ardupilot/ArduCopter/ArduCopter.pde

2321 lines
80 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2013-08-05 02:26:52 -03:00
#define THISFIRMWARE "ArduCopter V3.1-dev"
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ArduCopter Version 3.0
* Creator: Jason Short
* Lead Developer: Randy Mackay
* Based on code and ideas from the Arducopter team: Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni
2012-08-21 23:19:50 -03:00
* Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini
*
* Special Thanks for Contributors (in alphabetical order by first name):
2012-08-21 23:19:50 -03:00
*
* Adam M Rivera :Auto Compass Declination
* Amilcar Lucas :Camera mount library
* Andrew Tridgell :General development, Mavlink Support
* Angel Fernandez :Alpha testing
2012-08-21 23:19:50 -03:00
* Doug Weibel :Libraries
* Christof Schmid :Alpha testing
* Dani Saez :V Octo Support
* Gregory Fletcher :Camera mount orientation math
2012-08-21 23:19:50 -03:00
* Guntars :Arming safety suggestion
* HappyKillmore :Mavlink GCS
* Hein Hollander :Octo Support
2012-08-21 23:19:50 -03:00
* Igor van Airde :Control Law optimization
* Leonard Hall :Flight Dynamics, Throttle, Loiter and Navigation Controllers
* Jonathan Challinger :Inertial Navigation
2012-08-21 23:19:50 -03:00
* Jean-Louis Naudin :Auto Landing
* Max Levine :Tri Support, Graphics
* Jack Dunkle :Alpha testing
* James Goppert :Mavlink Support
* Jani Hiriven :Testing feedback
2012-08-21 23:19:50 -03:00
* John Arne Birkeland :PPM Encoder
* Jose Julio :Stabilization Control laws
* Marco Robustini :Lead tester
* Michael Oborne :Mission Planner GCS
* Mike Smith :Libraries, Coding support
* Oliver :Piezo support
* Olivier Adler :PPM Encoder
2012-08-21 23:19:50 -03:00
* Robert Lefebvre :Heli Support & LEDs
* Sandro Benigno :Camera support
2012-08-21 23:19:50 -03:00
*
* And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
*
* Requires modified "mrelax" version of Arduino, which can be found here:
* http://code.google.com/p/ardupilot-mega/downloads/list
*
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
2012-12-12 21:25:09 -04:00
#include <math.h>
#include <stdio.h>
#include <stdarg.h>
// Common dependencies
#include <AP_Common.h>
#include <AP_Progmem.h>
#include <AP_Menu.h>
#include <AP_Param.h>
// AP_HAL
#include <AP_HAL.h>
#include <AP_HAL_AVR.h>
#include <AP_HAL_AVR_SITL.h>
#include <AP_HAL_SMACCM.h>
2013-01-02 07:08:40 -04:00
#include <AP_HAL_PX4.h>
2012-12-18 06:15:11 -04:00
#include <AP_HAL_Empty.h>
2012-12-12 21:25:09 -04:00
// Application dependencies
#include <GCS_MAVLink.h> // MAVLink GCS definitions
2012-11-10 01:29:56 -04:00
#include <AP_GPS.h> // ArduPilot GPS library
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
2012-12-12 20:16:32 -04:00
#include <AP_ADC_AnalogSource.h>
#include <AP_Baro.h>
2012-11-10 01:29:56 -04:00
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_Curve.h> // Curve used to linearlise throttle pwm to thrust
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include <AP_AHRS.h>
2012-08-21 23:19:50 -03:00
#include <APM_PI.h> // PI library
2012-11-10 01:29:56 -04:00
#include <AC_PID.h> // PID library
#include <RC_Channel.h> // RC Channel Library
2012-08-21 23:19:50 -03:00
#include <AP_Motors.h> // AP Motors library
#include <AP_RangeFinder.h> // Range finder library
2012-11-10 01:29:56 -04:00
#include <AP_OpticalFlow.h> // Optical Flow library
#include <Filter.h> // Filter library
#include <AP_Buffer.h> // APM FIFO Buffer
2012-08-21 23:19:50 -03:00
#include <AP_Relay.h> // APM relay
#include <AP_Camera.h> // Photo or video camera
#include <AP_Mount.h> // Camera/Antenna mount
2012-11-10 01:29:56 -04:00
#include <AP_Airspeed.h> // needed for AHRS build
#include <AP_SpdHgtControl.h> // needed for AHRS build
#include <AP_InertialNav.h> // ArduPilot Mega inertial navigation library
2013-03-20 10:29:08 -03:00
#include <AC_WPNav.h> // ArduCopter waypoint navigation library
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
#include <AC_Fence.h> // Arducopter Fence library
2013-01-11 21:01:10 -04:00
#include <memcheck.h> // memory limit checker
#include <SITL.h> // software in the loop support
#include <AP_Scheduler.h> // main loop scheduler
2013-03-24 23:48:06 -03:00
#include <AP_RCMapper.h> // RC input mapping library
2013-08-24 05:58:48 -03:00
#include <AP_Notify.h> // Notify library
2013-09-08 22:18:06 -03:00
#if SPRAYER == ENABLED
#include <AC_Sprayer.h> // crop sprayer library
#endif
2012-12-12 20:16:32 -04:00
// AP_HAL to Arduino compatibility layer
#include "compat.h"
// Configuration
#include "defines.h"
#include "config.h"
#include "config_channels.h"
// Local modules
#include "Parameters.h"
#include "GCS.h"
////////////////////////////////////////////////////////////////////////////////
// cliSerial
////////////////////////////////////////////////////////////////////////////////
// cliSerial isn't strictly necessary - it is an alias for hal.console. It may
// be deprecated in favor of hal.console in later releases.
2013-04-17 08:35:11 -03:00
static AP_HAL::BetterStream* cliSerial;
// N.B. we need to keep a static declaration which isn't guarded by macros
// at the top to cooperate with the prototype mangler.
////////////////////////////////////////////////////////////////////////////////
// AP_HAL instance
////////////////////////////////////////////////////////////////////////////////
2012-12-18 06:15:11 -04:00
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
2012-08-21 23:19:50 -03:00
static Parameters g;
2013-01-11 21:01:10 -04:00
// main loop scheduler
2013-04-17 08:35:11 -03:00
static AP_Scheduler scheduler;
2013-08-29 00:14:07 -03:00
// AP_Notify instance
static AP_Notify notify;
2013-08-08 10:15:25 -03:00
2013-08-14 00:07:35 -03:00
2013-08-09 00:18:01 -03:00
////////////////////////////////////////////////////////////////////////////////
// prototypes
////////////////////////////////////////////////////////////////////////////////
static void update_events(void);
2013-04-20 02:18:22 -03:00
static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode);
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
2013-04-17 08:35:11 -03:00
static DataFlash_APM2 DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM1
2013-04-17 08:35:11 -03:00
static DataFlash_APM1 DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
//static DataFlash_File DataFlash("/tmp/APMlogs");
static DataFlash_SITL DataFlash;
2013-04-17 08:35:11 -03:00
#elif CONFIG_HAL_BOARD == HAL_BOARD_PX4
static DataFlash_File DataFlash("/fs/microsd/APM/logs");
2013-01-02 07:08:40 -04:00
#else
2013-04-17 08:35:11 -03:00
static DataFlash_Empty DataFlash;
#endif
////////////////////////////////////////////////////////////////////////////////
// the rate we run the main loop at
////////////////////////////////////////////////////////////////////////////////
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_100HZ;
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
2012-11-10 01:29:56 -04:00
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
2012-11-10 01:29:56 -04:00
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if HIL_MODE == HIL_MODE_DISABLED
2012-08-21 23:19:50 -03:00
#if CONFIG_ADC == ENABLED
2013-04-17 08:35:11 -03:00
static AP_ADC_ADS7844 adc;
2012-08-21 23:19:50 -03:00
#endif
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
2013-04-17 08:35:11 -03:00
static AP_InertialSensor_MPU6000 ins;
2012-12-18 06:15:11 -04:00
#elif CONFIG_IMU_TYPE == CONFIG_IMU_OILPAN
2013-04-17 08:35:11 -03:00
static AP_InertialSensor_Oilpan ins(&adc);
2012-12-18 06:15:11 -04:00
#elif CONFIG_IMU_TYPE == CONFIG_IMU_SITL
2013-04-17 08:35:11 -03:00
static AP_InertialSensor_Stub ins;
2013-01-05 05:38:19 -04:00
#elif CONFIG_IMU_TYPE == CONFIG_IMU_PX4
2013-04-17 08:35:11 -03:00
static AP_InertialSensor_PX4 ins;
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// When building for SITL we use the HIL barometer and compass drivers
2013-05-02 02:09:16 -03:00
static AP_Baro_HIL barometer;
2013-04-17 08:35:11 -03:00
static AP_Compass_HIL compass;
static SITL sitl;
2012-08-21 23:19:50 -03:00
#else
// Otherwise, instantiate a real barometer and compass driver
2012-08-21 23:19:50 -03:00
#if CONFIG_BARO == AP_BARO_BMP085
2013-04-17 08:35:11 -03:00
static AP_Baro_BMP085 barometer;
2013-01-05 05:38:19 -04:00
#elif CONFIG_BARO == AP_BARO_PX4
2013-04-17 08:35:11 -03:00
static AP_Baro_PX4 barometer;
2012-08-21 23:19:50 -03:00
#elif CONFIG_BARO == AP_BARO_MS5611
#if CONFIG_MS5611_SERIAL == AP_BARO_MS5611_SPI
2013-04-17 08:35:11 -03:00
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::spi);
#elif CONFIG_MS5611_SERIAL == AP_BARO_MS5611_I2C
2013-04-17 08:35:11 -03:00
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::i2c);
#else
#error Unrecognized CONFIG_MS5611_SERIAL setting.
