ArduPlane: Ported to AP_HAL

This commit is contained in:
Pat Hickey 2012-12-04 14:22:21 -08:00 committed by Andrew Tridgell
parent fff4e87619
commit 92b0c302f2
21 changed files with 509 additions and 517 deletions

View File

@ -17,32 +17,21 @@
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <avr/wdt.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <AP_Progmem.h>
#include <AP_HAL.h>
#include <AP_Menu.h>
#include <AP_Param.h>
#include <Arduino_Mega_ISR_Registry.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
#include <I2C.h> // Wayne Truchsess I2C lib
#include <SPI.h> // Arduino SPI lib
#include <AP_Semaphore.h> // for removing conflict between optical flow and dataflash on SPI3 bus
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_AnalogSource.h> // ArduPilot Mega polymorphic analog getter
#include <AP_PeriodicProcess.h> // ArduPilot Mega TimerProcess
#include <AP_Baro.h> // ArduPilot barometer library
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_ADC_AnalogSource.h>
#include <AP_InertialSensor.h> // Inertial Sensor Library
#include <AP_AHRS.h> // ArduPilot Mega DCM Library
#include <PID.h> // PID library
@ -50,61 +39,58 @@
#include <AP_RangeFinder.h> // Range finder library
#include <Filter.h> // Filter library
#include <AP_Buffer.h> // APM FIFO Buffer
#include <ModeFilter.h> // Mode Filter from Filter library
#include <LowPassFilter.h> // LowPassFilter class (inherits from Filter class)
#include <AP_Relay.h> // APM relay
#include <AP_Camera.h> // Photo or video camera
#include <AP_Airspeed.h>
#include <memcheck.h>
#include <APM_OBC.h>
#include <APM_Control.h>
#include <GCS_MAVLink.h> // MAVLink GCS definitions
#include <AP_Mount.h> // Camera/Antenna mount
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
// optional new controller library
#if APM_CONTROL == ENABLED
#include <APM_Control.h>
#endif
// Pre-AP_HAL compatibility
#include "compat.h"
// Configuration
#include "config.h"
#include <GCS_MAVLink.h> // MAVLink GCS definitions
#include <AP_Mount.h> // Camera/Antenna mount
// Local modules
#include "defines.h"
#include "Parameters.h"
#include "GCS.h"
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
#include <AP_HAL_AVR.h>
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
#if TELEMETRY_UART2 == ENABLED
// solder bridge set to enable UART2 instead of USB MUX
FastSerialPort2(Serial3);
AP_HAL::BetterStream* cliSerial;
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
const AP_HAL::HAL& hal = AP_HAL_AVR_APM2;
#else
FastSerialPort3(Serial3); // Telemetry port for APM1
const AP_HAL::HAL& hal = AP_HAL_AVR_APM1;
#endif
// port to use for command line interface
static FastSerial *cliSerial = &Serial;
////////////////////////////////////////////////////////////////////////////////
// AP_Param Loader
////////////////////////////////////////////////////////////////////////////////
// this sets up the parameter table, and sets the default values. This
// must be the first AP_Param variable declared to ensure its
// constructor runs before the constructors of the other AP_Param
// variables
AP_Param param_loader(var_info, WP_START_BYTE);
// Outback Challenge failsafe support
////////////////////////////////////////////////////////////////////////////////
// Outback Challenge Failsafe Support
////////////////////////////////////////////////////////////////////////////////
#if OBC_FAILSAFE == ENABLED
#include <APM_OBC.h>
APM_OBC obc;
#endif
@ -113,32 +99,6 @@ APM_OBC obc;
////////////////////////////////////////////////////////////////////////////////
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_50HZ;
////////////////////////////////////////////////////////////////////////////////
// ISR Registry
////////////////////////////////////////////////////////////////////////////////
Arduino_Mega_ISR_Registry isr_registry;
////////////////////////////////////////////////////////////////////////////////
// APM_RC_Class Instance
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
APM_RC_APM2 APM_RC;
#else
APM_RC_APM1 APM_RC;
#endif
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
DataFlash_APM2 DataFlash;
#else
DataFlash_APM1 DataFlash;
#endif
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
@ -147,7 +107,6 @@ DataFlash_APM1 DataFlash;
//
static Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
@ -201,22 +160,22 @@ static AP_Compass_HMC5843 compass;
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
AP_GPS_Auto g_gps_driver(hal.uartB, &g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
AP_GPS_NMEA g_gps_driver(hal.uartB);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
AP_GPS_SIRF g_gps_driver(hal.uartB);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
AP_GPS_UBLOX g_gps_driver(hal.uartB);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
AP_GPS_MTK g_gps_driver(hal.uartB);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
AP_GPS_MTK16 g_gps_driver(&Serial1);
AP_GPS_MTK16 g_gps_driver(hal.uartB);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
@ -252,32 +211,30 @@ AP_AHRS_HIL ahrs(&ins, g_gps);
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
// we always have a timer scheduler
AP_TimerProcess timer_scheduler;
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
//
GCS_MAVLINK gcs0;
GCS_MAVLINK gcs3;
////////////////////////////////////////////////////////////////////////////////
// PITOT selection
// Analog Inputs
////////////////////////////////////////////////////////////////////////////////
//
#if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC
AP_AnalogSource_ADC pitot_analog_source( &adc,
CONFIG_PITOT_SOURCE_ADC_CHANNEL, 1.0);
#elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN
AP_AnalogSource_Arduino pitot_analog_source(CONFIG_PITOT_SOURCE_ANALOG_PIN, 4.0);
#endif
AP_HAL::AnalogSource *pitot_analog_source;
// a pin for reading the receiver RSSI voltage. The scaling by 0.25
// is to take the 0 to 1024 range down to an 8 bit range for MAVLink
AP_AnalogSource_Arduino RSSI_pin(-1, 0.25);
AP_HAL::AnalogSource *rssi_analog_source;
AP_HAL::AnalogSource *vcc_pin;
AP_HAL::AnalogSource * batt_volt_pin;
AP_HAL::AnalogSource * batt_curr_pin;
////////////////////////////////////////////////////////////////////////////////
// Relay
////////////////////////////////////////////////////////////////////////////////
AP_Relay relay;
@ -314,7 +271,7 @@ static bool usb_connected;
enum FlightMode control_mode = INITIALISING;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
byte oldSwitchPosition;
uint8_t oldSwitchPosition;
// This is used to enable the inverted flight feature
bool inverted_flight = false;
// These are trim values used for elevon control
@ -341,7 +298,7 @@ static int16_t failsafe;
static bool ch3_failsafe;
// A timer used to help recovery from unusual attitudes. If we enter an unusual attitude
// while in autonomous flight this variable is used to hold roll at 0 for a recovery period
static byte crash_timer;
static uint8_t crash_timer;
// A timer used to track how long since we have received the last GCS heartbeat or rc override message
static uint32_t rc_override_fs_timer = 0;
@ -367,7 +324,7 @@ static const float t7 = 10000000.0;
// We use atan2 and other trig techniques to calaculate angles
// A counter used to count down valid gps fixes to allow the gps estimate to settle
// before recording our home position (and executing a ground start if we booted with an air start)
static byte ground_start_count = 5;
static uint8_t ground_start_count = 5;
// Used to compute a speed estimate from the first valid gps fixes to decide if we are
// on the ground or in the air. Used to decide if a ground start is appropriate if we
// booted with an air start.
@ -401,12 +358,12 @@ static int32_t hold_course = -1; // deg * 100 dir
// There may be two active commands in Auto mode.
// This indicates the active navigation command by index number
static byte nav_command_index;
static uint8_t nav_command_index;
// This indicates the active non-navigation command by index number
static byte non_nav_command_index;
static uint8_t non_nav_command_index;
// This is the command type (eg navigate to waypoint) of the active navigation command
static byte nav_command_ID = NO_COMMAND;
static byte non_nav_command_ID = NO_COMMAND;
static uint8_t nav_command_ID = NO_COMMAND;
static uint8_t non_nav_command_ID = NO_COMMAND;
////////////////////////////////////////////////////////////////////////////////
// Airspeed
@ -473,7 +430,7 @@ static float current_total1;
////////////////////////////////////////////////////////////////////////////////
// Airspeed Sensors
////////////////////////////////////////////////////////////////////////////////
AP_Airspeed airspeed(&pitot_analog_source);
AP_Airspeed airspeed;
////////////////////////////////////////////////////////////////////////////////
// Altitude Sensor variables
@ -645,16 +602,16 @@ static uint16_t mainLoop_count;
static uint32_t medium_loopTimer_ms;
// Counters for branching from main control loop to slower loops
static byte medium_loopCounter;
static uint8_t medium_loopCounter;
// Number of milliseconds used in last medium loop cycle
static uint8_t delta_ms_medium_loop;
// Counters for branching from medium control loop to slower loops
static byte slow_loopCounter;
static uint8_t slow_loopCounter;
// Counter to trigger execution of very low rate processes
static byte superslow_loopCounter;
static uint8_t superslow_loopCounter;
// Counter to trigger execution of 1 Hz processes
static byte counter_one_herz;
static uint8_t counter_one_herz;
// % MCU cycles used
static float load;
@ -683,6 +640,21 @@ AP_Mount camera_mount2(&current_loc, g_gps, &ahrs, 1);
////////////////////////////////////////////////////////////////////////////////
void setup() {
cliSerial = hal.console;
rssi_analog_source = hal.analogin->channel(ANALOG_INPUT_NONE, 0.25);
#if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC
pitot_analog_source = new AP_ADC_AnalogSource( &adc,
CONFIG_PITOT_SOURCE_ADC_CHANNEL, 1.0);
#elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN
pitot_analog_source = hal.analogin->channel(CONFIG_PITOT_SOURCE_ANALOG_PIN, 4.0);
#endif
vcc_pin = hal.analogin->channel(ANALOG_INPUT_BOARD_VCC);
batt_volt_pin = hal.analogin->channel(g.battery_volt_pin);
batt_curr_pin = hal.analogin->channel(g.battery_curr_pin);
airspeed.init(pitot_analog_source);
memcheck_init();
init_ardupilot();
}
@ -1248,3 +1220,5 @@ static void update_alt()
//if(medium_loopCounter == 0 && slow_loopCounter == 0)
// add_altitude_data(millis() / 100, g_gps->altitude / 10);
}
AP_HAL_MAIN();

