATUS_REPORT:
#if AP_AHRS_NAVEKF_AVAILABLE
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
plane.ahrs.send_ekf_status_report(chan);
#endif
break;
case MSG_GIMBAL_REPORT:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(GIMBAL_REPORT);
plane.camera_mount.send_gimbal_report(chan);
#endif
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
case MSG_LIMITS_STATUS:
// unused
break;
case MSG_PID_TUNING:
CHECK_PAYLOAD_SIZE(PID_TUNING);
plane.send_pid_tuning(chan);
break;
case MSG_VIBRATION:
CHECK_PAYLOAD_SIZE(VIBRATION);
send_vibration(plane.ins);
break;
case MSG_RPM:
CHECK_PAYLOAD_SIZE(RPM);
plane.send_rpm(chan);
break;
case MSG_MISSION_ITEM_REACHED:
CHECK_PAYLOAD_SIZE(MISSION_ITEM_REACHED);
mavlink_msg_mission_item_reached_send(chan, mission_item_reached_index);
break;
case MSG_MAG_CAL_PROGRESS:
CHECK_PAYLOAD_SIZE(MAG_CAL_PROGRESS);
plane.compass.send_mag_cal_progress(chan);
break;
case MSG_MAG_CAL_REPORT:
CHECK_PAYLOAD_SIZE(MAG_CAL_REPORT);
plane.compass.send_mag_cal_report(chan);
break;
2012-08-21 23:19:51 -03:00
}
return true;
}
2013-02-19 19:08:49 -04:00
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
2013-02-19 19:08:49 -04:00
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
2013-02-19 19:08:49 -04:00
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
2013-02-19 19:08:49 -04:00
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
2013-02-19 19:08:49 -04:00
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
2013-02-19 19:08:49 -04:00
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
2013-02-19 19:08:49 -04:00
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
2013-02-19 19:08:49 -04:00
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
2013-02-19 19:08:49 -04:00
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10),
2012-02-12 04:20:56 -04:00
AP_GROUPEND
};
void
GCS_MAVLINK_Plane::data_stream_send(void)
{
2015-05-13 03:09:36 -03:00
plane.gcs_out_of_time = false;
2015-05-13 03:09:36 -03:00
if (!plane.in_mavlink_delay) {
handle_log_send(plane.DataFlash);
}
if (_queued_parameter != NULL) {
if (streamRates[STREAM_PARAMS].get() <= 0) {
streamRates[STREAM_PARAMS].set(10);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
}
2015-05-13 03:09:36 -03:00
if (plane.gcs_out_of_time) return;
2015-05-13 03:09:36 -03:00
if (plane.in_mavlink_delay) {
#if HIL_SUPPORT
2015-05-13 03:09:36 -03:00
if (plane.g.hil_mode == 1) {
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
}
}
#endif
// don't send any other stream types while in the delay callback
return;
}
2015-05-13 03:09:36 -03:00
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
2015-05-13 03:09:36 -03:00
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_FENCE_STATUS);
send_message(MSG_POSITION_TARGET_GLOBAL_INT);
}
2015-05-13 03:09:36 -03:00
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_POSITION)) {
// sent with GPS read
send_message(MSG_LOCATION);
send_message(MSG_LOCAL_POSITION);
}
2015-05-13 03:09:36 -03:00
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
2015-05-13 03:09:36 -03:00
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
}
2015-05-13 03:09:36 -03:00
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
send_message(MSG_RPM);
if (plane.control_mode != MANUAL) {
send_message(MSG_PID_TUNING);
}
}
2015-05-13 03:09:36 -03:00
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
2015-05-13 03:09:36 -03:00
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
2012-08-11 02:57:13 -03:00
send_message(MSG_WIND);
2013-10-30 19:54:45 -03:00
send_message(MSG_RANGEFINDER);
send_message(MSG_SYSTEM_TIME);
#if AP_TERRAIN_AVAILABLE
send_message(MSG_TERRAIN);
#endif
send_message(MSG_MAG_CAL_REPORT);
send_message(MSG_MAG_CAL_PROGRESS);
send_message(MSG_BATTERY2);
send_message(MSG_MOUNT_STATUS);
2014-12-08 01:07:49 -04:00
send_message(MSG_OPTICAL_FLOW);
send_message(MSG_EKF_STATUS_REPORT);
send_message(MSG_GIMBAL_REPORT);
send_message(MSG_VIBRATION);
}
}
2014-03-18 19:59:51 -03:00
/*
handle a request to switch to guided mode. This happens via a
callback from handle_mission_item()
*/
bool GCS_MAVLINK_Plane::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
2015-05-13 03:09:36 -03:00
if (plane.control_mode != GUIDED) {
// only accept position updates when in GUIDED mode
return false;
}
2015-05-13 03:09:36 -03:00
plane.guided_WP_loc = cmd.content.location;
2014-03-18 19:59:51 -03:00
// add home alt if needed
2015-05-13 03:09:36 -03:00
if (plane.guided_WP_loc.flags.relative_alt) {
plane.guided_WP_loc.alt += plane.home.alt;
plane.guided_WP_loc.flags.relative_alt = 0;
2014-03-18 19:59:51 -03:00
}