#endif
2012-08-21 23:19:50 -03:00
#endif
2013-01-05 05:38:19 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
2013-04-17 08:35:11 -03:00
static AP_Compass_PX4 compass;
2013-01-05 05:38:19 -04:00
#else
2013-04-17 08:35:11 -03:00
static AP_Compass_HMC5843 compass;
2012-08-21 23:19:50 -03:00
#endif
2013-01-05 05:38:19 -04:00
#endif
2012-08-21 23:19:50 -03:00
// real GPS selection
2012-08-21 23:19:50 -03:00
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
2012-12-17 22:36:57 -04:00
AP_GPS_Auto g_gps_driver(&g_gps);
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver;
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver;
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver;
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19
AP_GPS_MTK19 g_gps_driver;
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver;
2012-08-21 23:19:50 -03:00
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
#if DMP_ENABLED == ENABLED && CONFIG_HAL_BOARD == HAL_BOARD_APM2
2013-04-17 08:35:11 -03:00
static AP_AHRS_MPU6000 ahrs(&ins, g_gps); // only works with APM2
2012-08-21 23:19:50 -03:00
#else
2013-04-17 08:35:11 -03:00
static AP_AHRS_DCM ahrs(&ins, g_gps);
2012-08-21 23:19:50 -03:00
#endif
// ahrs2 object is the secondary ahrs to allow running DMP in parallel with DCM
#if SECONDARY_DMP_ENABLED == ENABLED && CONFIG_HAL_BOARD == HAL_BOARD_APM2
2013-04-17 08:35:11 -03:00
static AP_AHRS_MPU6000 ahrs2(&ins, g_gps); // only works with APM2
#endif
#elif HIL_MODE == HIL_MODE_SENSORS
2012-08-21 23:19:50 -03:00
// sensor emulators
2013-04-17 08:35:11 -03:00
static AP_ADC_HIL adc;
2013-05-02 02:09:16 -03:00
static AP_Baro_HIL barometer;
2013-04-17 08:35:11 -03:00
static AP_Compass_HIL compass;
static AP_GPS_HIL g_gps_driver;
static AP_InertialSensor_Stub ins;
static AP_AHRS_DCM ahrs(&ins, g_gps);
2012-08-21 23:19:50 -03:00
static int32_t gps_base_alt;
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// When building for SITL we use the HIL barometer and compass drivers
2013-04-17 08:35:11 -03:00
static SITL sitl;
#endif
#elif HIL_MODE == HIL_MODE_ATTITUDE
2013-04-17 08:35:11 -03:00
static AP_ADC_HIL adc;
static AP_InertialSensor_Stub ins;
static AP_AHRS_HIL ahrs(&ins, g_gps);
static AP_GPS_HIL g_gps_driver;
static AP_Compass_HIL compass; // never used
2013-05-02 02:09:16 -03:00
static AP_Baro_HIL barometer;
2012-11-10 01:29:56 -04:00
2012-08-21 23:19:50 -03:00
static int32_t gps_base_alt;
2013-04-17 08:35:11 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// When building for SITL we use the HIL barometer and compass drivers
2013-04-17 08:35:11 -03:00
static SITL sitl;
#endif
#else
2012-08-21 23:19:50 -03:00
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
////////////////////////////////////////////////////////////////////////////////
// Optical flow sensor
////////////////////////////////////////////////////////////////////////////////
#if OPTFLOW == ENABLED
2013-04-17 08:35:11 -03:00
static AP_OpticalFlow_ADNS3080 optflow;
#else
2013-04-17 08:35:11 -03:00
static AP_OpticalFlow optflow;
#endif
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
2013-04-17 08:35:11 -03:00
static GCS_MAVLINK gcs0;
static GCS_MAVLINK gcs3;
////////////////////////////////////////////////////////////////////////////////
// SONAR selection
////////////////////////////////////////////////////////////////////////////////
//
ModeFilterInt16_Size3 sonar_mode_filter(1);
#if CONFIG_SONAR == ENABLED
2013-04-17 08:35:11 -03:00
static AP_HAL::AnalogSource *sonar_analog_source;
static AP_RangeFinder_MaxsonarXL *sonar;
#endif
2011-10-15 19:29:33 -03:00
////////////////////////////////////////////////////////////////////////////////
// User variables
////////////////////////////////////////////////////////////////////////////////
#ifdef USERHOOK_VARIABLES
2012-08-21 23:19:50 -03:00
#include USERHOOK_VARIABLES
2011-10-15 19:29:33 -03:00
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
/* Radio values
2012-08-21 23:19:50 -03:00
* Channel assignments
* 1 Ailerons (rudder if no ailerons)
* 2 Elevator
* 3 Throttle
* 4 Rudder (if we have ailerons)
* 5 Mode - 3 position switch
* 6 User assignable
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
* 8 TBD
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
* See libraries/RC_Channel/RC_Channel_aux.h for more information
*/
//Documentation of GLobals:
static union {
struct {
uint8_t home_is_set : 1; // 0
uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE
uint8_t pre_arm_rc_check : 1; // 5 // true if rc input pre-arm checks have been completed successfully
uint8_t pre_arm_check : 1; // 6 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
uint8_t auto_armed : 1; // 7 // stops auto missions from beginning until throttle is raised
uint8_t logging_started : 1; // 8 // true if dataflash logging has started
uint8_t low_battery : 1; // 9 // Used to track if the battery is low - LED output flashes when the batt is low
uint8_t failsafe_radio : 1; // 10 // A status flag for the radio failsafe
uint8_t failsafe_batt : 1; // 11 // A status flag for the battery failsafe
uint8_t failsafe_gps : 1; // 12 // A status flag for the gps failsafe
uint8_t failsafe_gcs : 1; // 13 // A status flag for the ground station failsafe
uint8_t rc_override_active : 1; // 14 // true if rc control are overwritten by ground station
uint8_t do_flip : 1; // 15 // Used to enable flip code
uint8_t takeoff_complete : 1; // 16
uint8_t land_complete : 1; // 17 // true if we have detected a landing
uint8_t compass_status : 1; // 18
uint8_t gps_status : 1; // 19
};
uint32_t value;
} ap;
static struct AP_System{
uint8_t GPS_light : 1; // 0 // Solid indicates we have full 3D lock and can navigate, flash = read
uint8_t arming_light : 1; // 1 // Solid indicates armed state, flashing is disarmed, double flashing is disarmed and failing pre-arm checks
uint8_t new_radio_frame : 1; // 2 // Set true if we have new PWM data to act on from the Radio
uint8_t CH7_flag : 2; // 3,4 // ch7 aux switch : 0 is low or false, 1 is center or true, 2 is high
uint8_t CH8_flag : 2; // 5,6 // ch8 aux switch : 0 is low or false, 1 is center or true, 2 is high
uint8_t usb_connected : 1; // 7 // true if APM is powered from USB connection
uint8_t yaw_stopped : 1; // 8 // Used to manage the Yaw hold capabilities
uint8_t : 7; // 9-15 // Fill bit field to 16 bits
} ap_system;
////////////////////////////////////////////////////////////////////////////////
// Radio
////////////////////////////////////////////////////////////////////////////////
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
static int8_t control_mode = STABILIZE;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
static uint8_t oldSwitchPosition;
2013-03-24 23:48:06 -03:00
static RCMapper rcmap;
// receiver RSSI
static uint8_t receiver_rssi;
////////////////////////////////////////////////////////////////////////////////
// Motor Output
////////////////////////////////////////////////////////////////////////////////
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == QUAD_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsQuad
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == TRI_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsTri
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == HEXA_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsHexa
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == Y6_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsY6
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == OCTA_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsOcta
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == OCTA_QUAD_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsOctaQuad
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == HELI_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsHeli
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments
2013-04-17 08:35:11 -03:00
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4);
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing
2013-04-17 08:35:11 -03:00
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7);
#else
2013-04-17 08:35:11 -03:00
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4);
#endif
////////////////////////////////////////////////////////////////////////////////
// PIDs
////////////////////////////////////////////////////////////////////////////////
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates
// and not the adjusted omega rates, but the name is stuck
static Vector3f omega;
// This is used to hold radio tuning values for in-flight CH6 tuning
float tuning_value;
// used to limit the rate that the pid controller output is logged so that it doesn't negatively affect performance
static uint8_t pid_log_counter;
////////////////////////////////////////////////////////////////////////////////
// LED output
////////////////////////////////////////////////////////////////////////////////
// Blinking indicates GPS status
static uint8_t copter_leds_GPS_blink;
// Blinking indicates battery status
static uint8_t copter_leds_motor_blink;
// Navigation confirmation blinks
static int8_t copter_leds_nav_blink;
////////////////////////////////////////////////////////////////////////////////
// GPS variables
////////////////////////////////////////////////////////////////////////////////
// This is used to scale GPS values for EEPROM storage
// 10^7 times Decimal GPS means 1 == 1cm
// This approximation makes calculations integer and it's easy to read
2012-11-10 01:29:56 -04:00
static const float t7 = 10000000.0;
// We use atan2 and other trig techniques to calaculate angles
// We need to scale the longitude up to make these calcs work
// to account for decreasing distance between lines of longitude away from the equator
2012-11-10 01:29:56 -04:00
static float scaleLongUp = 1;
// Sometimes we need to remove the scaling for distance calcs
2012-11-10 01:29:56 -04:00
static float scaleLongDown = 1;
////////////////////////////////////////////////////////////////////////////////
// Location & Navigation
////////////////////////////////////////////////////////////////////////////////
// This is the angle from the copter to the next waypoint in centi-degrees
static int32_t wp_bearing;
2013-06-01 05:53:57 -03:00
// The original bearing to the next waypoint. used to point the nose of the copter at the next waypoint
static int32_t original_wp_bearing;
// The location of home in relation to the copter in centi-degrees
static int32_t home_bearing;
// distance between plane and home in cm
static int32_t home_distance;
// distance between plane and next waypoint in cm.
static uint32_t wp_distance;
// navigation mode - options include NAV_NONE, NAV_LOITER, NAV_CIRCLE, NAV_WP
static uint8_t nav_mode;
// Register containing the index of the current navigation command in the mission script
2012-08-21 23:19:50 -03:00
static int16_t command_nav_index;
// Register containing the index of the previous navigation command in the mission script
// Used to manage the execution of conditional commands
2012-08-21 23:19:50 -03:00
static uint8_t prev_nav_index;
// Register containing the index of the current conditional command in the mission script
2012-08-21 23:19:50 -03:00
static uint8_t command_cond_index;
// Used to track the required WP navigation information
// options include
// NAV_ALTITUDE - have we reached the desired altitude?