3
ArduPlane/Arduino.h Normal file
View File

@ -0,0 +1,3 @@
/* Stub Arduino.h header for use with AP_HAL. (The preprocessor will put
* #include "Arduino.h" on top no matter what, but we dont have the Arduino
* core in the compiler's path to find one.) */

View File

@ -358,8 +358,8 @@ static void set_servos(void)
g.channel_roll.radio_out = g.channel_roll.radio_in;
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
} else {
g.channel_roll.radio_out = APM_RC.InputCh(CH_ROLL);
g.channel_pitch.radio_out = APM_RC.InputCh(CH_PITCH);
g.channel_roll.radio_out = hal.rcin->read(CH_ROLL);
g.channel_pitch.radio_out = hal.rcin->read(CH_PITCH);
}
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
g.channel_rudder.radio_out = g.channel_rudder.radio_in;
@ -503,10 +503,10 @@ static void set_servos(void)
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
// send values to the PWM timers for output
// ----------------------------------------
APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos
hal.rcout->write(CH_1, g.channel_roll.radio_out); // send to Servos
hal.rcout->write(CH_2, g.channel_pitch.radio_out); // send to Servos
hal.rcout->write(CH_3, g.channel_throttle.radio_out); // send to Servos
hal.rcout->write(CH_4, g.channel_rudder.radio_out); // send to Servos
// Route configurable aux. functions to their respective servos
g.rc_5.output_ch(CH_5);
g.rc_6.output_ch(CH_6);
@ -522,17 +522,17 @@ static void set_servos(void)
static bool demoing_servos;
static void demo_servos(byte i) {
static void demo_servos(uint8_t i) {
while(i > 0) {
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
demoing_servos = true;
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
APM_RC.OutputCh(1, 1400);
hal.rcout->write(1, 1400);
mavlink_delay(400);
APM_RC.OutputCh(1, 1600);
hal.rcout->write(1, 1600);
mavlink_delay(200);
APM_RC.OutputCh(1, 1500);
hal.rcout->write(1, 1500);
#endif
demoing_servos = false;
mavlink_delay(400);

View File

@ -7,10 +7,9 @@
#ifndef __GCS_H
#define __GCS_H
#include <FastSerial.h>
#include <AP_HAL.h>
#include <AP_Common.h>
#include <GPS.h>
#include <Stream.h>
#include <stdint.h>
///
@ -40,7 +39,7 @@ public:
///
/// @param port The stream over which messages are exchanged.
///
void init(FastSerial *port) {
void init(AP_HAL::UARTDriver *port) {
_port = port;
initialised = true;
}
@ -87,7 +86,7 @@ public:
protected:
/// The stream we are communicating over
FastSerial * _port;
AP_HAL::UARTDriver *_port;
};
//
@ -106,7 +105,7 @@ class GCS_MAVLINK : public GCS_Class
public:
GCS_MAVLINK();
void update(void);
void init(FastSerial *port);
void init(AP_HAL::UARTDriver *port);
void send_message(enum ap_message id);
void send_text(gcs_severity severity, const char *str);
void send_text(gcs_severity severity, const prog_char_t *str);
@ -137,6 +136,8 @@ public:
// messages don't block the CPU
mavlink_statustext_t pending_status;
// call to reset the timeout window for entering the cli
void reset_cli_timeout();
private:
void handleMessage(mavlink_message_t * msg);
@ -209,6 +210,10 @@ private:
// number of extra ticks to add to slow things down for the radio
uint8_t stream_slowdown;
// millis value to calculate cli timeout relative to.
// exists so we can separate the cli entry time from the system start time
uint32_t _cli_timeout;
};
#endif // __GCS_H

View File

@ -315,14 +315,14 @@ static void NOINLINE send_radio_in(mavlink_channel_t chan)
chan,
millis(),
0, // port
APM_RC.InputCh(CH_1),
APM_RC.InputCh(CH_2),
APM_RC.InputCh(CH_3),
APM_RC.InputCh(CH_4),
APM_RC.InputCh(CH_5),
APM_RC.InputCh(CH_6),
APM_RC.InputCh(CH_7),
APM_RC.InputCh(CH_8),
hal.rcin->read(CH_1),
hal.rcin->read(CH_2),
hal.rcin->read(CH_3),
hal.rcin->read(CH_4),
hal.rcin->read(CH_5),
hal.rcin->read(CH_6),
hal.rcin->read(CH_7),
hal.rcin->read(CH_8),
receiver_rssi);
}
@ -333,16 +333,16 @@ static void NOINLINE send_radio_out(mavlink_channel_t chan)
chan,
micros(),
0, // port
APM_RC.OutputCh_current(0),
APM_RC.OutputCh_current(1),
APM_RC.OutputCh_current(2),
APM_RC.OutputCh_current(3),
APM_RC.OutputCh_current(4),
APM_RC.OutputCh_current(5),
APM_RC.OutputCh_current(6),
APM_RC.OutputCh_current(7));
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
#else
extern RC_Channel* rc_ch[NUM_CHANNELS];
extern RC_Channel* rc_ch[8];
mavlink_msg_servo_output_raw_send(
chan,
micros(),
@ -460,7 +460,7 @@ static void NOINLINE send_hwstatus(mavlink_channel_t chan)
#ifdef DESKTOP_BUILD
0);
#else
I2c.lockup_count());
hal.i2c->lockup_count());
#endif
}
@ -762,10 +762,10 @@ GCS_MAVLINK::GCS_MAVLINK() :
}
void
GCS_MAVLINK::init(FastSerial * port)
GCS_MAVLINK::init(AP_HAL::UARTDriver *port)
{
GCS_Class::init(port);
if (port == &Serial) {
if (port == (AP_HAL::BetterStream*)hal.uartA) {
mavlink_comm_0_port = port;
chan = MAVLINK_COMM_0;
}else{
@ -773,6 +773,7 @@ GCS_MAVLINK::init(FastSerial * port)
chan = MAVLINK_COMM_1;
}
_queued_parameter = NULL;
reset_cli_timeout();
}
void
@ -791,7 +792,7 @@ GCS_MAVLINK::update(void)
#if CLI_ENABLED == ENABLED
/* allow CLI to be started by hitting enter 3 times, if no
* heartbeat packets have been received */
if (mavlink_active == 0 && millis() < 20000) {
if (mavlink_active == 0 && (millis() - _cli_timeout) < 30000) {
if (c == '\n' || c == '\r') {
crlf_count++;
} else {
@ -1117,8 +1118,8 @@ void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
break;
case MAV_CMD_DO_SET_SERVO:
APM_RC.enable_out(packet.param1 - 1);
APM_RC.OutputCh(packet.param1 - 1, packet.param2);
hal.rcout->enable_ch(packet.param1 - 1);
hal.rcout->write(packet.param1 - 1, packet.param2);
result = MAV_RESULT_ACCEPTED;
break;
@ -1768,7 +1769,9 @@ mission_failed:
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
rc_override_active = APM_RC.setHIL(v);
hal.rcin->set_overrides(v, 8);
rc_override_fs_timer = millis();
break;
}
@ -1990,48 +1993,40 @@ GCS_MAVLINK::queued_waypoint_send()
}
}
void GCS_MAVLINK::reset_cli_timeout() {
_cli_timeout = millis();
}
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay(unsigned long t)
static void mavlink_delay_cb()
{
uint32_t tstart;
static uint32_t last_1hz, last_50hz, last_5s;
if (in_mavlink_delay) {
// this should never happen, but let's not tempt fate by
// letting the stack grow too much
delay(t);
return;
}
if (!gcs0.initialised) return;
in_mavlink_delay = true;
tstart = millis();
do {
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
delay(1);
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
#if USB_MUX_PIN > 0
check_usb_mux();
check_usb_mux();
#endif
} while (millis() - tstart < t);
in_mavlink_delay = false;
}