2015-05-13 03:09:36 -03:00
plane.set_guided_WP();
return true;
2014-03-18 19:59:51 -03:00
}
/*
handle a request to change current WP altitude. This happens via a
callback from handle_mission_item()
*/
void GCS_MAVLINK_Plane::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
2014-03-18 19:59:51 -03:00
{
2015-05-13 03:09:36 -03:00
plane.next_WP_loc.alt = cmd.content.location.alt;
2014-03-18 19:59:51 -03:00
if (cmd.content.location.flags.relative_alt) {
2015-05-13 03:09:36 -03:00
plane.next_WP_loc.alt += plane.home.alt;
2014-03-18 19:59:51 -03:00
}
2015-05-13 03:09:36 -03:00
plane.next_WP_loc.flags.relative_alt = false;
plane.next_WP_loc.flags.terrain_alt = cmd.content.location.flags.terrain_alt;
plane.reset_offset_altitude();
2014-03-18 19:59:51 -03:00
}
void GCS_MAVLINK_Plane::handleMessage(mavlink_message_t* msg)
2014-03-18 19:59:51 -03:00
{
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
2012-08-21 23:19:51 -03:00
{
2014-03-18 18:34:35 -03:00
handle_request_data_stream(msg, true);
2012-08-21 23:19:51 -03:00
break;
}
case MAVLINK_MSG_ID_COMMAND_INT:
{
// decode
mavlink_command_int_t packet;
mavlink_msg_command_int_decode(msg, &packet);
uint8_t result = MAV_RESULT_UNSUPPORTED;
switch(packet.command) {
case MAV_CMD_DO_REPOSITION:
2016-06-01 18:49:50 -03:00
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
result = MAV_RESULT_FAILED;
break;
}
Location requested_position {};
requested_position.lat = packet.x;
requested_position.lng = packet.y;
// check the floating representation for overflow of altitude
2016-06-05 18:43:45 -03:00
if (fabsf(packet.z * 100.0f) >= 0x7fffff) {
result = MAV_RESULT_FAILED;
break;
}
requested_position.alt = (int32_t)(packet.z * 100.0f);
// load option flags
if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
requested_position.flags.relative_alt = 1;
}
else if (packet.frame == MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) {
requested_position.flags.terrain_alt = 1;
}
else if (packet.frame != MAV_FRAME_GLOBAL_INT) {
// not a supported frame
break;
}
if (is_zero(packet.param4)) {
requested_position.flags.loiter_ccw = 0;
} else {
requested_position.flags.loiter_ccw = 1;
}
if (location_sanitize(plane.current_loc, requested_position)) {
// if the location wasn't already sane don't load it
result = MAV_RESULT_FAILED; // failed as the location is not valid
break;
}
// location is valid load and set
if (((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) ||
(plane.control_mode == GUIDED)) {
plane.set_mode(GUIDED);
plane.guided_WP_loc = requested_position;
// add home alt if needed
if (plane.guided_WP_loc.flags.relative_alt) {
plane.guided_WP_loc.alt += plane.home.alt;
plane.guided_WP_loc.flags.relative_alt = 0;
}
plane.set_guided_WP();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED; // failed as we are not in guided
}
break;
}
mavlink_msg_command_ack_send_buf(
msg,
chan,
packet.command,
result);
break;
}
2012-08-21 23:19:51 -03:00
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
uint8_t result = MAV_RESULT_UNSUPPORTED;
2012-08-21 23:19:51 -03:00
// do command
switch(packet.command) {
case MAV_CMD_DO_CHANGE_SPEED:
//if we're in failsafe modes (e.g., RTL, LOITER) or in pilot
//controlled modes (e.g., MANUAL, TRAINING)
//this comand should be ignored since it comes in from GCS
//or a companion computer:
if (plane.control_mode != GUIDED && plane.control_mode != AUTO) {
result = MAV_RESULT_FAILED;
break;
}
result = MAV_RESULT_FAILED;
AP_Mission::Mission_Command cmd;
if (AP_Mission::mavlink_cmd_long_to_mission_cmd(packet, cmd)
== MAV_MISSION_ACCEPTED) {
plane.do_change_speed(cmd);
result = MAV_RESULT_ACCEPTED;
}
break;
2015-06-10 03:46:17 -03:00
case MAV_CMD_START_RX_PAIR:
// initiate bind procedure
if (!hal.rcin->rc_bind(packet.param1)) {
result = MAV_RESULT_FAILED;
} else {
result = MAV_RESULT_ACCEPTED;
}
break;
2012-08-21 23:19:51 -03:00
case MAV_CMD_NAV_LOITER_UNLIM:
2015-05-13 03:09:36 -03:00
plane.set_mode(LOITER);
2012-08-21 23:19:51 -03:00
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
2015-05-13 03:09:36 -03:00
plane.set_mode(RTL);
2012-08-21 23:19:51 -03:00
result = MAV_RESULT_ACCEPTED;
break;
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for the camera
case MAV_CMD_DO_SET_ROI:
// sanity check location
2016-06-01 18:49:50 -03:00
if (!check_latlng(packet.param5, packet.param6)) {
break;
}
Location roi_loc;
roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
roi_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) {
// switch off the camera tracking if enabled
2015-05-13 03:09:36 -03:00
if (plane.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