// NAV_LOCATION - have we reached the desired location?
2012-08-21 23:19:50 -03:00
// NAV_DELAY - have we waited at the waypoint the desired time?
static float lon_error, lat_error; // Used to report how many cm we are from the next waypoint or loiter target position
static int16_t control_roll;
static int16_t control_pitch;
static uint8_t rtl_state; // records state of rtl (initial climb, returning home, etc)
static uint8_t land_state; // records state of land (flying to location, descending)
////////////////////////////////////////////////////////////////////////////////
// Orientation
////////////////////////////////////////////////////////////////////////////////
// Convienience accessors for commonly used trig functions. These values are generated
// by the DCM through a few simple equations. They are used throughout the code where cos and sin
// would normally be used.
// The cos values are defaulted to 1 to get a decent initial value for a level state
static float cos_roll_x = 1.0;
static float cos_pitch_x = 1.0;
static float cos_yaw = 1.0;
static float sin_yaw;
static float sin_roll;
static float sin_pitch;
////////////////////////////////////////////////////////////////////////////////
// SIMPLE Mode
////////////////////////////////////////////////////////////////////////////////
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
// or in SuperSimple mode when the copter leaves a 20m radius from home.
static int32_t initial_simple_bearing;
// Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable
static int32_t initial_armed_bearing;
////////////////////////////////////////////////////////////////////////////////
// Rate contoller targets
////////////////////////////////////////////////////////////////////////////////
static uint8_t rate_targets_frame = EARTH_FRAME; // indicates whether rate targets provided in earth or body frame
static int32_t roll_rate_target_ef;
static int32_t pitch_rate_target_ef;
static int32_t yaw_rate_target_ef;
static int32_t roll_rate_target_bf; // body frame roll rate target
static int32_t pitch_rate_target_bf; // body frame pitch rate target
static int32_t yaw_rate_target_bf; // body frame yaw rate target
////////////////////////////////////////////////////////////////////////////////
// Throttle variables
////////////////////////////////////////////////////////////////////////////////
static int16_t throttle_accel_target_ef; // earth frame throttle acceleration target
static bool throttle_accel_controller_active; // true when accel based throttle controller is active, false when higher level throttle controllers are providing throttle output directly
static float throttle_avg; // g.throttle_cruise as a float
static int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only
2013-05-08 04:41:16 -03:00
static float target_alt_for_reporting; // target altitude in cm for reporting (logs and ground station)
2012-02-19 01:16:19 -04:00
////////////////////////////////////////////////////////////////////////////////
// ACRO Mode
////////////////////////////////////////////////////////////////////////////////
// Used to control Axis lock
2013-08-04 05:46:04 -03:00
static int32_t acro_roll; // desired roll angle while sport mode
static int32_t acro_roll_rate; // desired roll rate while in acro mode
static int32_t acro_pitch; // desired pitch angle while sport mode
static int32_t acro_pitch_rate; // desired pitch rate while acro mode
static int32_t acro_yaw_rate; // desired yaw rate while acro mode
static float acro_level_mix; // scales back roll, pitch and yaw inversely proportional to input from pilot
// Filters
#if FRAME_CONFIG == HELI_FRAME
//static LowPassFilterFloat rate_roll_filter; // Rate Roll filter
//static LowPassFilterFloat rate_pitch_filter; // Rate Pitch filter
#endif // HELI_FRAME
////////////////////////////////////////////////////////////////////////////////
// Circle Mode / Loiter control
////////////////////////////////////////////////////////////////////////////////
2013-03-20 10:29:08 -03:00
Vector3f circle_center; // circle position expressed in cm from home location. x = lat, y = lon
// angle from the circle center to the copter's desired location. Incremented at circle_rate / second
static float circle_angle;
// the total angle (in radians) travelled
static float circle_angle_total;
// deg : how many times to circle as specified by mission command
static uint8_t circle_desired_rotations;
2013-06-01 05:53:57 -03:00
static float circle_angular_acceleration; // circle mode's angular acceleration
static float circle_angular_velocity; // circle mode's angular velocity
static float circle_angular_velocity_max; // circle mode's max angular velocity
// How long we should stay in Loiter Mode for mission scripting (time in seconds)
static uint16_t loiter_time_max;
// How long have we been loitering - The start time in millis
static uint32_t loiter_time;
////////////////////////////////////////////////////////////////////////////////
// CH7 and CH8 save waypoint control
////////////////////////////////////////////////////////////////////////////////
// This register tracks the current Mission Command index when writing
// a mission using Ch7 or Ch8 aux switches in flight
static int8_t aux_switch_wp_index;
////////////////////////////////////////////////////////////////////////////////
// Battery Sensors
////////////////////////////////////////////////////////////////////////////////
// Battery Voltage of battery, initialized above threshold for filter
static float battery_voltage1 = LOW_VOLTAGE * 1.05f;
// refers to the instant amp draw based on an Attopilot Current sensor
2012-08-21 23:19:50 -03:00
static float current_amps1;
// refers to the total amps drawn based on an Attopilot Current sensor
2012-08-21 23:19:50 -03:00
static float current_total1;
////////////////////////////////////////////////////////////////////////////////
// Altitude
////////////////////////////////////////////////////////////////////////////////
// The (throttle) controller desired altitude in cm
static float controller_desired_alt;
2012-02-01 00:39:15 -04:00
// The cm we are off in altitude from next_WP.alt Positive value means we are below the WP
2012-08-21 23:19:50 -03:00
static int32_t altitude_error;
// The cm/s we are moving up or down based on filtered data - Positive = UP
2012-08-21 23:19:50 -03:00
static int16_t climb_rate;
// The altitude as reported by Sonar in cm Values are 20 to 700 generally.
2012-08-21 23:19:50 -03:00
static int16_t sonar_alt;
static uint8_t sonar_alt_health; // true if we can trust the altitude from the sonar
static float target_sonar_alt; // desired altitude in cm above the ground
// The altitude as reported by Baro in cm Values can be quite high
2012-08-21 23:19:50 -03:00
static int32_t baro_alt;
2012-08-21 23:19:50 -03:00
static int16_t saved_toy_throttle;
////////////////////////////////////////////////////////////////////////////////
// flight modes
////////////////////////////////////////////////////////////////////////////////
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes
// Each Flight mode is a unique combination of these modes
//
// The current desired control scheme for Yaw
static uint8_t yaw_mode;
// The current desired control scheme for roll and pitch / navigation
static uint8_t roll_pitch_mode;
// The current desired control scheme for altitude hold
static uint8_t throttle_mode;
////////////////////////////////////////////////////////////////////////////////
// flight specific
////////////////////////////////////////////////////////////////////////////////
// An additional throttle added to keep the copter at the same altitude when banking
2012-08-21 23:19:50 -03:00
static int16_t angle_boost;
// counter to verify landings
static uint16_t land_detector;
////////////////////////////////////////////////////////////////////////////////
// 3D Location vectors
////////////////////////////////////////////////////////////////////////////////
// home location is stored when we have a good GPS lock and arm the copter
// Can be reset each the copter is re-armed
2012-08-21 23:19:50 -03:00
static struct Location home;
// Current location of the copter
2012-08-21 23:19:50 -03:00
static struct Location current_loc;
// Holds the current loaded command from the EEPROM for navigation
2012-08-21 23:19:50 -03:00
static struct Location command_nav_queue;
// Holds the current loaded command from the EEPROM for conditional scripts
2012-08-21 23:19:50 -03:00
static struct Location command_cond_queue;
////////////////////////////////////////////////////////////////////////////////
// Navigation Roll/Pitch functions
////////////////////////////////////////////////////////////////////////////////
// all angles are deg * 100 : target yaw angle
// The Commanded ROll from the autopilot.
2012-08-21 23:19:50 -03:00
static int32_t nav_roll;
// The Commanded pitch from the autopilot. negative Pitch means go forward.
2012-08-21 23:19:50 -03:00
static int32_t nav_pitch;
2013-03-20 10:29:08 -03:00
// The Commanded ROll from the autopilot based on optical flow sensor.
2012-08-21 23:19:50 -03:00
static int32_t of_roll;
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
2012-08-21 23:19:50 -03:00
static int32_t of_pitch;
////////////////////////////////////////////////////////////////////////////////
// Navigation Throttle control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Throttle from the autopilot.
static int16_t nav_throttle; // 0-1000 for throttle control
// This is a simple counter to track the amount of throttle used during flight
// This could be useful later in determining and debuging current usage and predicting battery life
static uint32_t throttle_integrator;
////////////////////////////////////////////////////////////////////////////////
// Navigation Yaw control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Yaw from the autopilot.