View File

@ -2,7 +2,7 @@
#if LOGGING_ENABLED == ENABLED
// Code to Write and Read packets from DataFlash log memory
// Code to Write and Read packets from hal.dataflash->log memory
// Code to interact with the user to dump or erase logs
#define HEAD_BYTE1 0xA3 // Decimal 163
@ -51,20 +51,20 @@ print_log_menu(void)
int16_t log_start;
int16_t log_end;
int16_t temp;
int16_t last_log_num = DataFlash.find_last_log();
int16_t last_log_num = hal.dataflash->find_last_log();
uint16_t num_logs = DataFlash.get_num_logs();
uint16_t num_logs = hal.dataflash->get_num_logs();
cliSerial->printf_P(PSTR("logs enabled: "));
cliSerial->println_P(PSTR("logs enabled: "));
if (0 == g.log_bitmask) {
cliSerial->printf_P(PSTR("none"));
cliSerial->println_P(PSTR("none"));
}else{
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// the bit being set and print the name of the log option to suit.
#define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf_P(PSTR(" %S"), PSTR(# _s))
#define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf_P(PSTR(" %S"), PSTR(# _s))
PLOG(ATTITUDE_FAST);
PLOG(ATTITUDE_MED);
PLOG(GPS);
@ -88,7 +88,7 @@ print_log_menu(void)
for(int16_t i=num_logs; i>=1; i--) {
int16_t last_log_start = log_start, last_log_end = log_end;
temp = last_log_num-i+1;
DataFlash.get_log_boundaries(temp, log_start, log_end);
hal.dataflash->get_log_boundaries(temp, log_start, log_end);
cliSerial->printf_P(PSTR("Log %d, start %d, end %d\n"), (int)temp, (int)log_start, (int)log_end);
if (last_log_start == log_start && last_log_end == log_end) {
// we are printing bogus logs
@ -110,26 +110,29 @@ dump_log(uint8_t argc, const Menu::arg *argv)
// check that the requested log number can be read
dump_log = argv[1].i;
last_log_num = DataFlash.find_last_log();
last_log_num = hal.dataflash->find_last_log();
if (dump_log == -2) {
for(uint16_t count=1; count<=DataFlash.df_NumPages; count++) {
DataFlash.StartRead(count);
for(uint16_t count=1; count<=hal.dataflash->num_pages(); count++) {
hal.dataflash->start_read(count);
cliSerial->printf_P(PSTR("DF page, log file #, log page: %d,\t"), (int)count);
cliSerial->printf_P(PSTR("%d,\t"), (int)DataFlash.GetFileNumber());
cliSerial->printf_P(PSTR("%d\n"), (int)DataFlash.GetFilePage());
cliSerial->printf_P(PSTR("%d,\t"), (int)hal.dataflash->get_file());
cliSerial->printf_P(PSTR("%d\n"), (int)hal.dataflash->get_file_page());
}
return(-1);
} else if (dump_log <= 0) {
cliSerial->printf_P(PSTR("dumping all\n"));
Log_Read(1, DataFlash.df_NumPages);
Log_Read(1, hal.dataflash->num_pages());
return(-1);
} else if ((argc != 2) || (dump_log <= (last_log_num - DataFlash.get_num_logs())) || (dump_log > last_log_num)) {
} else if ((argc != 2)
|| (dump_log <= (last_log_num - hal.dataflash->get_num_logs()))
|| (dump_log > last_log_num))
{
cliSerial->printf_P(PSTR("bad log number\n"));
return(-1);
}
DataFlash.get_log_boundaries(dump_log, dump_log_start, dump_log_end);
hal.dataflash->get_log_boundaries(dump_log, dump_log_start, dump_log_end);
cliSerial->printf_P(PSTR("Dumping Log %d, start pg %d, end pg %d\n"),
(int)dump_log,
(int)dump_log_start,
@ -143,7 +146,7 @@ dump_log(uint8_t argc, const Menu::arg *argv)
static void do_erase_logs(void)
{
gcs_send_text_P(SEVERITY_LOW, PSTR("Erasing logs"));
DataFlash.EraseAll(mavlink_delay);
hal.dataflash->erase_all();
gcs_send_text_P(SEVERITY_LOW, PSTR("Log erase complete"));
}
@ -212,61 +215,61 @@ process_logs(uint8_t argc, const Menu::arg *argv)
// Write an attitude packet. Total length : 10 bytes
static void Log_Write_Attitude(int16_t log_roll, int16_t log_pitch, uint16_t log_yaw)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_ATTITUDE_MSG);
DataFlash.WriteInt(log_roll);
DataFlash.WriteInt(log_pitch);
DataFlash.WriteInt(log_yaw);
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_ATTITUDE_MSG);
hal.dataflash->write_word(log_roll);
hal.dataflash->write_word(log_pitch);
hal.dataflash->write_word(log_yaw);
hal.dataflash->write_byte(END_BYTE);
}
// Write a performance monitoring packet. Total length : 19 bytes
static void Log_Write_Performance()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_PERFORMANCE_MSG);
DataFlash.WriteLong(millis()- perf_mon_timer);
DataFlash.WriteInt((int16_t)mainLoop_count);
DataFlash.WriteInt(G_Dt_max);
DataFlash.WriteByte(0);
DataFlash.WriteByte(0);
DataFlash.WriteByte(ahrs.renorm_range_count);
DataFlash.WriteByte(ahrs.renorm_blowup_count);
DataFlash.WriteByte(gps_fix_count);
DataFlash.WriteInt(1); // AHRS health
DataFlash.WriteInt((int)(ahrs.get_gyro_drift().x * 1000));
DataFlash.WriteInt((int)(ahrs.get_gyro_drift().y * 1000));
DataFlash.WriteInt((int)(ahrs.get_gyro_drift().z * 1000));
DataFlash.WriteInt(pmTest1);
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_PERFORMANCE_MSG);
hal.dataflash->write_dword(millis()- perf_mon_timer);
hal.dataflash->write_word((int16_t)mainLoop_count);
hal.dataflash->write_word(G_Dt_max);
hal.dataflash->write_byte(0);
hal.dataflash->write_byte(0);
hal.dataflash->write_byte(ahrs.renorm_range_count);
hal.dataflash->write_byte(ahrs.renorm_blowup_count);
hal.dataflash->write_byte(gps_fix_count);
hal.dataflash->write_word(1); // AHRS health
hal.dataflash->write_word((int)(ahrs.get_gyro_drift().x * 1000));
hal.dataflash->write_word((int)(ahrs.get_gyro_drift().y * 1000));
hal.dataflash->write_word((int)(ahrs.get_gyro_drift().z * 1000));
hal.dataflash->write_word(pmTest1);
hal.dataflash->write_byte(END_BYTE);
}
// Write a command processing packet. Total length : 19 bytes
//void Log_Write_Cmd(byte num, byte id, byte p1, int32_t alt, int32_t lat, int32_t lng)
static void Log_Write_Cmd(byte num, struct Location *wp)
static void Log_Write_Cmd(uint8_t num, struct Location *wp)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CMD_MSG);
DataFlash.WriteByte(num);
DataFlash.WriteByte(wp->id);
DataFlash.WriteByte(wp->p1);
DataFlash.WriteLong(wp->alt);
DataFlash.WriteLong(wp->lat);
DataFlash.WriteLong(wp->lng);
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_CMD_MSG);
hal.dataflash->write_byte(num);
hal.dataflash->write_byte(wp->id);
hal.dataflash->write_byte(wp->p1);
hal.dataflash->write_dword(wp->alt);
hal.dataflash->write_dword(wp->lat);
hal.dataflash->write_dword(wp->lng);
hal.dataflash->write_byte(END_BYTE);
}
static void Log_Write_Startup(byte type)
static void Log_Write_Startup(uint8_t type)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_STARTUP_MSG);
DataFlash.WriteByte(type);
DataFlash.WriteByte(g.command_total);
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_STARTUP_MSG);
hal.dataflash->write_byte(type);
hal.dataflash->write_byte(g.command_total);
hal.dataflash->write_byte(END_BYTE);
// create a location struct to hold the temp Waypoints for printing
struct Location cmd = get_cmd_with_index(0);
@ -284,65 +287,68 @@ static void Log_Write_Control_Tuning()
{
Vector3f accel = ins.get_accel();
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG);
DataFlash.WriteInt(g.channel_roll.servo_out);
DataFlash.WriteInt(nav_roll_cd);
DataFlash.WriteInt((int)ahrs.roll_sensor);
DataFlash.WriteInt((int)(g.channel_pitch.servo_out));
DataFlash.WriteInt((int)nav_pitch_cd);
DataFlash.WriteInt((int)ahrs.pitch_sensor);
DataFlash.WriteInt((int)(g.channel_throttle.servo_out));
DataFlash.WriteInt((int)(g.channel_rudder.servo_out));
DataFlash.WriteInt((int)(accel.y * 10000));
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_CONTROL_TUNING_MSG);
hal.dataflash->write_word(g.channel_roll.servo_out);
hal.dataflash->write_word(nav_roll_cd);
hal.dataflash->write_word((int)ahrs.roll_sensor);
hal.dataflash->write_word((int)(g.channel_pitch.servo_out));
hal.dataflash->write_word((int)nav_pitch_cd);
hal.dataflash->write_word((int)ahrs.pitch_sensor);
hal.dataflash->write_word((int)(g.channel_throttle.servo_out));
hal.dataflash->write_word((int)(g.channel_rudder.servo_out));
hal.dataflash->write_word((int)(accel.y * 10000));
hal.dataflash->write_byte(END_BYTE);
}
// Write a navigation tuning packet. Total length : 18 bytes
static void Log_Write_Nav_Tuning()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_NAV_TUNING_MSG);
DataFlash.WriteInt((uint16_t)ahrs.yaw_sensor);
DataFlash.WriteInt((int16_t)wp_distance);
DataFlash.WriteInt(target_bearing_cd);
DataFlash.WriteInt(nav_bearing_cd);
DataFlash.WriteInt(altitude_error_cm);
DataFlash.WriteInt((int16_t)airspeed.get_airspeed_cm());
DataFlash.WriteInt(0); // was nav_gain_scaler
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_NAV_TUNING_MSG);
hal.dataflash->write_word((uint16_t)ahrs.yaw_sensor);
hal.dataflash->write_word((int16_t)wp_distance);
hal.dataflash->write_word(target_bearing_cd);
hal.dataflash->write_word(nav_bearing_cd);
hal.dataflash->write_word(altitude_error_cm);
hal.dataflash->write_word((int16_t)airspeed.get_airspeed_cm());
hal.dataflash->write_word(0); // was nav_gain_scaler
hal.dataflash->write_byte(END_BYTE);
}
// Write a mode packet. Total length : 5 bytes
static void Log_Write_Mode(byte mode)
static void Log_Write_Mode(uint8_t mode)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_MODE_MSG);
DataFlash.WriteByte(mode);
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_MODE_MSG);
hal.dataflash->write_byte(mode);
hal.dataflash->write_byte(END_BYTE);
}
// Write an GPS packet. Total length : 30 bytes
static void Log_Write_GPS( int32_t log_Time, int32_t log_Lattitude, int32_t log_Longitude, int32_t log_gps_alt, int32_t log_mix_alt,