plane.camera_mount.set_mode_to_default();
}
} else {
// send the command to the camera mount
2015-05-13 03:09:36 -03:00
plane.camera_mount.set_roi_target(roi_loc);
}
result = MAV_RESULT_ACCEPTED;
break;
#endif
#if CAMERA == ENABLED
case MAV_CMD_DO_DIGICAM_CONFIGURE:
plane.camera.configure(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6,
packet.param7);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_DIGICAM_CONTROL:
if (plane.camera.control(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6)) {
plane.log_picture();
}
result = MAV_RESULT_ACCEPTED;
break;
#endif // CAMERA == ENABLED
case MAV_CMD_DO_MOUNT_CONTROL:
#if MOUNT == ENABLED
plane.camera_mount.control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7);
2016-04-22 08:23:29 -03:00
result = MAV_RESULT_ACCEPTED;
#endif
break;
2012-08-21 23:19:51 -03:00
case MAV_CMD_MISSION_START:
2015-05-13 03:09:36 -03:00
plane.set_mode(AUTO);
2012-08-21 23:19:51 -03:00
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
2015-05-13 03:09:36 -03:00
plane.in_calibration = true;
2015-05-04 23:34:27 -03:00
if (is_equal(packet.param1,1.0f)) {
/*
gyro calibration
*/
if (hal.util->get_soft_armed()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while armed");
result = MAV_RESULT_FAILED;
break;
}
2015-05-13 03:09:36 -03:00
plane.ins.init_gyro();
if (plane.ins.gyro_calibrated_ok_all()) {
plane.ahrs.reset_gyro_drift();
2015-03-10 20:16:59 -03:00
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
2015-05-04 23:34:27 -03:00
} else if (is_equal(packet.param3,1.0f)) {
/*
baro and airspeed calibration
*/
if (hal.util->get_soft_armed() && plane.is_flying()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while flying");
result = MAV_RESULT_FAILED;
break;
}
2016-05-23 22:31:53 -03:00
plane.init_barometer(false);
2015-05-13 03:09:36 -03:00
if (plane.airspeed.enabled()) {
plane.zero_airspeed(false);
2012-08-21 23:19:51 -03:00
}
2015-03-07 06:31:52 -04:00
result = MAV_RESULT_ACCEPTED;
2015-05-04 23:34:27 -03:00
} else if (is_equal(packet.param4,1.0f)) {
/*
radio trim
*/
if (hal.util->get_soft_armed()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while armed");
result = MAV_RESULT_FAILED;
break;
}
2015-05-13 03:09:36 -03:00
plane.trim_radio();
2015-03-07 06:31:52 -04:00
result = MAV_RESULT_ACCEPTED;
2015-05-04 23:34:27 -03:00
} else if (is_equal(packet.param5,1.0f)) {
/*
accel calibration
*/
if (hal.util->get_soft_armed()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while armed");
result = MAV_RESULT_FAILED;
break;
}
result = MAV_RESULT_ACCEPTED;
// start with gyro calibration
plane.ins.init_gyro();
// reset ahrs gyro bias
if (plane.ins.gyro_calibrated_ok_all()) {
plane.ahrs.reset_gyro_drift();
2015-03-07 06:31:52 -04:00
} else {
result = MAV_RESULT_FAILED;
}
plane.ins.acal_init();
plane.ins.get_acal()->start(this);
} else if (is_equal(packet.param5,2.0f)) {
/*
ahrs trim
*/
if (hal.util->get_soft_armed()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while armed");
result = MAV_RESULT_FAILED;
break;
}
// start with gyro calibration
plane.ins.init_gyro();
// accel trim
float trim_roll, trim_pitch;
if(plane.ins.calibrate_trim(trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
plane.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
}
else {
send_text(MAV_SEVERITY_WARNING, "Unsupported preflight calibration");
}
2015-05-13 03:09:36 -03:00
plane.in_calibration = false;
2012-08-21 23:19:51 -03:00
break;
case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS:
{
uint8_t compassNumber = -1;
if (is_equal(packet.param1, 2.0f)) {
compassNumber = 0;
} else if (is_equal(packet.param1, 5.0f)) {
compassNumber = 1;
} else if (is_equal(packet.param1, 6.0f)) {
compassNumber = 2;
}
if (compassNumber != (uint8_t) -1) {
plane.compass.set_and_save_offsets(compassNumber, packet.param2, packet.param3, packet.param4);
result = MAV_RESULT_ACCEPTED;
}
break;
}
2013-11-27 22:19:34 -04:00
case MAV_CMD_COMPONENT_ARM_DISARM:
2015-05-04 23:34:27 -03:00
if (is_equal(packet.param1,1.0f)) {
// run pre_arm_checks and arm_checks and display failures
2015-05-13 03:09:36 -03:00
if (plane.arm_motors(AP_Arming::MAVLINK)) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
2015-05-04 23:34:27 -03:00
} else if (is_zero(packet.param1)) {
2015-05-13 03:09:36 -03:00
if (plane.disarm_motors()) {
result = MAV_RESULT_ACCEPTED;
2013-11-27 22:19:34 -04:00
} else {
result = MAV_RESULT_FAILED;
2013-11-27 22:19:34 -04:00
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_GET_HOME_POSITION:
if (plane.home_is_set != HOME_UNSET) {
send_home(plane.ahrs.get_home());