2012-08-21 23:19:50 -03:00
static int32_t nav_yaw;
static uint8_t yaw_timer;
// Yaw will point at this location if yaw_mode is set to YAW_LOOK_AT_LOCATION
2013-03-20 10:29:08 -03:00
static Vector3f yaw_look_at_WP;
// bearing from current location to the yaw_look_at_WP
static int32_t yaw_look_at_WP_bearing;
// yaw used for YAW_LOOK_AT_HEADING yaw_mode
static int32_t yaw_look_at_heading;
// Deg/s we should turn
static int16_t yaw_look_at_heading_slew;
////////////////////////////////////////////////////////////////////////////////
// Repeat Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
// The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc
static uint8_t event_id;
// Used to manage the timimng of repeating events
static uint32_t event_timer;
// How long to delay the next firing of event in millis
static uint16_t event_delay;
// how many times to fire : 0 = forever, 1 = do once, 2 = do twice
2012-08-21 23:19:50 -03:00
static int16_t event_repeat;
// per command value, such as PWM for servos
2012-08-21 23:19:50 -03:00
static int16_t event_value;
// the stored value used to undo commands - such as original PWM command
2012-08-21 23:19:50 -03:00
static int16_t event_undo_value;
////////////////////////////////////////////////////////////////////////////////
// Delay Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
2012-08-21 23:19:50 -03:00
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
2012-01-10 00:23:37 -04:00
static uint32_t condition_start;
////////////////////////////////////////////////////////////////////////////////
// IMU variables
////////////////////////////////////////////////////////////////////////////////
// Integration time for the gyros (DCM algorithm)
// Updated with the fast loop
static float G_Dt = 0.02;
////////////////////////////////////////////////////////////////////////////////
// Inertial Navigation
////////////////////////////////////////////////////////////////////////////////
2013-04-17 08:35:11 -03:00
static AP_InertialNav inertial_nav(&ahrs, &ins, &barometer, &g_gps);
2013-03-20 10:29:08 -03:00
////////////////////////////////////////////////////////////////////////////////
// Waypoint navigation object
// To-Do: move inertial nav up or other navigation variables down here
////////////////////////////////////////////////////////////////////////////////
static AC_WPNav wp_nav(&inertial_nav, &ahrs, &g.pi_loiter_lat, &g.pi_loiter_lon, &g.pid_loiter_rate_lat, &g.pid_loiter_rate_lon);
2013-03-20 10:29:08 -03:00
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////////////////////////////////////////////
// The number of GPS fixes we have had
static uint8_t gps_fix_count;
2013-04-29 09:30:22 -03:00
static int16_t pmTest1;
// System Timers
// --------------
// Time in microseconds of main control loop
2012-08-21 23:19:50 -03:00
static uint32_t fast_loopTimer;
// Counters for branching from 10 hz control loop
static uint8_t medium_loopCounter;
// Counters for branching from 3 1/3hz control loop
static uint8_t slow_loopCounter;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
static uint16_t mainLoop_count;
// Counters for branching from 4 minute control loop used to save Compass offsets
2012-08-21 23:19:50 -03:00
static int16_t superslow_loopCounter;
// Loiter timer - Records how long we have been in loiter
static uint32_t rtl_loiter_start_time;
// prevents duplicate GPS messages from entering system
2012-08-21 23:19:50 -03:00
static uint32_t last_gps_time;
2013-04-29 09:30:22 -03:00
// the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe
static uint32_t last_heartbeat_ms;
// Used to exit the roll and pitch auto trim function
static uint8_t auto_trim_counter;
// Reference to the relay object (APM1 -> PORTL 2) (APM2 -> PORTB 7)
2013-04-17 08:35:11 -03:00
static AP_Relay relay;
2011-10-02 09:52:02 -03:00
//Reference to the camera object (it uses the relay object inside it)
#if CAMERA == ENABLED
2013-04-17 08:35:11 -03:00
static AP_Camera camera(&relay);
#endif
// a pin for reading the receiver RSSI voltage.
2013-04-17 08:35:11 -03:00
static AP_HAL::AnalogSource* rssi_analog_source;
2012-12-13 15:48:01 -04:00
// Input sources for battery voltage, battery current, board vcc
2013-04-17 08:35:11 -03:00
static AP_HAL::AnalogSource* batt_volt_analog_source;
static AP_HAL::AnalogSource* batt_curr_analog_source;
static AP_HAL::AnalogSource* board_vcc_analog_source;
2012-12-13 15:48:01 -04:00
#if CLI_ENABLED == ENABLED
static int8_t setup_show (uint8_t argc, const Menu::arg *argv);
2012-09-11 01:25:53 -03:00
#endif
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
2013-04-17 08:35:11 -03:00
static AP_Mount camera_mount(&current_loc, g_gps, &ahrs, 0);
#endif
2012-08-08 17:16:48 -03:00
#if MOUNT2 == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
2013-04-17 08:35:11 -03:00
static AP_Mount camera_mount2(&current_loc, g_gps, &ahrs, 1);
2012-08-08 17:16:48 -03:00
#endif
////////////////////////////////////////////////////////////////////////////////
// AC_Fence library to reduce fly-aways
////////////////////////////////////////////////////////////////////////////////
#if AC_FENCE == ENABLED
AC_Fence fence(&inertial_nav);
#endif
2013-08-04 11:20:21 -03:00
////////////////////////////////////////////////////////////////////////////////
// Crop Sprayer
////////////////////////////////////////////////////////////////////////////////
#if SPRAYER == ENABLED
static AC_Sprayer sprayer(&inertial_nav);
#endif
////////////////////////////////////////////////////////////////////////////////
// function definitions to keep compiler from complaining about undeclared functions
////////////////////////////////////////////////////////////////////////////////
void get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate);
static void pre_arm_checks(bool display_failure);
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
// setup the var_info table
AP_Param param_loader(var_info, WP_START_BYTE);
2013-01-11 21:01:10 -04:00
/*
scheduler table - all regular tasks apart from the fast_loop()
should be listed here, along with how often they should be called
(in 10ms units) and the maximum time they are expected to take (in
microseconds)
*/
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = {
{ update_GPS, 2, 900 },
{ update_nav_mode, 1, 400 },
2013-01-11 21:01:10 -04:00
{ medium_loop, 2, 700 },
{ update_altitude, 10, 1000 },
2013-01-11 21:01:10 -04:00
{ fifty_hz_loop, 2, 950 },
{ run_nav_updates, 10, 800 },
2013-01-11 21:01:10 -04:00
{ slow_loop, 10, 500 },
{ gcs_check_input, 2, 700 },
{ gcs_send_heartbeat, 100, 700 },
{ gcs_data_stream_send, 2, 1500 },
{ gcs_send_deferred, 2, 1200 },
{ compass_accumulate, 2, 700 },
{ barometer_accumulate, 2, 900 },
{ super_slow_loop, 100, 1100 },
2013-08-29 00:14:07 -03:00
{ update_notify, 2, 100 },
2013-01-11 21:01:10 -04:00
{ perf_update, 1000, 500 }
};
void setup() {
// this needs to be the first call, as it fills memory with
// sentinel values
memcheck_init();
cliSerial = hal.console;
// Load the default values of variables listed in var_info[]s
AP_Param::setup_sketch_defaults();
2013-08-29 00:14:07 -03:00
// initialise notify system
notify.init();
2013-08-09 00:18:01 -03:00
#if CONFIG_SONAR == ENABLED
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
2012-12-12 20:16:32 -04:00
sonar_analog_source = new AP_ADC_AnalogSource(
&adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
sonar_analog_source = hal.analogin->channel(
CONFIG_SONAR_SOURCE_ANALOG_PIN);
#else
#warning "Invalid CONFIG_SONAR_SOURCE"
#endif
2012-12-12 20:16:32 -04:00
sonar = new AP_RangeFinder_MaxsonarXL(sonar_analog_source,
&sonar_mode_filter);
#endif
rssi_analog_source = hal.analogin->channel(g.rssi_pin);
2012-12-13 15:48:01 -04:00
batt_volt_analog_source = hal.analogin->channel(g.battery_volt_pin);
batt_curr_analog_source = hal.analogin->channel(g.battery_curr_pin);
board_vcc_analog_source = hal.analogin->channel(ANALOG_INPUT_BOARD_VCC);
2012-12-12 20:16:32 -04:00
2012-08-21 23:19:50 -03:00
init_ardupilot();
2013-01-11 21:01:10 -04:00
// initialise the main loop scheduler
scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0]));
}
/*
if the compass is enabled then try to accumulate a reading
*/
static void compass_accumulate(void)
{
if (g.compass_enabled) {
compass.accumulate();
}
}
/*
try to accumulate a baro reading
*/
static void barometer_accumulate(void)
{
barometer.accumulate();
}
static void perf_update(void)
{
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
if (scheduler.debug()) {
cliSerial->printf_P(PSTR("PERF: %u/%u %lu\n"),
(unsigned)perf_info_get_num_long_running(),
(unsigned)perf_info_get_num_loops(),
(unsigned long)perf_info_get_max_time());
}
perf_info_reset();
gps_fix_count = 0;
2013-04-29 09:30:22 -03:00
pmTest1 = 0;
}
void loop()
{
uint32_t timer = micros();
2012-08-21 23:19:50 -03:00
// We want this to execute fast
// ----------------------------
if (ins.num_samples_available() >= 1) {
// check loop time
perf_info_check_loop_time(timer - fast_loopTimer);
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
fast_loopTimer = timer;
2012-08-21 23:19:50 -03:00
// for mainloop failure monitoring
mainLoop_count++;
2012-08-21 23:19:50 -03:00
// Execute the fast loop
// ---------------------
fast_loop();
2012-08-21 23:19:50 -03:00
2013-01-11 21:01:10 -04:00
// tell the scheduler one tick has passed
scheduler.tick();
// run all the tasks that are due to run. Note that we only
// have to call this once per loop, as the tasks are scheduled
// in multiples of the main loop tick. So if they don't run on
// the first call to the scheduler they won't run on a later
// call until scheduler.tick() is called again
uint32_t time_available = (timer + 10000) - micros();
scheduler.run(time_available - 500);
}
}
// Main loop - 100hz
static void fast_loop()
{
2012-08-21 23:19:50 -03:00
// IMU DCM Algorithm
// --------------------
read_AHRS();
// reads all of the necessary trig functions for cameras, throttle, etc.