int32_t log_Ground_Speed, int32_t log_Ground_Course, byte log_Fix, byte log_NumSats)
static void Log_Write_GPS(
int32_t log_Time, int32_t log_Lattitude, int32_t log_Longitude,
int32_t log_gps_alt, int32_t log_mix_alt,
int32_t log_Ground_Speed, int32_t log_Ground_Course, uint8_t log_Fix,
uint8_t log_NumSats)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_GPS_MSG);
DataFlash.WriteLong(log_Time);
DataFlash.WriteByte(log_Fix);
DataFlash.WriteByte(log_NumSats);
DataFlash.WriteLong(log_Lattitude);
DataFlash.WriteLong(log_Longitude);
DataFlash.WriteInt(0); // was sonar_alt
DataFlash.WriteLong(log_mix_alt);
DataFlash.WriteLong(log_gps_alt);
DataFlash.WriteLong(log_Ground_Speed);
DataFlash.WriteLong(log_Ground_Course);
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_GPS_MSG);
hal.dataflash->write_dword(log_Time);
hal.dataflash->write_byte(log_Fix);
hal.dataflash->write_byte(log_NumSats);
hal.dataflash->write_dword(log_Lattitude);
hal.dataflash->write_dword(log_Longitude);
hal.dataflash->write_word(0); // was sonar_alt
hal.dataflash->write_dword(log_mix_alt);
hal.dataflash->write_dword(log_gps_alt);
hal.dataflash->write_dword(log_Ground_Speed);
hal.dataflash->write_dword(log_Ground_Course);
hal.dataflash->write_byte(END_BYTE);
}
// Write an raw accel/gyro data packet. Total length : 28 bytes
@ -352,40 +358,40 @@ static void Log_Write_Raw()
Vector3f accel = ins.get_accel();
gyro *= t7; // Scale up for storage as long integers
accel *= t7;
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_RAW_MSG);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_RAW_MSG);
DataFlash.WriteLong((long)gyro.x);
DataFlash.WriteLong((long)gyro.y);
DataFlash.WriteLong((long)gyro.z);
DataFlash.WriteLong((long)accel.x);
DataFlash.WriteLong((long)accel.y);
DataFlash.WriteLong((long)accel.z);
hal.dataflash->write_dword((long)gyro.x);
hal.dataflash->write_dword((long)gyro.y);
hal.dataflash->write_dword((long)gyro.z);
hal.dataflash->write_dword((long)accel.x);
hal.dataflash->write_dword((long)accel.y);
hal.dataflash->write_dword((long)accel.z);
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(END_BYTE);
}
static void Log_Write_Current()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CURRENT_MSG);
DataFlash.WriteInt(g.channel_throttle.control_in);
DataFlash.WriteInt((int)(battery_voltage1 * 100.0));
DataFlash.WriteInt((int)(current_amps1 * 100.0));
DataFlash.WriteInt((int)current_total1);
DataFlash.WriteByte(END_BYTE);
hal.dataflash->write_byte(HEAD_BYTE1);
hal.dataflash->write_byte(HEAD_BYTE2);
hal.dataflash->write_byte(LOG_CURRENT_MSG);
hal.dataflash->write_word(g.channel_throttle.control_in);
hal.dataflash->write_word((int)(battery_voltage1 * 100.0));
hal.dataflash->write_word((int)(current_amps1 * 100.0));
hal.dataflash->write_word((int)current_total1);
hal.dataflash->write_byte(END_BYTE);
}
// Read a Current packet
static void Log_Read_Current()
{
cliSerial->printf_P(PSTR("CURR: %d, %4.4f, %4.4f, %d\n"),
(int)DataFlash.ReadInt(),
((float)DataFlash.ReadInt() / 100.f),
((float)DataFlash.ReadInt() / 100.f),
(int)DataFlash.ReadInt());
(int)hal.dataflash->read_word(),
((float)hal.dataflash->read_word() / 100.f),
((float)hal.dataflash->read_word() / 100.f),
(int)hal.dataflash->read_word());
}
// Read an control tuning packet
@ -395,7 +401,7 @@ static void Log_Read_Control_Tuning()
cliSerial->printf_P(PSTR("CTUN:"));
for (int16_t y = 1; y < 10; y++) {
logvar = DataFlash.ReadInt();
logvar = hal.dataflash->read_word();
if(y < 8) logvar = logvar/100.f;
if(y == 9) logvar = logvar/10000.f;
cliSerial->print(logvar);
@ -409,7 +415,7 @@ static void Log_Read_Nav_Tuning()
{
int16_t d[7];
for (int8_t i=0; i<7; i++) {
d[i] = DataFlash.ReadInt();
d[i] = hal.dataflash->read_word();
}
cliSerial->printf_P(PSTR("NTUN: %4.4f, %d, %4.4f, %4.4f, %4.4f, %4.4f, %4.4f,\n"), // \n
d[0]/100.0,
@ -428,14 +434,14 @@ static void Log_Read_Performance()
int16_t logvar;
cliSerial->printf_P(PSTR("PM:"));
pm_time = DataFlash.ReadLong();
pm_time = hal.dataflash->read_dword();
cliSerial->print(pm_time);
print_comma();
for (int16_t y = 1; y <= 12; y++) {
if(y < 3 || y > 7) {
logvar = DataFlash.ReadInt();
logvar = hal.dataflash->read_word();
}else{
logvar = DataFlash.ReadByte();
logvar = hal.dataflash->read_byte();
}
cliSerial->print(logvar);
print_comma();
@ -446,17 +452,17 @@ static void Log_Read_Performance()
// Read a command processing packet
static void Log_Read_Cmd()
{
byte logvarb;
uint8_t logvarb;
int32_t logvarl;
cliSerial->printf_P(PSTR("CMD:"));
for(int16_t i = 1; i < 4; i++) {
logvarb = DataFlash.ReadByte();
logvarb = hal.dataflash->read_byte();
cliSerial->print(logvarb, DEC);
print_comma();
}
for(int16_t i = 1; i < 4; i++) {
logvarl = DataFlash.ReadLong();
logvarl = hal.dataflash->read_dword();
cliSerial->print(logvarl, DEC);
print_comma();
}
@ -465,7 +471,7 @@ static void Log_Read_Cmd()
static void Log_Read_Startup()
{
byte logbyte = DataFlash.ReadByte();
uint8_t logbyte = hal.dataflash->read_byte();
if (logbyte == TYPE_AIRSTART_MSG)
cliSerial->printf_P(PSTR("AIR START - "));
@ -474,16 +480,16 @@ static void Log_Read_Startup()
else
cliSerial->printf_P(PSTR("UNKNOWN STARTUP - "));
cliSerial->printf_P(PSTR(" %d commands in memory\n"),(int)DataFlash.ReadByte());
cliSerial->printf_P(PSTR(" %d commands in memory\n"),(int)hal.dataflash->read_byte());
}
// Read an attitude packet
static void Log_Read_Attitude()
{
int16_t d[3];
d[0] = DataFlash.ReadInt();
d[1] = DataFlash.ReadInt();
d[2] = DataFlash.ReadInt();
d[0] = hal.dataflash->read_word();
d[1] = hal.dataflash->read_word();
d[2] = hal.dataflash->read_word();
cliSerial->printf_P(PSTR("ATT: %d, %d, %u\n"),
(int)d[0], (int)d[1],
(unsigned)d[2]);
@ -493,25 +499,25 @@ static void Log_Read_Attitude()
static void Log_Read_Mode()
{
cliSerial->printf_P(PSTR("MOD:"));
print_flight_mode(DataFlash.ReadByte());
print_flight_mode(hal.dataflash->read_byte());
}
// Read a GPS packet
static void Log_Read_GPS()
{
int32_t l[7];
byte b[2];
uint8_t b[2];
int16_t i;
l[0] = DataFlash.ReadLong();
b[0] = DataFlash.ReadByte();
b[1] = DataFlash.ReadByte();
l[1] = DataFlash.ReadLong();
l[2] = DataFlash.ReadLong();
i = DataFlash.ReadInt();
l[3] = DataFlash.ReadLong();
l[4] = DataFlash.ReadLong();
l[5] = DataFlash.ReadLong();
l[6] = DataFlash.ReadLong();
l[0] = hal.dataflash->read_dword();
b[0] = hal.dataflash->read_byte();
b[1] = hal.dataflash->read_byte();
l[1] = hal.dataflash->read_dword();
l[2] = hal.dataflash->read_dword();
i = hal.dataflash->read_word();
l[3] = hal.dataflash->read_dword();
l[4] = hal.dataflash->read_dword();
l[5] = hal.dataflash->read_dword();
l[6] = hal.dataflash->read_dword();
cliSerial->printf_P(PSTR("GPS: %ld, %d, %d, %4.7f, %4.7f, %d, %4.4f, %4.4f, %4.4f, %4.4f\n"),
(long)l[0], (int)b[0], (int)b[1],
l[1]/t7, l[2]/t7,
@ -525,14 +531,14 @@ static void Log_Read_Raw()
float logvar;
cliSerial->printf_P(PSTR("RAW:"));
for (int16_t y = 0; y < 6; y++) {
logvar = (float)DataFlash.ReadLong() / t7;
logvar = (float)hal.dataflash->read_dword() / t7;
cliSerial->print(logvar);
print_comma();
}
cliSerial->println();
}
// Read the DataFlash log memory : Packet Parser
// Read the hal.dataflash->log memory : Packet Parser
static void Log_Read(int16_t start_page, int16_t end_page)
{
int16_t packet_count = 0;
@ -546,7 +552,7 @@ static void Log_Read(int16_t start_page, int16_t end_page)
if(start_page > end_page)
{
packet_count = Log_Read_Process(start_page, DataFlash.df_NumPages);
packet_count = Log_Read_Process(start_page, hal.dataflash->num_pages());
packet_count += Log_Read_Process(1, end_page);
} else {
packet_count = Log_Read_Process(start_page, end_page);
@ -555,17 +561,17 @@ static void Log_Read(int16_t start_page, int16_t end_page)
cliSerial->printf_P(PSTR("Number of packets read: %d\n"), (int) packet_count);
}
// Read the DataFlash log memory : Packet Parser
// Read the hal.dataflash->log memory : Packet Parser
static int16_t Log_Read_Process(int16_t start_page, int16_t end_page)
{
byte data;
byte log_step = 0;
uint8_t data;
uint8_t log_step = 0;
int16_t page = start_page;
int16_t packet_count = 0;
DataFlash.StartRead(start_page);
hal.dataflash->start_read(start_page);
while (page < end_page && page != -1) {
data = DataFlash.ReadByte();
data = hal.dataflash->read_byte();
switch(log_step) // This is a state machine to read the packets
{
@ -634,7 +640,7 @@ static int16_t Log_Read_Process(int16_t start_page, int16_t end_page)
log_step = 0; // Restart sequence: new packet...
break;
}
page = DataFlash.GetPage();
page = hal.dataflash->get_page();
}
return packet_count;
}
@ -642,18 +648,18 @@ static int16_t Log_Read_Process(int16_t start_page, int16_t end_page)
#else // LOGGING_ENABLED
// dummy functions
static void Log_Write_Mode(byte mode) {
static void Log_Write_Mode(uint8_t mode) {
}
static void Log_Write_Startup(byte type) {
static void Log_Write_Startup(uint8_t type) {
}
static void Log_Write_Cmd(byte num, struct Location *wp) {
static void Log_Write_Cmd(uint8_t num, struct Location *wp) {
}
static void Log_Write_Current() {
}
static void Log_Write_Nav_Tuning() {
}
static void Log_Write_GPS( int32_t log_Time, int32_t log_Lattitude, int32_t log_Longitude, int32_t log_gps_alt, int32_t log_mix_alt,
int32_t log_Ground_Speed, int32_t log_Ground_Course, byte log_Fix, byte log_NumSats) {
int32_t log_Ground_Speed, int32_t log_Ground_Course, uint8_t log_Fix, uint8_t log_NumSats) {
}
static void Log_Write_Performance() {
}