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_MODE:
switch ((uint16_t)packet.param1) {
case MAV_MODE_MANUAL_ARMED:
case MAV_MODE_MANUAL_DISARMED:
2015-05-13 03:09:36 -03:00
plane.set_mode(MANUAL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_AUTO_ARMED:
case MAV_MODE_AUTO_DISARMED:
2015-05-13 03:09:36 -03:00
plane.set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_STABILIZE_DISARMED:
case MAV_MODE_STABILIZE_ARMED:
2015-05-13 03:09:36 -03:00
plane.set_mode(FLY_BY_WIRE_A);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
}
break;
2012-09-03 07:56:36 -03:00
case MAV_CMD_DO_SET_SERVO:
2015-05-13 03:09:36 -03:00
if (plane.ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) {
2014-01-20 00:36:31 -04:00
result = MAV_RESULT_ACCEPTED;
}
2012-09-03 07:56:36 -03:00
break;
2012-08-21 23:19:51 -03:00
case MAV_CMD_DO_REPEAT_SERVO:
2015-05-13 03:09:36 -03:00
if (plane.ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) {
2014-01-20 00:36:31 -04:00
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_RELAY:
2015-05-13 03:09:36 -03:00
if (plane.ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) {
2014-01-20 00:36:31 -04:00
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_RELAY:
2015-05-13 03:09:36 -03:00
if (plane.ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) {
2014-01-20 00:36:31 -04:00
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
2015-05-04 23:34:27 -03:00
if (is_equal(packet.param1,1.0f) || is_equal(packet.param1,3.0f)) {
2013-09-03 22:59:16 -03:00
// when packet.param1 == 3 we reboot to hold in bootloader
2015-05-04 23:34:27 -03:00
hal.scheduler->reboot(is_equal(packet.param1,3.0f));
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_LAND_START:
result = MAV_RESULT_FAILED;
// attempt to switch to next DO_LAND_START command in the mission
2015-05-13 03:09:36 -03:00
if (plane.jump_to_landing_sequence()) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_GO_AROUND:
result = MAV_RESULT_FAILED;
//Not allowing go around at FLIGHT_LAND_FINAL stage on purpose --
//if plane is close to the ground a go around coudld be dangerous.
2016-01-30 02:32:42 -04:00
if (plane.flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH ||
plane.flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE ||
plane.flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) {
// Initiate an aborted landing. This will trigger a pitch-up and
// climb-out to a safe altitude holding heading then one of the
// following actions will occur, check for in this order:
// - If MAV_CMD_CONTINUE_AND_CHANGE_ALT is next command in mission,
// increment mission index to execute it
// - else if DO_LAND_START is available, jump to it
// - else decrement the mission index to repeat the landing approach
if (!is_zero(packet.param1)) {
plane.auto_state.takeoff_altitude_rel_cm = packet.param1 * 100;
}
2015-05-13 03:09:36 -03:00
plane.auto_state.commanded_go_around = true;
result = MAV_RESULT_ACCEPTED;
2015-11-18 15:17:50 -04:00
plane.gcs_send_text(MAV_SEVERITY_INFO,"Go around command accepted");
} else {
2015-11-18 15:17:50 -04:00
plane.gcs_send_text(MAV_SEVERITY_NOTICE,"Rejected go around command");
}
break;
case MAV_CMD_DO_FENCE_ENABLE:
result = MAV_RESULT_ACCEPTED;
2015-05-13 03:09:36 -03:00
if (!plane.geofence_present()) {
result = MAV_RESULT_FAILED;
} else {
switch((uint16_t)packet.param1) {
case 0:
2015-05-13 03:09:36 -03:00
if (! plane.geofence_set_enabled(false, GCS_TOGGLED)) {
result = MAV_RESULT_FAILED;
}
break;
case 1:
2015-05-13 03:09:36 -03:00
if (! plane.geofence_set_enabled(true, GCS_TOGGLED)) {
result = MAV_RESULT_FAILED;
}
break;
case 2: //disable fence floor only
2015-05-13 03:09:36 -03:00
if (! plane.geofence_set_floor_enabled(false)) {
result = MAV_RESULT_FAILED;
} else {
2015-11-18 15:17:50 -04:00
plane.gcs_send_text(MAV_SEVERITY_NOTICE,"Fence floor disabled");
}
break;
default:
result = MAV_RESULT_FAILED;
break;
}
}
break;
case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: {
2015-05-04 23:34:27 -03:00
if (is_equal(packet.param1,1.0f)) {
send_autopilot_version(FIRMWARE_VERSION);
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_HOME:
// param1 : use current (1=use current location, 0=use specified location)
// param5 : latitude
// param6 : longitude
// param7 : altitude (absolute)
result = MAV_RESULT_FAILED; // assume failure
2015-05-04 23:34:27 -03:00
if (is_equal(packet.param1,1.0f)) {
2015-05-13 03:09:36 -03:00
plane.init_home();
} else {
2015-05-04 23:34:27 -03:00
if (is_zero(packet.param5) && is_zero(packet.param6) && is_zero(packet.param7)) {