// --------------------------------------------------------------------
update_trig();
// Acrobatic control
if (ap.do_flip) {
if(abs(g.rc_1.control_in) < 4000) {
// calling roll_flip will override the desired roll rate and throttle output
roll_flip();
}else{
// force an exit from the loop if we are not hands off sticks.
ap.do_flip = false;
Log_Write_Event(DATA_EXIT_FLIP);
}
}
// run low level rate controllers that only require IMU data
run_rate_controllers();
// write out the servo PWM values
// ------------------------------
set_servos_4();
2012-08-21 23:19:50 -03:00
// Inertial Nav
// --------------------
read_inertia();
// optical flow
// --------------------
#if OPTFLOW == ENABLED
if(g.optflow_enabled) {
update_optical_flow();
}
#endif // OPTFLOW == ENABLED
// Read radio and 3-position switch on radio
// -----------------------------------------
read_radio();
read_control_switch();
2012-08-21 23:19:50 -03:00
// custom code/exceptions for flight modes
// ---------------------------------------
update_yaw_mode();
update_roll_pitch_mode();
// update targets to rate controllers
update_rate_contoller_targets();
// agmatthews - USERHOOKS
2012-08-21 23:19:50 -03:00
#ifdef USERHOOK_FASTLOOP
USERHOOK_FASTLOOP
#endif
}
// stuff that happens at 50 hz
// ---------------------------
static void fifty_hz_loop()
{
// get altitude and climb rate from inertial lib
read_inertial_altitude();
// Update the throttle ouput
// -------------------------
update_throttle_mode();
// check if we've landed
update_land_detector();
#if TOY_EDF == ENABLED
edf_toy();
#endif
// check auto_armed status
update_auto_armed();
#ifdef USERHOOK_50HZLOOP
USERHOOK_50HZLOOP
#endif
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME
// HIL for a copter needs very fast update of the servo values
gcs_send_message(MSG_RADIO_OUT);
#endif
#if MOUNT == ENABLED
// update camera mount's position
camera_mount.update_mount_position();
#endif
#if MOUNT2 == ENABLED
// update camera mount's position
camera_mount2.update_mount_position();
#endif
#if CAMERA == ENABLED
camera.trigger_pic_cleanup();
#endif
# if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motors.armed()) {
Log_Write_Attitude();
#if SECONDARY_DMP_ENABLED == ENABLED
Log_Write_DMP();
#endif
}
if (g.log_bitmask & MASK_LOG_IMU && motors.armed())
DataFlash.Log_Write_IMU(&ins);
#endif
}
// medium_loop - runs at 10hz
static void medium_loop()
{
2012-08-21 23:19:50 -03:00
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case reads from the battery and Compass
//---------------------------------------------
2012-08-21 23:19:50 -03:00
case 0:
medium_loopCounter++;
// read battery before compass because it may be used for motor interference compensation
if (g.battery_monitoring != 0) {
read_battery();
}
2012-08-21 23:19:50 -03:00
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
if(g.compass_enabled) {
if (compass.read()) {
compass.null_offsets();
}
// log compass information
if (motors.armed() && (g.log_bitmask & MASK_LOG_COMPASS)) {
Log_Write_Compass();
}
2012-08-21 23:19:50 -03:00
}
#endif
// record throttle output
// ------------------------------
throttle_integrator += g.rc_3.servo_out;
break;
// This case reads rssi information and performs auto trim
//--------------------------------------------------------
2012-08-21 23:19:50 -03:00
case 1:
medium_loopCounter++;
// read receiver rssi information
read_receiver_rssi();
// auto_trim - stores roll and pitch radio inputs to ahrs
auto_trim();
2012-08-21 23:19:50 -03:00
break;
// This case deals with aux switches and toy mode's throttle
//----------------------------------------------------------
2012-08-21 23:19:50 -03:00
case 2:
medium_loopCounter++;
// check ch7 and ch8 aux switches
read_aux_switches();
2012-08-21 23:19:50 -03:00
if(control_mode == TOY_A) {
update_toy_throttle();
if(throttle_mode == THROTTLE_AUTO) {
update_toy_altitude();
}
}
break;
// This case deals with logging attitude and motor information to dataflash
// ------------------------------------------------------------------------
2012-08-21 23:19:50 -03:00
case 3:
medium_loopCounter++;
if(motors.armed()) {
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) {
2012-08-21 23:19:50 -03:00
Log_Write_Attitude();
#if SECONDARY_DMP_ENABLED == ENABLED
Log_Write_DMP();
#endif
}
2012-08-21 23:19:50 -03:00
if (g.log_bitmask & MASK_LOG_MOTORS)
Log_Write_Motors();
}
break;
// This case deals with arming checks, copter LEDs and 10hz user hooks
// -------------------------------------------------------------------------------
2012-08-21 23:19:50 -03:00
case 4:
medium_loopCounter = 0;
// Check for motor arming or disarming
arm_motors_check();
2012-08-21 23:19:50 -03:00
// agmatthews - USERHOOKS
2012-08-21 23:19:50 -03:00
#ifdef USERHOOK_MEDIUMLOOP
USERHOOK_MEDIUMLOOP
#endif
#if COPTER_LEDS == ENABLED
update_copter_leds();
#endif
break;
default:
// this is just a catch all
// ------------------------
medium_loopCounter = 0;
break;
}
}
// slow_loop - 3.3hz loop
static void slow_loop()
{
2012-08-21 23:19:50 -03:00
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter) {
case 0:
slow_loopCounter++;
superslow_loopCounter++;
2013-04-29 09:30:22 -03:00
// check if we've lost contact with the ground station
failsafe_gcs_check();
// record if the compass is healthy
set_compass_healthy(compass.healthy);
2012-08-21 23:19:50 -03:00
if(superslow_loopCounter > 1200) {
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled) {
compass.save_offsets();
superslow_loopCounter = 0;
}
2012-08-21 23:19:50 -03:00
#endif
}
if(!motors.armed()) {
// check the user hasn't updated the frame orientation
2012-08-21 23:19:50 -03:00
motors.set_frame_orientation(g.frame_orientation);
}
#if AC_FENCE == ENABLED
// check if we have breached a fence
fence_check();
#endif // AC_FENCE_ENABLED
2012-08-21 23:19:50 -03:00
break;
2012-08-21 23:19:50 -03:00
case 1:
slow_loopCounter++;
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_9, &g.rc_10, &g.rc_11, &g.rc_12);
#elif MOUNT == ENABLED
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11);
2012-08-21 23:19:50 -03:00
#endif
enable_aux_servos();
#if MOUNT == ENABLED
2012-08-21 23:19:50 -03:00
camera_mount.update_mount_type();
#endif
2012-08-08 17:16:48 -03:00
#if MOUNT2 == ENABLED
2012-08-21 23:19:50 -03:00
camera_mount2.update_mount_type();
2012-08-08 17:16:48 -03:00
#endif
2013-08-04 11:20:21 -03:00
#if SPRAYER == ENABLED
sprayer.update();
#endif
// agmatthews - USERHOOKS
2012-08-21 23:19:50 -03:00
#ifdef USERHOOK_SLOWLOOP
USERHOOK_SLOWLOOP
#endif
2012-08-21 23:19:50 -03:00
break;
2012-08-21 23:19:50 -03:00
case 2:
slow_loopCounter = 0;
update_events();
2012-08-21 23:19:50 -03:00
if(g.radio_tuning > 0)
tuning();
2012-08-21 23:19:50 -03:00
#if USB_MUX_PIN > 0
check_usb_mux();
#endif
break;
2012-08-21 23:19:50 -03:00
default:
slow_loopCounter = 0;
break;
}
}
// super_slow_loop - runs at 1Hz
static void super_slow_loop()
{
if (g.log_bitmask != 0) {
Log_Write_Data(DATA_AP_STATE, ap.value);
}
2012-11-11 21:59:53 -04:00
// pass latest alt hold kP value to navigation controller
wp_nav.set_althold_kP(g.pi_alt_hold.kP());
// update latest lean angle to navigation controller
wp_nav.set_lean_angle_max(g.angle_max);
// log battery info to the dataflash
2013-04-20 18:25:52 -03:00
if ((g.log_bitmask & MASK_LOG_CURRENT) && motors.armed())
2012-08-21 23:19:50 -03:00
Log_Write_Current();
// perform pre-arm checks
pre_arm_checks(false);
// auto disarm checks
auto_disarm_check();
// make it possible to change orientation at runtime - useful
// during initial config
if (!motors.armed()) {
ahrs.set_orientation();
}
// agmatthews - USERHOOKS
2012-08-21 23:19:50 -03:00
#ifdef USERHOOK_SUPERSLOWLOOP
USERHOOK_SUPERSLOWLOOP
2012-12-14 00:12:39 -04:00
#endif
}
// called at 100hz but data from sensor only arrives at 20 Hz
#if OPTFLOW == ENABLED
static void update_optical_flow(void)
{
static uint32_t last_of_update = 0;
static uint8_t of_log_counter = 0;
// if new data has arrived, process it
if( optflow.last_update != last_of_update ) {
last_of_update = optflow.last_update;
optflow.update_position(ahrs.roll, ahrs.pitch, sin_yaw, cos_yaw, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
// write to log at 5hz
of_log_counter++;
if( of_log_counter >= 4 ) {
of_log_counter = 0;
if (g.log_bitmask & MASK_LOG_OPTFLOW) {
Log_Write_Optflow();
}
2012-08-21 23:19:50 -03:00
}
}
}
#endif // OPTFLOW == ENABLED
2012-05-21 13:58:14 -03:00
// called at 50hz
static void update_GPS(void)
{
2012-08-21 23:19:50 -03:00
// A counter that is used to grab at least 10 reads before commiting the Home location
static uint8_t ground_start_count = 10;
2012-08-21 23:19:50 -03:00