View File

@ -12,12 +12,18 @@ hil:
hil-apm2:
make -f Makefile EXTRAFLAGS="-DHIL_MODE=HIL_MODE_ATTITUDE -DCONFIG_APM_HARDWARE=APM_HARDWARE_APM2"
hil-apm2-nologging:
make -f Makefile EXTRAFLAGS="-DHIL_MODE=HIL_MODE_ATTITUDE -DCONFIG_APM_HARDWARE=APM_HARDWARE_APM2 -DLOGGING_ENABLED=DISABLED"
hilsensors:
make -f Makefile EXTRAFLAGS="-DHIL_MODE=HIL_MODE_SENSORS"
hilsensors-apm2:
make -f Makefile EXTRAFLAGS="-DHIL_MODE=HIL_MODE_SENSORS -DCONFIG_APM_HARDWARE=APM_HARDWARE_APM2"
hilsensors-apm2-nologging:
make -f Makefile EXTRAFLAGS="-DHIL_MODE=HIL_MODE_SENSORS -DCONFIG_APM_HARDWARE=APM_HARDWARE_APM2 -DLOGGING_ENABLED=DISABLED"
hilnocli:
make -f Makefile EXTRAFLAGS="-DHIL_MODE=HIL_MODE_ATTITUDE -DCLI_ENABLED=DISABLED"
@ -39,6 +45,9 @@ heli:
apm2:
make -f Makefile EXTRAFLAGS="-DCONFIG_APM_HARDWARE=APM_HARDWARE_APM2"
apm2-nologging:
make -f Makefile EXTRAFLAGS="-DCONFIG_APM_HARDWARE=APM_HARDWARE_APM2 -DLOGGING_ENABLED=DISABLED"
apm2-uart2:
make -f Makefile EXTRAFLAGS="-DCONFIG_APM_HARDWARE=APM_HARDWARE_APM2 -DTELEMETRY_UART2=ENABLED"

View File

@ -577,8 +577,8 @@ static void do_set_home()
static void do_set_servo()
{
APM_RC.enable_out(next_nonnav_command.p1 - 1);
APM_RC.OutputCh(next_nonnav_command.p1 - 1, next_nonnav_command.alt);
hal.rcout->enable_ch(next_nonnav_command.p1 - 1);
hal.rcout->write(next_nonnav_command.p1 - 1, next_nonnav_command.alt);
}
static void do_set_relay()
@ -595,7 +595,7 @@ static void do_set_relay()
static void do_repeat_servo(uint8_t channel, uint16_t servo_value,
int16_t repeat, uint8_t delay_time)
{
extern RC_Channel *rc_ch[NUM_CHANNELS];
extern RC_Channel *rc_ch[8];
channel = channel - 1;
if (channel < 5 || channel > 8) {
// not allowed

View File

@ -58,7 +58,7 @@ static void process_next_command()
// and loads conditional or immediate commands if applicable
struct Location temp;
byte old_index = nav_command_index;
uint8_t old_index = nav_command_index;
// these are Navigation/Must commands
// ---------------------------------

15
ArduPlane/compat.h Normal file
View File

@ -0,0 +1,15 @@
#ifndef __COMPAT_H__
#define __COMPAT_H__
#define OUTPUT GPIO_OUTPUT
#define INPUT GPIO_INPUT
#define HIGH 1
#define LOW 0
/* Forward declarations to avoid broken auto-prototyper (coughs on '::'?) */
static void run_cli(AP_HAL::UARTDriver *port);
#endif // __COMPAT_H__

37
ArduPlane/compat.pde Normal file
View File

@ -0,0 +1,37 @@
void delay(uint32_t ms)
{
hal.scheduler->delay(ms);
}
void mavlink_delay(uint32_t ms)
{
hal.scheduler->delay(ms);
}
uint32_t millis()
{
return hal.scheduler->millis();
}
uint32_t micros()
{
return hal.scheduler->micros();
}
void pinMode(uint8_t pin, uint8_t output)
{
hal.gpio->pinMode(pin, output);
}
void digitalWrite(uint8_t pin, uint8_t out)
{
hal.gpio->write(pin,out);
}
uint8_t digitalRead(uint8_t pin)
{
return hal.gpio->read(pin);
}