// don't allow the 0,0 position
break;
}
// sanity check location
2016-06-01 18:49:50 -03:00
if (!check_latlng(packet.param5,packet.param6)) {
break;
}
Location new_home_loc {};
new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
new_home_loc.alt = (int32_t)(packet.param7 * 100.0f);
2015-05-13 03:09:36 -03:00
plane.ahrs.set_home(new_home_loc);
plane.home_is_set = HOME_SET_NOT_LOCKED;
2015-07-05 23:01:17 -03:00
plane.Log_Write_Home_And_Origin();
GCS_MAVLINK::send_home_all(new_home_loc);
result = MAV_RESULT_ACCEPTED;
2015-11-18 15:17:50 -04:00
plane.gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set HOME to %.6f %.6f at %um",
(double)(new_home_loc.lat*1.0e-7f),
(double)(new_home_loc.lng*1.0e-7f),
(uint32_t)(new_home_loc.alt*0.01f));
}
break;
}
case MAV_CMD_DO_AUTOTUNE_ENABLE:
// param1 : enable/disable
plane.autotune_enable(!is_zero(packet.param1));
break;
case MAV_CMD_DO_START_MAG_CAL:
case MAV_CMD_DO_ACCEPT_MAG_CAL:
case MAV_CMD_DO_CANCEL_MAG_CAL:
result = plane.compass.handle_mag_cal_command(packet);
break;
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
// configure or release parachute
result = MAV_RESULT_ACCEPTED;
switch ((uint16_t)packet.param1) {
case PARACHUTE_DISABLE:
plane.parachute.enabled(false);
break;
case PARACHUTE_ENABLE:
plane.parachute.enabled(true);
break;
case PARACHUTE_RELEASE:
// treat as a manual release which performs some additional check of altitude
if (plane.parachute.released()) {
plane.gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "Parachute already released");
result = MAV_RESULT_FAILED;
} else if (!plane.parachute.enabled()) {
plane.gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "Parachute not enabled");
result = MAV_RESULT_FAILED;
} else {
if (!plane.parachute_manual_release()) {
result = MAV_RESULT_FAILED;
}
}
break;
default:
result = MAV_RESULT_FAILED;
break;
}
break;
#endif
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
// param5 : motor count (number of motors to test in sequence)
result = plane.quadplane.mavlink_motor_test_start(chan, (uint8_t)packet.param1, (uint8_t)packet.param2, (uint16_t)packet.param3, packet.param4, (uint8_t)packet.param5);
break;
case MAV_CMD_DO_VTOL_TRANSITION:
if (!plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)packet.param1)) {
result = MAV_RESULT_FAILED;
} else {
result = MAV_RESULT_ACCEPTED;
}
break;
2012-08-21 23:19:51 -03:00
default:
break;
2012-08-21 23:19:51 -03:00
}
mavlink_msg_command_ack_send_buf(
msg,
2012-08-21 23:19:51 -03:00
chan,
packet.command,
result);
break;
}
2012-08-21 23:19:51 -03:00
case MAVLINK_MSG_ID_SET_MODE:
{
handle_set_mode(msg, FUNCTOR_BIND(&plane, &Plane::mavlink_set_mode, bool, uint8_t));
2012-08-21 23:19:51 -03:00
break;
}
// GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually
2012-08-21 23:19:51 -03:00
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
{
2015-05-13 03:09:36 -03:00
handle_mission_request_list(plane.mission, msg);
2012-08-21 23:19:51 -03:00
break;
}
2012-08-21 23:19:51 -03:00
// XXX read a WP from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST:
2012-08-21 23:19:51 -03:00
{
2015-05-13 03:09:36 -03:00
handle_mission_request(plane.mission, msg);
2012-08-21 23:19:51 -03:00
break;
}
2012-08-21 23:19:51 -03:00
case MAVLINK_MSG_ID_MISSION_ACK:
{
2014-03-18 18:34:35 -03:00
// nothing to do
2012-08-21 23:19:51 -03:00
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
{
// mark the firmware version in the tlog
send_text(MAV_SEVERITY_INFO, FIRMWARE_STRING);
2012-08-21 23:19:51 -03:00
#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION)
send_text(MAV_SEVERITY_INFO, "PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION);
#endif
2014-03-18 18:34:35 -03:00
handle_param_request_list(msg);
2012-08-21 23:19:51 -03:00
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
2014-03-18 18:34:35 -03:00
handle_param_request_read(msg);
2012-08-21 23:19:51 -03:00
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
{
2015-05-13 03:09:36 -03:00
handle_mission_clear_all(plane.mission, msg);
2012-08-21 23:19:51 -03:00
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
2012-08-21 23:19:51 -03:00
{
// disable cross-track when user asks for WP change, to
// prevent unexpected flight paths
2015-05-13 03:09:36 -03:00
plane.auto_state.next_wp_no_crosstrack = true;
handle_mission_set_current(plane.mission, msg);
if (plane.control_mode == AUTO && plane.mission.state() == AP_Mission::MISSION_STOPPED) {
plane.mission.resume();
}
2012-08-21 23:19:51 -03:00
break;
}
// GCS provides the full number of commands it wishes to upload
// individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message