g_gps->update();
if (g_gps->new_data && last_gps_time != g_gps->time && g_gps->status() >= GPS::GPS_OK_FIX_2D) {
2012-08-21 23:19:50 -03:00
// clear new data flag
g_gps->new_data = false;
// save GPS time so we don't get duplicate reads
last_gps_time = g_gps->time;
2012-08-21 23:19:50 -03:00
// log location if we have at least a 2D fix
if (g.log_bitmask & MASK_LOG_GPS && motors.armed()) {
DataFlash.Log_Write_GPS(g_gps, current_loc.alt);
}
2012-08-21 23:19:50 -03:00
// for performance monitoring
gps_fix_count++;
2012-08-21 23:19:50 -03:00
// check if we can initialise home yet
if (!ap.home_is_set) {
// if we have a 3d lock and valid location
if(g_gps->status() >= GPS::GPS_OK_FIX_3D && g_gps->latitude != 0) {
if( ground_start_count > 0 ) {
ground_start_count--;
2012-08-21 23:19:50 -03:00
}else{
// after 10 successful reads store home location
// ap.home_is_set will be true so this will only happen once
ground_start_count = 0;
init_home();
2012-08-21 23:19:50 -03:00
if (g.compass_enabled) {
// Set compass declination automatically
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
}
}
}else{
// start again if we lose 3d lock
ground_start_count = 10;
2012-08-21 23:19:50 -03:00
}
}
#if CAMERA == ENABLED
if (camera.update_location(current_loc) == true) {
do_take_picture();
}
#endif
2012-08-21 23:19:50 -03:00
}
// check for loss of gps
failsafe_gps_check();
}
// set_yaw_mode - update yaw mode and initialise any variables required
bool set_yaw_mode(uint8_t new_yaw_mode)
{
// boolean to ensure proper initialisation of throttle modes
bool yaw_initialised = false;
// return immediately if no change
if( new_yaw_mode == yaw_mode ) {
return true;
}
switch( new_yaw_mode ) {
case YAW_HOLD:
yaw_initialised = true;
break;
case YAW_ACRO:
yaw_initialised = true;
acro_yaw_rate = 0;
break;
case YAW_LOOK_AT_NEXT_WP:
if( ap.home_is_set ) {
yaw_initialised = true;
}
break;
case YAW_LOOK_AT_LOCATION:
if( ap.home_is_set ) {
// update bearing - assumes yaw_look_at_WP has been intialised before set_yaw_mode was called
2013-03-20 10:29:08 -03:00
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP);
yaw_initialised = true;
}
break;
case YAW_CIRCLE:
if( ap.home_is_set ) {
// set yaw to point to center of circle
yaw_look_at_WP = circle_center;
// initialise bearing to current heading
yaw_look_at_WP_bearing = ahrs.yaw_sensor;
yaw_initialised = true;
}
break;
case YAW_LOOK_AT_HEADING:
yaw_initialised = true;
break;
case YAW_LOOK_AT_HOME:
if( ap.home_is_set ) {
yaw_initialised = true;
}
break;
case YAW_LOOK_AHEAD:
if( ap.home_is_set ) {
yaw_initialised = true;
}
break;
case YAW_TOY:
yaw_initialised = true;
break;
case YAW_RESETTOARMEDYAW:
nav_yaw = ahrs.yaw_sensor; // store current yaw so we can start rotating back to correct one
yaw_initialised = true;
break;
}
// if initialisation has been successful update the yaw mode
if( yaw_initialised ) {
yaw_mode = new_yaw_mode;
}
// return success or failure
return yaw_initialised;
}
// update_yaw_mode - run high level yaw controllers
// 100hz update rate
void update_yaw_mode(void)
{
2012-08-21 23:19:50 -03:00
switch(yaw_mode) {
case YAW_HOLD:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
nav_yaw = ahrs.yaw_sensor;
}
// heading hold at heading held in nav_yaw but allow input from pilot
get_yaw_rate_stabilized_ef(g.rc_4.control_in);
break;
2012-08-21 23:19:50 -03:00
case YAW_ACRO:
// pilot controlled yaw using rate controller
get_yaw_rate_stabilized_bf(g.rc_4.control_in);
2012-08-21 23:19:50 -03:00
break;
case YAW_LOOK_AT_NEXT_WP:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
nav_yaw = ahrs.yaw_sensor;
}else{
// point towards next waypoint (no pilot input accepted)
// we don't use wp_bearing because we don't want the copter to turn too much during flight
nav_yaw = get_yaw_slew(nav_yaw, original_wp_bearing, AUTO_YAW_SLEW_RATE);
}
get_stabilize_yaw(nav_yaw);
2012-08-21 23:19:50 -03:00
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if( g.rc_4.control_in != 0 ) {
set_yaw_mode(YAW_HOLD);
}
break;
case YAW_LOOK_AT_LOCATION:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
nav_yaw = ahrs.yaw_sensor;
}
// point towards a location held in yaw_look_at_WP
get_look_at_yaw();
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if( g.rc_4.control_in != 0 ) {
set_yaw_mode(YAW_HOLD);
}
break;
case YAW_CIRCLE:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
nav_yaw = ahrs.yaw_sensor;
}
// points toward the center of the circle or does a panorama
get_circle_yaw();
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if( g.rc_4.control_in != 0 ) {
set_yaw_mode(YAW_HOLD);
}
2012-08-21 23:19:50 -03:00
break;
case YAW_LOOK_AT_HOME:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
nav_yaw = ahrs.yaw_sensor;
}else{
// keep heading always pointing at home with no pilot input allowed
nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE);
}
get_stabilize_yaw(nav_yaw);
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if( g.rc_4.control_in != 0 ) {
set_yaw_mode(YAW_HOLD);
}
2012-08-21 23:19:50 -03:00
break;
case YAW_LOOK_AT_HEADING:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
nav_yaw = ahrs.yaw_sensor;
}else{
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_heading, yaw_look_at_heading_slew);
}
get_stabilize_yaw(nav_yaw);
2012-08-21 23:19:50 -03:00
break;
case YAW_LOOK_AHEAD:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
nav_yaw = ahrs.yaw_sensor;
}
2012-12-04 14:26:41 -04:00
// Commanded Yaw to automatically look ahead.
get_look_ahead_yaw(g.rc_4.control_in);
break;
#if TOY_LOOKUP == TOY_EXTERNAL_MIXER
case YAW_TOY:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
nav_yaw = ahrs.yaw_sensor;
}else{
// update to allow external roll/yaw mixing
// keep heading always pointing at home with no pilot input allowed
nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE);
}
get_stabilize_yaw(nav_yaw);
break;
#endif
case YAW_RESETTOARMEDYAW:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
nav_yaw = ahrs.yaw_sensor;
}else{
// changes yaw to be same as when quad was armed
nav_yaw = get_yaw_slew(nav_yaw, initial_armed_bearing, AUTO_YAW_SLEW_RATE);
}
get_stabilize_yaw(nav_yaw);
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if( g.rc_4.control_in != 0 ) {
set_yaw_mode(YAW_HOLD);
}
break;
}
}
// get yaw mode based on WP_YAW_BEHAVIOR parameter
// set rtl parameter to true if this is during an RTL
uint8_t get_wp_yaw_mode(bool rtl)
{
switch (g.wp_yaw_behavior) {
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP:
return YAW_LOOK_AT_NEXT_WP;
break;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL:
if( rtl ) {
return YAW_HOLD;
}else{
return YAW_LOOK_AT_NEXT_WP;
}
break;
case WP_YAW_BEHAVIOR_LOOK_AHEAD:
return YAW_LOOK_AHEAD;
break;
default:
return YAW_HOLD;
break;
}
}
// set_roll_pitch_mode - update roll/pitch mode and initialise any variables as required
bool set_roll_pitch_mode(uint8_t new_roll_pitch_mode)
{
// boolean to ensure proper initialisation of throttle modes
bool roll_pitch_initialised = false;
// return immediately if no change
if( new_roll_pitch_mode == roll_pitch_mode ) {
return true;
}
switch( new_roll_pitch_mode ) {
case ROLL_PITCH_STABLE:
roll_pitch_initialised = true;
break;
case ROLL_PITCH_ACRO:
// reset acro level rates
acro_roll_rate = 0;
acro_pitch_rate = 0;
roll_pitch_initialised = true;
break;
case ROLL_PITCH_AUTO:
case ROLL_PITCH_STABLE_OF:
case ROLL_PITCH_TOY:
2013-08-04 03:56:35 -03:00
case ROLL_PITCH_SPORT:
roll_pitch_initialised = true;
break;
case ROLL_PITCH_LOITER:
// require gps lock
if( ap.home_is_set ) {
roll_pitch_initialised = true;
}
break;
}
// if initialisation has been successful update the yaw mode
if( roll_pitch_initialised ) {
roll_pitch_mode = new_roll_pitch_mode;
2012-08-21 23:19:50 -03:00
}
// return success or failure
return roll_pitch_initialised;
}
// update_roll_pitch_mode - run high level roll and pitch controllers
// 100hz update rate
void update_roll_pitch_mode(void)
{
2012-08-21 23:19:50 -03:00
switch(roll_pitch_mode) {
2012-12-14 00:12:39 -04:00
case ROLL_PITCH_ACRO:
// copy user input for reporting purposes
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
#if FRAME_CONFIG == HELI_FRAME
// ACRO does not get SIMPLE mode ability
if (motors.flybar_mode == 1) {
g.rc_1.servo_out = g.rc_1.control_in;
g.rc_2.servo_out = g.rc_2.control_in;
2012-08-21 23:19:50 -03:00
}else{
acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*cos_pitch_x;
2013-07-06 09:59:57 -03:00
get_roll_rate_stabilized_bf(g.rc_1.control_in);
get_pitch_rate_stabilized_bf(g.rc_2.control_in);
get_acro_level_rates();
}
#else // !HELI_FRAME
acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*cos_pitch_x;