View File

@ -4,7 +4,7 @@
static void read_control_switch()
{
static bool switch_debouncer;
byte switchPosition = readSwitch();
uint8_t switchPosition = readSwitch();
// If switchPosition = 255 this indicates that the mode control channel input was out of range
// If we get this value we do not want to change modes.
@ -18,7 +18,7 @@ static void read_control_switch()
// as a spring loaded trainer switch).
if (oldSwitchPosition != switchPosition ||
(g.reset_switch_chan != 0 &&
APM_RC.InputCh(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) {
hal.rcin->read(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) {
if (switch_debouncer == false) {
// this ensures that mode switches only happen if the
@ -36,7 +36,7 @@ static void read_control_switch()
}
if (g.reset_mission_chan != 0 &&
APM_RC.InputCh(g.reset_mission_chan-1) > RESET_SWITCH_CHAN_PWM) {
hal.rcin->read(g.reset_mission_chan-1) > RESET_SWITCH_CHAN_PWM) {
// reset to first waypoint in mission
prev_WP = current_loc;
change_command(0);
@ -47,12 +47,12 @@ static void read_control_switch()
if (g.inverted_flight_ch != 0) {
// if the user has configured an inverted flight channel, then
// fly upside down when that channel goes above INVERTED_FLIGHT_PWM
inverted_flight = (control_mode != MANUAL && APM_RC.InputCh(g.inverted_flight_ch-1) > INVERTED_FLIGHT_PWM);
inverted_flight = (control_mode != MANUAL && hal.rcin->read(g.inverted_flight_ch-1) > INVERTED_FLIGHT_PWM);
}
}
static byte readSwitch(void){
uint16_t pulsewidth = APM_RC.InputCh(g.flight_mode_channel - 1);
static uint8_t readSwitch(void){
uint16_t pulsewidth = hal.rcin->read(g.flight_mode_channel - 1);
if (pulsewidth <= 910 || pulsewidth >= 2090) return 255; // This is an error condition
if (pulsewidth > 1230 && pulsewidth <= 1360) return 1;
if (pulsewidth > 1360 && pulsewidth <= 1490) return 2;

View File

@ -36,7 +36,8 @@ static void failsafe_long_on_event(int16_t fstype)
{
// This is how to handle a long loss of control signal failsafe.
gcs_send_text_P(SEVERITY_LOW, PSTR("Failsafe - Long event on, "));
APM_RC.clearOverride(); // If the GCS is locked up we allow control to revert to RC
// If the GCS is locked up we allow control to revert to RC
hal.rcin->clear_overrides();
failsafe = fstype;
switch(control_mode)
{
@ -104,11 +105,11 @@ static void update_events(void)
switch (event_state.type) {
case EVENT_TYPE_SERVO:
APM_RC.enable_out(event_state.rc_channel);
hal.rcout->enable_ch(event_state.rc_channel);
if (event_state.repeat & 1) {
APM_RC.OutputCh(event_state.rc_channel, event_state.undo_value);
hal.rcout->write(event_state.rc_channel, event_state.undo_value);
} else {
APM_RC.OutputCh(event_state.rc_channel, event_state.servo_value);
hal.rcout->write(event_state.rc_channel, event_state.servo_value);
}
break;

View File

@ -38,13 +38,13 @@ void failsafe_check(uint32_t tnow)
if (in_failsafe && tnow - last_timestamp > 20000) {
// pass RC inputs to outputs every 20ms
last_timestamp = tnow;
APM_RC.clearOverride();
hal.rcin->clear_overrides();
uint8_t start_ch = 0;
if (demoing_servos) {
start_ch = 1;
}
for (uint8_t ch=start_ch; ch<4; ch++) {
APM_RC.OutputCh(ch, APM_RC.InputCh(ch));
hal.rcout->write(ch, hal.rcin->read(ch));
}
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_manual, true);
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input, true);

View File

@ -22,7 +22,7 @@ static struct geofence_state {
uint16_t breach_count;
uint8_t breach_type;
uint32_t breach_time;
byte old_switch_position;
uint8_t old_switch_position;
/* point 0 is the return point */
Vector2l boundary[MAX_FENCEPOINTS];
} *geofence_state;
@ -129,7 +129,7 @@ static bool geofence_enabled(void)
g.fence_total < 5 ||
(g.fence_action != FENCE_ACTION_REPORT &&
(g.fence_channel == 0 ||
APM_RC.InputCh(g.fence_channel-1) < FENCE_ENABLE_PWM))) {
hal.rcin->read(g.fence_channel-1) < FENCE_ENABLE_PWM))) {
// geo-fencing is disabled
if (geofence_state != NULL) {
// re-arm for when the channel trigger is switched on

0
ArduPlane/nocore.inoflag Normal file
View File

View File

@ -2,10 +2,10 @@
//Function that will read the radio data, limit servos and trigger a failsafe
// ----------------------------------------------------------------------------
static byte failsafeCounter = 0; // we wait a second to take over the throttle and send the plane circling
static uint8_t failsafeCounter = 0; // we wait a second to take over the throttle and send the plane circling
extern RC_Channel* rc_ch[NUM_CHANNELS];
extern RC_Channel* rc_ch[8];
static void init_rc_in()
{
@ -45,36 +45,34 @@ static void init_rc_in()
static void init_rc_out()
{
APM_RC.Init( &isr_registry ); // APM Radio initialization
APM_RC.enable_out(CH_1);
APM_RC.enable_out(CH_2);
APM_RC.enable_out(CH_3);
APM_RC.enable_out(CH_4);
hal.rcout->enable_ch(CH_1);
hal.rcout->enable_ch(CH_2);
hal.rcout->enable_ch(CH_3);
hal.rcout->enable_ch(CH_4);
enable_aux_servos();
// Initialization of servo outputs
APM_RC.OutputCh(CH_1, g.channel_roll.radio_trim);
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_trim);
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_min);
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_trim);
hal.rcout->write(CH_1, g.channel_roll.radio_trim);
hal.rcout->write(CH_2, g.channel_pitch.radio_trim);
hal.rcout->write(CH_3, g.channel_throttle.radio_min);
hal.rcout->write(CH_4, g.channel_rudder.radio_trim);
APM_RC.OutputCh(CH_5, g.rc_5.radio_trim);
APM_RC.OutputCh(CH_6, g.rc_6.radio_trim);
APM_RC.OutputCh(CH_7, g.rc_7.radio_trim);
APM_RC.OutputCh(CH_8, g.rc_8.radio_trim);
hal.rcout->write(CH_5, g.rc_5.radio_trim);
hal.rcout->write(CH_6, g.rc_6.radio_trim);
hal.rcout->write(CH_7, g.rc_7.radio_trim);
hal.rcout->write(CH_8, g.rc_8.radio_trim);
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM1
APM_RC.OutputCh(CH_9, g.rc_9.radio_trim);
APM_RC.OutputCh(CH_10, g.rc_10.radio_trim);
APM_RC.OutputCh(CH_11, g.rc_11.radio_trim);
hal.rcout->write(CH_9, g.rc_9.radio_trim);
hal.rcout->write(CH_10, g.rc_10.radio_trim);
hal.rcout->write(CH_11, g.rc_11.radio_trim);
#endif
}
static void read_radio()
{
ch1_temp = APM_RC.InputCh(CH_ROLL);
ch2_temp = APM_RC.InputCh(CH_PITCH);
ch1_temp = hal.rcin->read(CH_ROLL);
ch2_temp = hal.rcin->read(CH_PITCH);
if(g.mix_mode == 0) {
g.channel_roll.set_pwm(ch1_temp);
@ -84,12 +82,12 @@ static void read_radio()
g.channel_pitch.set_pwm((BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) + BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500);
}
g.channel_throttle.set_pwm(APM_RC.InputCh(CH_3));
g.channel_rudder.set_pwm(APM_RC.InputCh(CH_4));
g.rc_5.set_pwm(APM_RC.InputCh(CH_5));
g.rc_6.set_pwm(APM_RC.InputCh(CH_6));
g.rc_7.set_pwm(APM_RC.InputCh(CH_7));
g.rc_8.set_pwm(APM_RC.InputCh(CH_8));
g.channel_throttle.set_pwm(hal.rcin->read(CH_3));
g.channel_rudder.set_pwm(hal.rcin->read(CH_4));
g.rc_5.set_pwm(hal.rcin->read(CH_5));
g.rc_6.set_pwm(hal.rcin->read(CH_6));
g.rc_7.set_pwm(hal.rcin->read(CH_7));
g.rc_8.set_pwm(hal.rcin->read(CH_8));
control_failsafe(g.channel_throttle.radio_in);