case MAVLINK_MSG_ID_MISSION_COUNT:
2012-08-21 23:19:51 -03:00
{
2015-05-13 03:09:36 -03:00
handle_mission_count(plane.mission, msg);
2012-08-21 23:19:51 -03:00
break;
}
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
2012-08-21 23:19:51 -03:00
{
2015-05-13 03:09:36 -03:00
handle_mission_write_partial_list(plane.mission, msg);
2012-08-21 23:19:51 -03:00
break;
}
2015-06-23 23:13:16 -03:00
// GCS has sent us a mission item, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM:
2012-08-21 23:19:51 -03:00
{
2015-05-13 03:09:36 -03:00
if (handle_mission_item(msg, plane.mission)) {
2015-06-23 23:13:16 -03:00
plane.DataFlash.Log_Write_EntireMission(plane.mission);
}
2012-08-21 23:19:51 -03:00
break;
}
// GCS has sent us a mission item, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM_INT:
{
if (handle_mission_item(msg, plane.mission)) {
plane.DataFlash.Log_Write_EntireMission(plane.mission);
}
break;
}
#if GEOFENCE_ENABLED == ENABLED
2012-08-21 23:19:51 -03:00
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(msg, &packet);
2015-05-13 03:09:36 -03:00
if (plane.g.fence_action != FENCE_ACTION_NONE) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Fencing must be disabled");
2015-05-13 03:09:36 -03:00
} else if (packet.count != plane.g.fence_total) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Bad fence point");
2016-06-01 18:49:50 -03:00
} else if (!check_latlng(packet.lat,packet.lng)) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Invalid fence point, lat or lng too large");
} else {
Vector2l point;
point.x = packet.lat*1.0e7f;
point.y = packet.lng*1.0e7f;
2015-05-13 03:09:36 -03:00
plane.set_fence_point_with_index(point, packet.idx);
}
break;
}
2012-08-21 23:19:51 -03:00
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(msg, &packet);
2015-05-13 03:09:36 -03:00
if (packet.idx >= plane.g.fence_total) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Bad fence point");
} else {
2015-05-13 03:09:36 -03:00
Vector2l point = plane.get_fence_point_with_index(packet.idx);
mavlink_msg_fence_point_send_buf(msg, chan, msg->sysid, msg->compid, packet.idx, plane.g.fence_total,
point.x*1.0e-7f, point.y*1.0e-7f);
}
break;
}
#endif // GEOFENCE_ENABLED
// receive a rally point from GCS and store in EEPROM
case MAVLINK_MSG_ID_RALLY_POINT: {
mavlink_rally_point_t packet;
mavlink_msg_rally_point_decode(msg, &packet);
2015-05-13 03:09:36 -03:00
if (packet.idx >= plane.rally.get_rally_total() ||
packet.idx >= plane.rally.get_rally_max()) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Bad rally point message ID");
break;
}
2015-05-13 03:09:36 -03:00
if (packet.count != plane.rally.get_rally_total()) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Bad rally point message count");
break;
}
2016-06-01 18:49:50 -03:00
// sanity check location
if (!check_latlng(packet.lat, packet.lng)) {
break;
}
RallyLocation rally_point;
rally_point.lat = packet.lat;
rally_point.lng = packet.lng;
rally_point.alt = packet.alt;
rally_point.break_alt = packet.break_alt;
rally_point.land_dir = packet.land_dir;
rally_point.flags = packet.flags;
2015-05-13 03:09:36 -03:00
plane.rally.set_rally_point_with_index(packet.idx, rally_point);
break;
}
//send a rally point to the GCS
case MAVLINK_MSG_ID_RALLY_FETCH_POINT: {
mavlink_rally_fetch_point_t packet;
mavlink_msg_rally_fetch_point_decode(msg, &packet);
2015-05-13 03:09:36 -03:00
if (packet.idx > plane.rally.get_rally_total()) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING, "Bad rally point index");
break;
}
RallyLocation rally_point;
2015-05-13 03:09:36 -03:00
if (!plane.rally.get_rally_point_with_index(packet.idx, rally_point)) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING, "Failed to set rally point");
break;
}
mavlink_msg_rally_point_send_buf(msg,
chan, msg->sysid, msg->compid, packet.idx,
2015-05-13 03:09:36 -03:00
plane.rally.get_rally_total(), rally_point.lat, rally_point.lng,
rally_point.alt, rally_point.break_alt, rally_point.land_dir,
rally_point.flags);
break;
}
case MAVLINK_MSG_ID_PARAM_SET:
2012-08-21 23:19:51 -03:00
{
2015-05-13 03:09:36 -03:00
handle_param_set(msg, &plane.DataFlash);
2012-08-21 23:19:51 -03:00
break;
2014-03-18 18:34:35 -03:00
}
case MAVLINK_MSG_ID_GIMBAL_REPORT:
{
#if MOUNT == ENABLED
handle_gimbal_report(plane.camera_mount, msg);
#endif
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
2012-08-21 23:19:51 -03:00
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
2015-05-13 03:09:36 -03:00
if(msg->sysid != plane.g.sysid_my_gcs) break; // Only accept control from our gcs