get_roll_rate_stabilized_bf(g.rc_1.control_in);
get_pitch_rate_stabilized_bf(g.rc_2.control_in);
get_acro_level_rates();
#endif // HELI_FRAME
2012-08-21 23:19:50 -03:00
break;
case ROLL_PITCH_STABLE:
// apply SIMPLE mode transform
if(ap.simple_mode && ap_system.new_radio_frame) {
2012-08-21 23:19:50 -03:00
update_simple_mode();
}
// convert pilot input to lean angles
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, control_roll, control_pitch);
// pass desired roll, pitch to stabilize attitude controllers
get_stabilize_roll(control_roll);
get_stabilize_pitch(control_pitch);
2012-08-21 23:19:50 -03:00
break;
case ROLL_PITCH_AUTO:
// copy latest output from nav controller to stabilize controller
nav_roll = wp_nav.get_desired_roll();
nav_pitch = wp_nav.get_desired_pitch();
get_stabilize_roll(nav_roll);
get_stabilize_pitch(nav_pitch);
2012-08-21 23:19:50 -03:00
// user input, although ignored is put into control_roll and pitch for reporting purposes
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
2012-08-21 23:19:50 -03:00
break;
case ROLL_PITCH_STABLE_OF:
// apply SIMPLE mode transform
if(ap.simple_mode && ap_system.new_radio_frame) {
2012-08-21 23:19:50 -03:00
update_simple_mode();
}
// convert pilot input to lean angles
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, control_roll, control_pitch);
2012-08-21 23:19:50 -03:00
// mix in user control with optical flow
get_stabilize_roll(get_of_roll(control_roll));
get_stabilize_pitch(get_of_pitch(control_pitch));
2012-08-21 23:19:50 -03:00
break;
// THOR
// a call out to the main toy logic
case ROLL_PITCH_TOY:
roll_pitch_toy();
break;
case ROLL_PITCH_LOITER:
// apply SIMPLE mode transform
if(ap.simple_mode && ap_system.new_radio_frame) {
update_simple_mode();
}
// copy user input for reporting purposes
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
// update loiter target from user controls
wp_nav.move_loiter_target(control_roll, control_pitch,0.01f);
// copy latest output from nav controller to stabilize controller
nav_roll = wp_nav.get_desired_roll();
nav_pitch = wp_nav.get_desired_pitch();
get_stabilize_roll(nav_roll);
get_stabilize_pitch(nav_pitch);
break;
2013-08-04 03:56:35 -03:00
case ROLL_PITCH_SPORT:
// apply SIMPLE mode transform
if(ap.simple_mode && ap_system.new_radio_frame) {
update_simple_mode();
}
// copy user input for reporting purposes
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
get_roll_rate_stabilized_ef(g.rc_1.control_in);
get_pitch_rate_stabilized_ef(g.rc_2.control_in);
break;
2012-08-21 23:19:50 -03:00
}
2012-12-14 00:12:39 -04:00
#if FRAME_CONFIG != HELI_FRAME
2012-08-21 23:19:50 -03:00
if(g.rc_3.control_in == 0 && control_mode <= ACRO) {
reset_rate_I();
reset_stability_I();
}
#endif //HELI_FRAME
2012-08-21 23:19:50 -03:00
if(ap_system.new_radio_frame) {
2012-08-21 23:19:50 -03:00
// clear new radio frame info
ap_system.new_radio_frame = false;
2012-08-21 23:19:50 -03:00
}
}
// new radio frame is used to make sure we only call this at 50hz
void update_simple_mode(void)
{
static uint8_t simple_counter = 0; // State machine counter for Simple Mode
2012-08-21 23:19:50 -03:00
static float simple_sin_y=0, simple_cos_x=0;
2012-08-21 23:19:50 -03:00
// used to manage state machine
// which improves speed of function
simple_counter++;
2013-03-28 23:14:31 -03:00
int16_t delta = wrap_360_cd(ahrs.yaw_sensor - initial_simple_bearing)/100;
2012-08-21 23:19:50 -03:00
if (simple_counter == 1) {
// roll
simple_cos_x = sinf(radians(90 - delta));
2012-08-21 23:19:50 -03:00
}else if (simple_counter > 2) {
// pitch
simple_sin_y = cosf(radians(90 - delta));
2012-08-21 23:19:50 -03:00
simple_counter = 0;
}
2012-08-21 23:19:50 -03:00
// Rotate input by the initial bearing
int16_t _roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y;
int16_t _pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x);
2012-08-21 23:19:50 -03:00
g.rc_1.control_in = _roll;
g.rc_2.control_in = _pitch;
}
// update_super_simple_bearing - adjusts simple bearing based on location
// should be called after home_bearing has been updated
void update_super_simple_bearing()
{
// are we in SUPERSIMPLE mode?
if(ap.simple_mode == 2 || (ap.simple_mode && g.super_simple)) {
// get distance to home
if(home_distance > SUPER_SIMPLE_RADIUS) { // 10m from home
// we reset the angular offset to be a vector from home to the quad
2013-03-28 23:14:31 -03:00
initial_simple_bearing = wrap_360_cd(home_bearing+18000);
}
}
}
// set_throttle_mode - sets the throttle mode and initialises any variables as required
bool set_throttle_mode( uint8_t new_throttle_mode )
{
// boolean to ensure proper initialisation of throttle modes
bool throttle_initialised = false;
// return immediately if no change
if( new_throttle_mode == throttle_mode ) {
return true;
}
// initialise any variables required for the new throttle mode
switch(new_throttle_mode) {
case THROTTLE_MANUAL:
case THROTTLE_MANUAL_TILT_COMPENSATED:
throttle_accel_deactivate(); // this controller does not use accel based throttle controller
altitude_error = 0; // clear altitude error reported to GCS
throttle_initialised = true;
break;
case THROTTLE_HOLD:
case THROTTLE_AUTO:
controller_desired_alt = get_initial_alt_hold(current_loc.alt, climb_rate); // reset controller desired altitude to current altitude
wp_nav.set_desired_alt(controller_desired_alt); // same as above but for loiter controller
if ( throttle_mode <= THROTTLE_MANUAL_TILT_COMPENSATED ) { // reset the alt hold I terms if previous throttle mode was manual
reset_throttle_I();
set_accel_throttle_I_from_pilot_throttle(get_pilot_desired_throttle(g.rc_3.control_in));
}
throttle_initialised = true;
break;
case THROTTLE_LAND:
reset_land_detector(); // initialise land detector
controller_desired_alt = get_initial_alt_hold(current_loc.alt, climb_rate); // reset controller desired altitude to current altitude
throttle_initialised = true;
break;
default:
// To-Do: log an error message to the dataflash or tlogs instead of printing to the serial port
cliSerial->printf_P(PSTR("Unsupported throttle mode: %d!!"),new_throttle_mode);
break;
}
// update the throttle mode
if( throttle_initialised ) {
throttle_mode = new_throttle_mode;
// reset some variables used for logging
desired_climb_rate = 0;
nav_throttle = 0;
}
// return success or failure
return throttle_initialised;
}
// update_throttle_mode - run high level throttle controllers
// 50 hz update rate
void update_throttle_mode(void)
{
int16_t pilot_climb_rate;
int16_t pilot_throttle_scaled;
if(ap.do_flip) // this is pretty bad but needed to flip in AP modes.
2012-08-21 23:19:50 -03:00
return;
#if FRAME_CONFIG == HELI_FRAME
if (control_mode == STABILIZE){
motors.stab_throttle = true;
} else {
motors.stab_throttle = false;
}
// allow swash collective to move if we are in manual throttle modes, even if disarmed
if( !motors.armed() ) {
if ( !(throttle_mode == THROTTLE_MANUAL) && !(throttle_mode == THROTTLE_MANUAL_TILT_COMPENSATED)){
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
return;
}
}
#else // HELI_FRAME
// do not run throttle controllers if motors disarmed
if( !motors.armed() ) {
set_throttle_out(0, false);
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
set_target_alt_for_reporting(0);
return;
}
#endif // HELI_FRAME
2012-08-21 23:19:50 -03:00
switch(throttle_mode) {
2012-08-21 23:19:50 -03:00
case THROTTLE_MANUAL:
// completely manual throttle
if(g.rc_3.control_in <= 0){
set_throttle_out(0, false);
}else{
// send pilot's output directly to motors
pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in);
set_throttle_out(pilot_throttle_scaled, false);
// update estimate of throttle cruise
#if FRAME_CONFIG == HELI_FRAME
update_throttle_cruise(motors.coll_out);
#else
update_throttle_cruise(pilot_throttle_scaled);
#endif //HELI_FRAME
2012-12-14 00:12:39 -04:00
// check if we've taken off yet
if (!ap.takeoff_complete && motors.armed()) {
if (pilot_throttle_scaled > g.throttle_cruise) {
// we must be in the air by now
set_takeoff_complete(true);
}
}
}
set_target_alt_for_reporting(0);
break;
case THROTTLE_MANUAL_TILT_COMPENSATED:
// manual throttle but with angle boost
if (g.rc_3.control_in <= 0) {
set_throttle_out(0, false); // no need for angle boost with zero throttle
}else{
pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in);
set_throttle_out(pilot_throttle_scaled, true);
2012-08-21 23:19:50 -03:00
// update estimate of throttle cruise
#if FRAME_CONFIG == HELI_FRAME
update_throttle_cruise(motors.coll_out);
#else
update_throttle_cruise(pilot_throttle_scaled);
#endif //HELI_FRAME
2012-08-21 23:19:50 -03:00
if (!ap.takeoff_complete && motors.armed()) {
if (pilot_throttle_scaled > g.throttle_cruise) {