View File

@ -7,7 +7,7 @@ static LowPassFilterInt32 altitude_filter;
static void init_barometer(void)
{
gcs_send_text_P(SEVERITY_LOW, PSTR("Calibrating barometer"));
barometer.calibrate(mavlink_delay);
barometer.calibrate();
// filter at 100ms sampling, with 0.7Hz cutoff frequency
altitude_filter.set_cutoff_frequency(0.1, 0.7);
@ -33,7 +33,7 @@ static void read_airspeed(void)
static void zero_airspeed(void)
{
airspeed.calibrate(mavlink_delay);
airspeed.calibrate();
gcs_send_text_P(SEVERITY_LOW,PSTR("zero airspeed calibrated"));
}
@ -45,16 +45,14 @@ static void read_battery(void)
}
if(g.battery_monitoring == 3 || g.battery_monitoring == 4) {
static AP_AnalogSource_Arduino batt_volt_pin(g.battery_volt_pin);
// this copes with changing the pin at runtime
batt_volt_pin.set_pin(g.battery_volt_pin);
battery_voltage1 = BATTERY_VOLTAGE(batt_volt_pin.read_average());
batt_volt_pin->set_pin(g.battery_volt_pin);
battery_voltage1 = BATTERY_VOLTAGE(batt_volt_pin->read_average());
}
if(g.battery_monitoring == 4) {
static AP_AnalogSource_Arduino batt_curr_pin(g.battery_curr_pin);
// this copes with changing the pin at runtime
batt_curr_pin.set_pin(g.battery_curr_pin);
current_amps1 = CURRENT_AMPS(batt_curr_pin.read_average());
batt_curr_pin->set_pin(g.battery_curr_pin);
current_amps1 = CURRENT_AMPS(batt_curr_pin->read_average());
current_total1 += current_amps1 * (float)delta_ms_medium_loop * 0.0002778; // .0002778 is 1/3600 (conversion to hours)
}
@ -69,8 +67,8 @@ static void read_battery(void)
// RC_CHANNELS_SCALED message
void read_receiver_rssi(void)
{
RSSI_pin.set_pin(g.rssi_pin);
float ret = RSSI_pin.read();
rssi_analog_source->set_pin(g.rssi_pin);
float ret = rssi_analog_source->read_average();
receiver_rssi = constrain(ret, 0, 255);
}

View File

@ -170,7 +170,9 @@ setup_radio(uint8_t argc, const Menu::arg *argv)
g.rc_8.update_min_max();
if(cliSerial->available() > 0) {
cliSerial->flush();
while (cliSerial->available() > 0) {
cliSerial->read();
}
g.channel_roll.save_eeprom();
g.channel_pitch.save_eeprom();
g.channel_throttle.save_eeprom();
@ -192,7 +194,7 @@ setup_radio(uint8_t argc, const Menu::arg *argv)
static int8_t
setup_flightmodes(uint8_t argc, const Menu::arg *argv)
{
byte switchPosition, mode = 0;
uint8_t switchPosition, mode = 0;
cliSerial->printf_P(PSTR("\nMove RC toggle switch to each position to edit, move aileron stick to select modes."));
print_hit_enter();
@ -306,34 +308,14 @@ setup_level(uint8_t argc, const Menu::arg *argv)
handle full accelerometer calibration via user dialog
*/
static void setup_printf_P(const prog_char_t *fmt, ...)
{
va_list arg_list;
va_start(arg_list, fmt);
cliSerial->vprintf_P(fmt, arg_list);
va_end(arg_list);
}
static void setup_wait_key(void)
{
// wait for user input
while (!cliSerial->available()) {
delay(20);
}
// clear input buffer
while( cliSerial->available() ) {
cliSerial->read();
}
}
static int8_t
setup_accel_scale(uint8_t argc, const Menu::arg *argv)
{
cliSerial->println_P(PSTR("Initialising gyros"));
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
delay, flash_leds, &timer_scheduler);
if (ins.calibrate_accel(delay, flash_leds, setup_printf_P, setup_wait_key)) {
flash_leds);
if (ins.calibrate_accel(flash_leds, hal.console)) {
if (g.manual_level == 0) {
cliSerial->println_P(PSTR("Setting MANUAL_LEVEL to 1"));
g.manual_level.set_and_save(1);
@ -564,7 +546,7 @@ print_radio_values()
}
static void
print_switch(byte p, byte m)
print_switch(uint8_t p, uint8_t m)
{
cliSerial->printf_P(PSTR("Pos %d: "),p);
print_flight_mode(m);
@ -623,7 +605,7 @@ radio_input_switch(void)
static void zero_eeprom(void)
{
byte b = 0;
uint8_t b = 0;
cliSerial->printf_P(PSTR("\nErasing EEPROM\n"));
for (intptr_t i = 0; i < EEPROM_MAX_ADDR; i++) {
eeprom_write_byte((uint8_t *) i, b);

View File

@ -49,10 +49,10 @@ static int8_t reboot_board(uint8_t argc, const Menu::arg *argv)
}
// the user wants the CLI. It never exits
static void run_cli(FastSerial *port)
static void run_cli(AP_HAL::UARTDriver *port)
{
// disable the failsafe code in the CLI
timer_scheduler.set_failsafe(NULL);
hal.scheduler->register_timer_failsafe(NULL,1);
cliSerial = port;
Menu::set_port(port);
@ -90,44 +90,20 @@ static void init_ardupilot()
// The console port buffers are defined to be sufficiently large to support
// the MAVLink protocol efficiently
//
Serial.begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE);
hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE);
// GPS serial port.
//
// standard gps running
Serial1.begin(38400, 256, 16);
hal.uartB->begin(38400, 256, 16);
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE
"\n\nFree RAM: %u\n"),
memcheck_available_memory());
//
// Initialize Wire and SPI libraries
//
#ifndef DESKTOP_BUILD
I2c.begin();
I2c.timeOut(5);
// initially set a fast I2c speed, and drop it on first failures
I2c.setSpeed(true);
#endif
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1MHZ SPI rate
//
// Initialize the ISR registry.
//
isr_registry.init();
//
// Initialize the timer scheduler to use the ISR registry.
//
timer_scheduler.init( &isr_registry );
// initialise the analog port reader
AP_AnalogSource_Arduino::init_timer(&timer_scheduler);
//
// Check the EEPROM format version before loading any parameters from EEPROM.
// Check the EEPROM format version before loading any parameters from EEPROM
//
load_parameters();
@ -136,46 +112,47 @@ static void init_ardupilot()
g.num_resets.set_and_save(g.num_resets+1);
// init the GCS
gcs0.init(&Serial);
gcs0.init(hal.uartA);
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
#if USB_MUX_PIN > 0
if (!usb_connected) {
// we are not connected via USB, re-init UART0 with right
// baud rate
Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
}
#else
// we have a 2nd serial port for telemetry
Serial3.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, SERIAL_BUFSIZE);
gcs3.init(&Serial3);
hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD),
128, SERIAL_BUFSIZE);
gcs3.init(hal.uartC);
#endif
mavlink_system.sysid = g.sysid_this_mav;
#if LOGGING_ENABLED == ENABLED
DataFlash.Init(); // DataFlash log initialization
if (!DataFlash.CardInserted()) {
if (!hal.dataflash->media_present()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted"));
g.log_bitmask.set(0);
} else if (DataFlash.NeedErase()) {
} else if (hal.dataflash->need_erase()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
do_erase_logs();
gcs0.reset_cli_timeout();
}
if (g.log_bitmask != 0) {
DataFlash.start_new_log();
hal.dataflash->start_new_log();
}
#endif
#if HIL_MODE != HIL_MODE_ATTITUDE
#if CONFIG_ADC == ENABLED
adc.Init(&timer_scheduler); // APM ADC library initialization
adc.Init(); // APM ADC library initialization
#endif
// initialise the analog port reader
AP_AnalogSource_Arduino::init_timer(&timer_scheduler);
barometer.init(&timer_scheduler);
barometer.init();
if (g.compass_enabled==true) {
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft
@ -207,9 +184,9 @@ static void init_ardupilot()
mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id
mavlink_system.type = MAV_TYPE_FIXED_WING;
rc_override_active = APM_RC.setHIL(rc_override); // Set initial values for no override
// Set initial values for no override
rc_override_active = hal.rcin->set_overrides(rc_override, 8);
RC_Channel::set_apm_rc( &APM_RC ); // Provide reference to RC outputs.
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
@ -217,7 +194,7 @@ static void init_ardupilot()
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
#if CONFIG_RELAY == ENABLED
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay
relay.init();
#endif
#if FENCE_TRIGGERED_PIN > 0
@ -229,12 +206,12 @@ static void init_ardupilot()
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
timer_scheduler.set_failsafe(failsafe_check);
hal.scheduler->register_timer_failsafe(failsafe_check, 1000);
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
cliSerial->println_P(msg);
#if USB_MUX_PIN == 0
Serial3.println_P(msg);
hal.uartC->println_P(msg);
#endif
if (ENABLE_AIR_START == 1) {
@ -247,19 +224,21 @@ static void init_ardupilot()
#if HIL_MODE != HIL_MODE_ATTITUDE
ins.init(AP_InertialSensor::WARM_START,
ins_sample_rate,
mavlink_delay, flash_leds, &timer_scheduler);
flash_leds);
ahrs.init(&timer_scheduler);
ahrs.init();
ahrs.set_fly_forward(true);
#endif
// This delay is important for the APM_RC library to work.
// We need some time for the comm between the 328 and 1280 to be established.
int old_pulse = 0;
while (millis()<=1000 && (abs(old_pulse - APM_RC.InputCh(g.flight_mode_channel)) > 5 ||
APM_RC.InputCh(g.flight_mode_channel) == 1000 ||
APM_RC.InputCh(g.flight_mode_channel) == 1200)) {
old_pulse = APM_RC.InputCh(g.flight_mode_channel);
while (millis()<=1000
&& (abs(old_pulse - hal.rcin->read(g.flight_mode_channel)) > 5
|| hal.rcin->read(g.flight_mode_channel) == 1000
|| hal.rcin->read(g.flight_mode_channel) == 1200))
{
old_pulse = hal.rcin->read(g.flight_mode_channel);
delay(25);
}
g_gps->update();
@ -324,9 +303,9 @@ static void startup_ground(void)
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
Serial.set_blocking_writes(false);
hal.uartC->set_blocking_writes(false);
if (gcs3.initialised) {
Serial3.set_blocking_writes(false);
hal.uartC->set_blocking_writes(false);
}
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY."));
@ -438,13 +417,13 @@ static void startup_INS_ground(bool force_accel_level)
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
mavlink_delay, flash_leds, &timer_scheduler);
flash_leds);
#if HIL_MODE == HIL_MODE_DISABLED
if (force_accel_level || g.manual_level == 0) {
// when MANUAL_LEVEL is set to 1 we don't do accelerometer
// levelling on each boot, and instead rely on the user to do
// it once via the ground station
ins.init_accel(mavlink_delay, flash_leds);
ins.init_accel(flash_leds);
}
#endif
ahrs.set_fly_forward(true);
@ -541,9 +520,9 @@ static void check_usb_mux(void)
// the user has switched to/from the telemetry port
usb_connected = usb_check;
if (usb_connected) {
Serial.begin(SERIAL0_BAUD);
hal.uartA->begin(SERIAL0_BAUD);
} else {
Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
}
}
#endif
@ -564,8 +543,7 @@ void flash_leds(bool on)
*/
uint16_t board_voltage(void)
{
static AP_AnalogSource_Arduino vcc(ANALOG_PIN_VCC);
return vcc.read_vcc();
return vcc_pin->read_latest();
}
@ -574,20 +552,7 @@ uint16_t board_voltage(void)
*/
static void reboot_apm(void)
{
cliSerial->printf_P(PSTR("REBOOTING\n"));
delay(100); // let serial flush
// see http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1250663814/
// for the method
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
// this relies on the bootloader resetting the watchdog, which
// APM1 doesn't do
cli();
wdt_enable(WDTO_15MS);
#else
// this works on APM1
void (*fn)(void) = NULL;
fn();
#endif
hal.scheduler->reboot();
while (1);
}
@ -630,3 +595,5 @@ static void print_comma(void)
{
cliSerial->print_P(PSTR(","));
}