2012-08-21 23:19:51 -03:00
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
2012-12-04 18:22:21 -04:00
if (hal.rcin->set_overrides(v, 8)) {
plane.failsafe.last_valid_rc_ms = AP_HAL::millis();
plane.failsafe.AFS_last_valid_rc_ms = plane.failsafe.last_valid_rc_ms;
}
2012-12-04 18:22:21 -04:00
// a RC override message is consiered to be a 'heartbeat' from
// the ground station for failsafe purposes
plane.failsafe.last_heartbeat_ms = AP_HAL::millis();
2012-08-21 23:19:51 -03:00
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
2012-08-21 23:19:51 -03:00
{
// We keep track of the last time we received a heartbeat from
// our GCS for failsafe purposes
2015-05-13 03:09:36 -03:00
if (msg->sysid != plane.g.sysid_my_gcs) break;
plane.failsafe.last_heartbeat_ms = AP_HAL::millis();
2012-08-21 23:19:51 -03:00
break;
}
2012-08-21 23:19:51 -03:00
case MAVLINK_MSG_ID_HIL_STATE:
{
#if HIL_SUPPORT
2015-05-13 03:09:36 -03:00
if (plane.g.hil_mode != 1) {
break;
}
2016-06-01 18:49:50 -03:00
2012-08-21 23:19:51 -03:00
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
2016-06-01 18:49:50 -03:00
// sanity check location
if (!check_latlng(packet.lat, packet.lon)) {
break;
}
last_hil_state = packet;
2014-03-28 16:52:48 -03:00
// set gps hil sensor
Location loc;
memset(&loc, 0, sizeof(loc));
2014-03-28 16:52:48 -03:00
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt/10;
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
// setup airspeed pressure based on 3D speed, no wind
2015-05-13 03:09:36 -03:00
plane.airspeed.setHIL(sq(vel.length()) / 2.0f + 2013);
2015-05-13 03:09:36 -03:00
plane.gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
packet.time_usec/1000,
2016-05-04 22:42:32 -03:00
loc, vel, 10, 0);
2012-08-21 23:19:51 -03:00
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * GRAVITY_MSS*0.001f;
accels.y = packet.yacc * GRAVITY_MSS*0.001f;
accels.z = packet.zacc * GRAVITY_MSS*0.001f;
2015-05-13 03:09:36 -03:00
plane.ins.set_gyro(0, gyros);
plane.ins.set_accel(0, accels);
2012-08-21 23:19:51 -03:00
2015-05-13 03:09:36 -03:00
plane.barometer.setHIL(packet.alt*0.001f);
plane.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw);
plane.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw);
// cope with DCM getting badly off due to HIL lag
2015-05-13 03:09:36 -03:00
if (plane.g.hil_err_limit > 0 &&
(fabsf(packet.roll - plane.ahrs.roll) > ToRad(plane.g.hil_err_limit) ||
fabsf(packet.pitch - plane.ahrs.pitch) > ToRad(plane.g.hil_err_limit) ||
wrap_PI(fabsf(packet.yaw - plane.ahrs.yaw)) > ToRad(plane.g.hil_err_limit))) {
plane.ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw);
}
#endif
2012-08-21 23:19:51 -03:00
break;
}
2012-06-13 16:00:20 -03:00
#if CAMERA == ENABLED
//deprecated. Use MAV_CMD_DO_DIGICAM_CONFIGURE
2012-06-13 16:00:20 -03:00
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE:
2012-08-21 23:19:51 -03:00
{
break;
}
2012-06-13 16:00:20 -03:00
//deprecated. Use MAV_CMD_DO_DIGICAM_CONTROL
2012-06-13 16:00:20 -03:00
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
2012-08-21 23:19:51 -03:00
{
2015-05-13 03:09:36 -03:00
plane.camera.control_msg(msg);
plane.log_picture();
2012-08-21 23:19:51 -03:00
break;
}
2012-06-13 16:00:20 -03:00
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
//deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
2012-08-21 23:19:51 -03:00
{
2015-05-13 03:09:36 -03:00
plane.camera_mount.configure_msg(msg);
2012-08-21 23:19:51 -03:00
break;
}
//deprecated. Use MAV_CMD_DO_MOUNT_CONTROL
case MAVLINK_MSG_ID_MOUNT_CONTROL:
2012-08-21 23:19:51 -03:00
{
2015-05-13 03:09:36 -03:00
plane.camera_mount.control_msg(msg);
2012-08-21 23:19:51 -03:00
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
2013-08-24 04:59:02 -03:00
case MAVLINK_MSG_ID_RADIO_STATUS:
2012-08-21 23:19:51 -03:00
{
2015-05-13 03:09:36 -03:00
handle_radio_status(msg, plane.DataFlash, plane.should_log(MASK_LOG_PM));
2012-08-21 23:19:51 -03:00
break;
}
2014-01-13 22:51:49 -04:00
case MAVLINK_MSG_ID_LOG_REQUEST_DATA:
case MAVLINK_MSG_ID_LOG_ERASE:
2015-05-13 03:09:36 -03:00
plane.in_log_download = true;
/* no break */
2014-01-13 22:51:49 -04:00
case MAVLINK_MSG_ID_LOG_REQUEST_LIST:
2015-05-13 03:09:36 -03:00
if (!plane.in_mavlink_delay) {
handle_log_message(msg, plane.DataFlash);
2014-01-13 22:51:49 -04:00
}
break;
case MAVLINK_MSG_ID_LOG_REQUEST_END:
2015-05-13 03:09:36 -03:00
plane.in_log_download = false;
if (!plane.in_mavlink_delay) {
handle_log_message(msg, plane.DataFlash);
}
break;
case MAVLINK_MSG_ID_SERIAL_CONTROL:
2015-05-13 03:09:36 -03:00
handle_serial_control(msg, plane.gps);
break;
2015-03-25 01:01:36 -03:00
case MAVLINK_MSG_ID_GPS_INJECT_DATA:
2015-05-13 03:09:36 -03:00
handle_gps_inject(msg, plane.gps);
2015-03-25 01:01:36 -03:00
break;
#if RANGEFINDER_ENABLED == ENABLED
case MAVLINK_MSG_ID_DISTANCE_SENSOR:
plane.rangefinder.handle_msg(msg);
break;
#endif
case MAVLINK_MSG_ID_TERRAIN_DATA:
2014-07-22 05:08:03 -03:00
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE
2015-05-13 03:09:36 -03:00
plane.terrain.handle_data(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST:
send_autopilot_version(FIRMWARE_VERSION);
break;
2015-11-10 02:26:04 -04:00
case MAVLINK_MSG_ID_REMOTE_LOG_BLOCK_STATUS:
plane.DataFlash.remote_log_block_status_msg(chan, msg);
break;
case MAVLINK_MSG_ID_SET_HOME_POSITION:
{
mavlink_set_home_position_t packet;
mavlink_msg_set_home_position_decode(msg, &packet);
if((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) {
// don't allow the 0,0 position
break;
}
// sanity check location
2016-06-01 18:49:50 -03:00
if (!check_latlng(packet.latitude,packet.longitude)) {
break;
}
Location new_home_loc {};
new_home_loc.lat = packet.latitude;
new_home_loc.lng = packet.longitude;
new_home_loc.alt = packet.altitude / 10;
plane.ahrs.set_home(new_home_loc);
plane.home_is_set = HOME_SET_NOT_LOCKED;
plane.Log_Write_Home_And_Origin();
GCS_MAVLINK::send_home_all(new_home_loc);
2015-11-18 15:17:50 -04:00
plane.gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set HOME to %.6f %.6f at %um",
(double)(new_home_loc.lat*1.0e-7f),
(double)(new_home_loc.lng*1.0e-7f),
(uint32_t)(new_home_loc.alt*0.01f));
break;
}
case MAVLINK_MSG_ID_ADSB_VEHICLE:
plane.adsb.update_vehicle(msg);
break;
case MAVLINK_MSG_ID_SETUP_SIGNING:
handle_setup_signing(msg);
break;
} // end switch
} // end handle mavlink
/*
2012-08-21 23:19:51 -03:00
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
2015-05-13 03:09:36 -03:00
void Plane::mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs[0].initialised || in_mavlink_delay) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
2012-12-04 18:22:21 -04:00
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
2013-08-29 00:13:58 -03:00
notify.update();
2012-12-04 18:22:21 -04:00
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
2015-11-18 15:17:50 -04:00
gcs_send_text(MAV_SEVERITY_INFO, "Initialising APM");
2012-12-04 18:22:21 -04:00
}
check_usb_mux();
in_mavlink_delay = false;
}
/*
2012-08-21 23:19:51 -03:00
* send a message on both GCS links
*/
2015-05-13 03:09:36 -03:00
void Plane::gcs_send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_message(id);
}
}
}
/*
* send a mission item reached message and load the index before the send attempt in case it may get delayed
*/
void Plane::gcs_send_mission_item_reached_message(uint16_t mission_index)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].mission_item_reached_index = mission_index;
gcs[i].send_message(MSG_MISSION_ITEM_REACHED);
}
}
}
/*
2012-08-21 23:19:51 -03:00
* send data streams in the given rate range on both links
*/
2015-05-13 03:09:36 -03:00
void Plane::gcs_data_stream_send(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].data_stream_send();
}
}
}
/*
2012-08-21 23:19:51 -03:00
* look for incoming commands on the GCS links
*/
2015-05-13 03:09:36 -03:00
void Plane::gcs_update(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
2014-05-20 23:44:05 -03:00
#if CLI_ENABLED == ENABLED
gcs[i].update(g.cli_enabled == 1 ? FUNCTOR_BIND_MEMBER(&Plane::run_cli, void, AP_HAL::UARTDriver *):NULL);
2014-05-20 23:44:05 -03:00
#else
gcs[i].update(NULL);
#endif
}
}
}
void Plane::gcs_send_text(MAV_SEVERITY severity, const char *str)
{
GCS_MAVLINK::send_statustext(severity, 0xFF, str);
}
/*
2012-08-21 23:19:51 -03:00
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void Plane::gcs_send_text_fmt(MAV_SEVERITY severity, const char *fmt, ...)
{
char str[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN] {};
va_list arg_list;
va_start(arg_list, fmt);
hal.util->vsnprintf((char *)str, sizeof(str), fmt, arg_list);
va_end(arg_list);
GCS_MAVLINK::send_statustext(severity, 0xFF, str);
}
/*
send airspeed calibration data
*/
2015-05-13 03:09:36 -03:00
void Plane::gcs_send_airspeed_calibration(const Vector3f &vg)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
2016-04-05 01:10:30 -03:00
if (HAVE_PAYLOAD_SPACE((mavlink_channel_t)i, AIRSPEED_AUTOCAL)) {
airspeed.log_mavlink_send((mavlink_channel_t)i, vg);
}
}
}
}
/**
retry any deferred messages
*/
2015-05-13 03:09:36 -03:00
void Plane::gcs_retry_deferred(void)
{
gcs_send_message(MSG_RETRY_DEFERRED);
GCS_MAVLINK::service_statustext();
}