View File

@ -134,12 +134,12 @@ test_passthru(uint8_t argc, const Menu::arg *argv)
delay(20);
// New radio frame? (we could use also if((millis()- timer) > 20)
if (APM_RC.GetState() == 1) {
if (hal.rcin->valid() > 0) {
cliSerial->print_P(PSTR("CH:"));
for(int16_t i = 0; i < 8; i++) {
cliSerial->print(APM_RC.InputCh(i)); // Print channel values
cliSerial->print(hal.rcin->read(i)); // Print channel values
print_comma();
APM_RC.OutputCh(i, APM_RC.InputCh(i)); // Copy input to Servos
hal.rcout->write(i, hal.rcin->read(i)); // Copy input to Servos
}
cliSerial->println();
}
@ -192,7 +192,7 @@ test_radio(uint8_t argc, const Menu::arg *argv)
static int8_t
test_failsafe(uint8_t argc, const Menu::arg *argv)
{
byte fail_test;
uint8_t fail_test;
print_hit_enter();
for(int16_t i = 0; i < 50; i++) {
delay(20);
@ -319,7 +319,7 @@ test_wp(uint8_t argc, const Menu::arg *argv)
cliSerial->printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius);
cliSerial->printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);
for(byte i = 0; i <= g.command_total; i++) {
for(uint8_t i = 0; i <= g.command_total; i++) {
struct Location temp = get_cmd_with_index(i);
test_wp_print(&temp, i);
}
@ -328,7 +328,7 @@ test_wp(uint8_t argc, const Menu::arg *argv)
}
static void
test_wp_print(struct Location *cmd, byte wp_index)
test_wp_print(struct Location *cmd, uint8_t wp_index)
{
cliSerial->printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"),
(int)wp_index,
@ -349,8 +349,8 @@ test_xbee(uint8_t argc, const Menu::arg *argv)
while(1) {
if (Serial3.available())
Serial3.write(Serial3.read());
if (hal.uartC->available())
hal.uartC->write(hal.uartC->read());
if(cliSerial->available() > 0) {
return (0);
@ -371,7 +371,7 @@ test_modeswitch(uint8_t argc, const Menu::arg *argv)
while(1) {
delay(20);
byte switchPosition = readSwitch();
uint8_t switchPosition = readSwitch();
if (oldSwitchPosition != switchPosition) {
cliSerial->printf_P(PSTR("Position %d\n"), (int)switchPosition);
oldSwitchPosition = switchPosition;
@ -389,20 +389,20 @@ static int8_t
test_logging(uint8_t argc, const Menu::arg *argv)
{
cliSerial->println_P(PSTR("Testing dataflash logging"));
if (!DataFlash.CardInserted()) {
if (!hal.dataflash->media_present()) {
cliSerial->println_P(PSTR("ERR: No dataflash inserted"));
return 0;
}
DataFlash.ReadManufacturerID();
hal.dataflash->read_mfg_id();
cliSerial->printf_P(PSTR("Manufacturer: 0x%02x Device: 0x%04x\n"),
(unsigned)DataFlash.df_manufacturer,
(unsigned)DataFlash.df_device);
cliSerial->printf_P(PSTR("NumPages: %u PageSize: %u\n"),
(unsigned)DataFlash.df_NumPages+1,
(unsigned)DataFlash.df_PageSize);
DataFlash.StartRead(DataFlash.df_NumPages+1);
(unsigned)hal.dataflash->mfg_id(),
(unsigned)hal.dataflash->device_id());
cliSerial->printf_P(PSTR("NumPages: %u\n"),
(unsigned)hal.dataflash->num_pages()+1);
hal.dataflash->start_read(hal.dataflash->num_pages()+1);
cliSerial->printf_P(PSTR("Format version: %lx Expected format version: %lx\n"),
(unsigned long)DataFlash.ReadLong(), (unsigned long)DF_LOGGING_FORMAT);
(unsigned long)hal.dataflash->read_dword(),
(unsigned long)DF_LOGGING_FORMAT);
return 0;
}
@ -416,13 +416,13 @@ static int8_t
test_adc(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
adc.Init(&timer_scheduler);
adc.Init();
delay(1000);
cliSerial->printf_P(PSTR("ADC\n"));
delay(1000);
while(1) {
for (int16_t i=0; i<9; i++) cliSerial->printf_P(PSTR("%.1f\t"),adc.Ch(i));
for (int8_t i=0; i<9; i++) cliSerial->printf_P(PSTR("%.1f\t"),adc.Ch(i));
cliSerial->println();
delay(100);
if(cliSerial->available() > 0) {
@ -468,7 +468,7 @@ test_ins(uint8_t argc, const Menu::arg *argv)
//cliSerial->printf_P(PSTR("Calibrating."));
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
delay, flash_leds, &timer_scheduler);
flash_leds);
ahrs.reset();
print_hit_enter();
@ -531,7 +531,7 @@ test_mag(uint8_t argc, const Menu::arg *argv)
// we need the AHRS initialised for this test
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
delay, flash_leds, &timer_scheduler);
flash_leds);
ahrs.reset();
int16_t counter = 0;
@ -603,7 +603,7 @@ test_mag(uint8_t argc, const Menu::arg *argv)
static int8_t
test_airspeed(uint8_t argc, const Menu::arg *argv)
{
float airspeed_ch = pitot_analog_source.read();
float airspeed_ch = pitot_analog_source->read_average();
// cliSerial->println(pitot_analog_source.read());
cliSerial->printf_P(PSTR("airspeed_ch: %.1f\n"), airspeed_ch);
@ -666,14 +666,16 @@ test_rawgps(uint8_t argc, const Menu::arg *argv)
delay(1000);
while(1) {
if (Serial3.available()) {
digitalWrite(B_LED_PIN, LED_ON); // Blink Yellow LED if we are sending data to GPS
Serial1.write(Serial3.read());
// Blink Yellow LED if we are sending data to GPS
if (hal.uartC->available()) {
digitalWrite(B_LED_PIN, LED_ON);
hal.uartB->write(hal.uartC->read());
digitalWrite(B_LED_PIN, LED_OFF);
}
if (Serial1.available()) {
digitalWrite(C_LED_PIN, LED_ON); // Blink Red LED if we are receiving data from GPS
Serial3.write(Serial1.read());
// Blink Red LED if we are receiving data from GPS
if (hal.uartB->available()) {
digitalWrite(C_LED_PIN, LED_ON);
hal.uartC->write(hal.uartB->read());
digitalWrite(C_LED_PIN, LED_OFF);
}
if(cliSerial->available() > 0) {