2012-08-21 23:19:50 -03:00
// we must be in the air by now
set_takeoff_complete(true);
2012-08-21 23:19:50 -03:00
}
}
}
set_target_alt_for_reporting(0);
break;
2012-08-21 23:19:50 -03:00
case THROTTLE_HOLD:
if(ap.auto_armed) {
// alt hold plus pilot input of climb rate
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
2013-07-27 22:47:19 -03:00
// special handling if we have landed
if (ap.land_complete) {
if (pilot_climb_rate > 0) {
// indicate we are taking off
set_land_complete(false);
// clear i term when we're taking off
set_throttle_takeoff();
}else{
// move throttle to minimum to keep us on the ground
set_throttle_out(0, false);
// deactivate accel based throttle controller (it will be automatically re-enabled when alt-hold controller next runs)
throttle_accel_deactivate();
2013-07-27 22:47:19 -03:00
}
}
2013-07-27 22:47:19 -03:00
// check land_complete flag again in case it was changed above
if (!ap.land_complete) {
if( sonar_alt_health >= SONAR_ALT_HEALTH_MAX ) {
// if sonar is ok, use surface tracking
get_throttle_surface_tracking(pilot_climb_rate); // this function calls set_target_alt_for_reporting for us
}else{
// if no sonar fall back stabilize rate controller
get_throttle_rate_stabilized(pilot_climb_rate); // this function calls set_target_alt_for_reporting for us
}
}
}else{
// pilot's throttle must be at zero so keep motors off
set_throttle_out(0, false);
// deactivate accel based throttle controller
throttle_accel_deactivate();
set_target_alt_for_reporting(0);
}
break;
2012-08-21 23:19:50 -03:00
case THROTTLE_AUTO:
// auto pilot altitude controller with target altitude held in wp_nav.get_desired_alt()
if(ap.auto_armed) {
get_throttle_althold_with_slew(wp_nav.get_desired_alt(), -wp_nav.get_descent_velocity(), wp_nav.get_climb_velocity());
set_target_alt_for_reporting(wp_nav.get_desired_alt()); // To-Do: return get_destination_alt if we are flying to a waypoint
}else{
// pilot's throttle must be at zero so keep motors off
set_throttle_out(0, false);
// deactivate accel based throttle controller
throttle_accel_deactivate();
set_target_alt_for_reporting(0);
2012-08-21 23:19:50 -03:00
}
break;
2012-08-21 23:19:50 -03:00
case THROTTLE_LAND:
// landing throttle controller
get_throttle_land();
set_target_alt_for_reporting(0);
2012-08-21 23:19:50 -03:00
break;
}
}
2013-05-08 04:41:16 -03:00
// set_target_alt_for_reporting - set target altitude in cm for reporting purposes (logs and gcs)
static void set_target_alt_for_reporting(float alt_cm)
{
2013-05-08 04:41:16 -03:00
target_alt_for_reporting = alt_cm;
}
2013-05-08 04:41:16 -03:00
// get_target_alt_for_reporting - returns target altitude in cm for reporting purposes (logs and gcs)
static float get_target_alt_for_reporting()
{
return target_alt_for_reporting;
}
static void read_AHRS(void)
{
2012-08-21 23:19:50 -03:00
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before ahrs update
gcs_check_input();
2012-08-21 23:19:50 -03:00
#endif
ahrs.update();
omega = ins.get_gyro();
#if SECONDARY_DMP_ENABLED == ENABLED
ahrs2.update();
#endif
}
static void update_trig(void){
2012-08-21 23:19:50 -03:00
Vector2f yawvector;
2013-04-21 09:52:45 -03:00
const Matrix3f &temp = ahrs.get_dcm_matrix();
2012-08-21 23:19:50 -03:00
yawvector.x = temp.a.x; // sin
yawvector.y = temp.b.x; // cos
yawvector.normalize();
2012-08-21 23:19:50 -03:00
cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1
2012-12-14 00:12:39 -04:00
cos_roll_x = temp.c.z / cos_pitch_x; // level = 1
cos_pitch_x = constrain_float(cos_pitch_x, 0, 1.0);
// this relies on constrain_float() of infinity doing the right thing,
// which it does do in avr-libc
cos_roll_x = constrain_float(cos_roll_x, -1.0, 1.0);
sin_yaw = constrain_float(yawvector.y, -1.0, 1.0);
cos_yaw = constrain_float(yawvector.x, -1.0, 1.0);
// added to convert earth frame to body frame for rate controllers
2012-12-14 00:12:39 -04:00
sin_pitch = -temp.c.x;
sin_roll = temp.c.y / cos_pitch_x;
2013-03-20 10:29:08 -03:00
// update wp_nav controller with trig values
wp_nav.set_cos_sin_yaw(cos_yaw, sin_yaw, cos_pitch_x);
2013-03-20 10:29:08 -03:00
2012-08-21 23:19:50 -03:00
//flat:
// 0 ° = cos_yaw: 1.00, sin_yaw: 0.00,
// 90° = cos_yaw: 0.00, sin_yaw: 1.00,
// 180 = cos_yaw: -1.00, sin_yaw: 0.00,
// 270 = cos_yaw: 0.00, sin_yaw: -1.00,
}
// read baro and sonar altitude at 20hz
static void update_altitude()
{
2012-08-21 23:19:50 -03:00
#if HIL_MODE == HIL_MODE_ATTITUDE
// we are in the SIM, fake out the baro and Sonar
2013-07-10 01:02:48 -03:00
baro_alt = g_gps->altitude_cm - gps_base_alt;
if(g.sonar_enabled) {
sonar_alt = baro_alt;
}
2012-08-21 23:19:50 -03:00
#else
// read in baro altitude
baro_alt = read_barometer();
2012-08-21 23:19:50 -03:00
// read in sonar altitude
sonar_alt = read_sonar();
#endif // HIL_MODE == HIL_MODE_ATTITUDE
2012-08-21 23:19:50 -03:00
// write altitude info to dataflash logs
if ((g.log_bitmask & MASK_LOG_CTUN) && motors.armed()) {
Log_Write_Control_Tuning();
2012-08-21 23:19:50 -03:00
}
}
static void tuning(){
tuning_value = (float)g.rc_6.control_in / 1000.0f;
2012-08-21 23:19:50 -03:00
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1
switch(g.radio_tuning) {
// Roll, Pitch tuning
case CH6_STABILIZE_ROLL_PITCH_KP:
2012-08-21 23:19:50 -03:00
g.pi_stabilize_roll.kP(tuning_value);
g.pi_stabilize_pitch.kP(tuning_value);
break;
case CH6_RATE_ROLL_PITCH_KP:
2012-08-21 23:19:50 -03:00
g.pid_rate_roll.kP(tuning_value);
g.pid_rate_pitch.kP(tuning_value);
break;
case CH6_RATE_ROLL_PITCH_KI:
2012-08-21 23:19:50 -03:00
g.pid_rate_roll.kI(tuning_value);
g.pid_rate_pitch.kI(tuning_value);
break;
case CH6_RATE_ROLL_PITCH_KD:
g.pid_rate_roll.kD(tuning_value);
g.pid_rate_pitch.kD(tuning_value);
2012-08-21 23:19:50 -03:00
break;
// Yaw tuning
case CH6_STABILIZE_YAW_KP:
g.pi_stabilize_yaw.kP(tuning_value);
2012-08-21 23:19:50 -03:00
break;
case CH6_YAW_RATE_KP:
g.pid_rate_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KD:
g.pid_rate_yaw.kD(tuning_value);
break;
// Altitude and throttle tuning
case CH6_ALTITUDE_HOLD_KP:
g.pi_alt_hold.kP(tuning_value);
2012-08-21 23:19:50 -03:00
break;
case CH6_THROTTLE_RATE_KP:
g.pid_throttle_rate.kP(tuning_value);
break;
case CH6_THROTTLE_RATE_KD:
g.pid_throttle_rate.kD(tuning_value);
break;
case CH6_THROTTLE_ACCEL_KP:
g.pid_throttle_accel.kP(tuning_value);
2012-08-21 23:19:50 -03:00
break;
case CH6_THROTTLE_ACCEL_KI:
g.pid_throttle_accel.kI(tuning_value);
2012-08-21 23:19:50 -03:00
break;
case CH6_THROTTLE_ACCEL_KD:
g.pid_throttle_accel.kD(tuning_value);
2012-08-21 23:19:50 -03:00
break;
// Loiter and navigation tuning
case CH6_LOITER_POSITION_KP:
g.pi_loiter_lat.kP(tuning_value);
g.pi_loiter_lon.kP(tuning_value);
2012-08-21 23:19:50 -03:00
break;
case CH6_LOITER_RATE_KP:
g.pid_loiter_rate_lon.kP(tuning_value);
g.pid_loiter_rate_lat.kP(tuning_value);
break;
case CH6_LOITER_RATE_KI:
g.pid_loiter_rate_lon.kI(tuning_value);
g.pid_loiter_rate_lat.kI(tuning_value);
break;
case CH6_LOITER_RATE_KD:
g.pid_loiter_rate_lon.kD(tuning_value);
g.pid_loiter_rate_lat.kD(tuning_value);
break;
case CH6_WP_SPEED:
// set waypoint navigation horizontal speed to 0 ~ 1000 cm/s
wp_nav.set_horizontal_velocity(g.rc_6.control_in);
break;
// Acro roll pitch gain
case CH6_ACRO_RP_KP:
g.acro_rp_p = tuning_value;
break;
// Acro yaw gain
case CH6_ACRO_YAW_KP:
g.acro_yaw_p = tuning_value;
break;
case CH6_RELAY:
if (g.rc_6.control_in > 525) relay.on();
if (g.rc_6.control_in < 475) relay.off();
break;
2012-08-21 23:19:50 -03:00
#if FRAME_CONFIG == HELI_FRAME
case CH6_HELI_EXTERNAL_GYRO:
motors.ext_gyro_gain = tuning_value;
break;
#endif
2012-08-21 23:19:50 -03:00
case CH6_OPTFLOW_KP:
g.pid_optflow_roll.kP(tuning_value);
g.pid_optflow_pitch.kP(tuning_value);
break;
case CH6_OPTFLOW_KI:
g.pid_optflow_roll.kI(tuning_value);
g.pid_optflow_pitch.kI(tuning_value);
break;
case CH6_OPTFLOW_KD:
g.pid_optflow_roll.kD(tuning_value);
g.pid_optflow_pitch.kD(tuning_value);
break;
#if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode
case CH6_AHRS_YAW_KP:
ahrs._kp_yaw.set(tuning_value);
break;
case CH6_AHRS_KP:
ahrs._kp.set(tuning_value);
break;
#endif
case CH6_INAV_TC:
// To-Do: allowing tuning TC for xy and z separately
inertial_nav.set_time_constant_xy(tuning_value);
inertial_nav.set_time_constant_z(tuning_value);
break;
case CH6_DECLINATION:
// set declination to +-20degrees
compass.set_declination(ToRad((2.0f * g.rc_6.control_in - g.radio_tuning_high)/100.0f), false); // 2nd parameter is false because we do not want to save to eeprom because this would have a performance impact
break;
case CH6_CIRCLE_RATE:
// set circle rate
g.circle_rate.set(g.rc_6.control_in/25-20); // allow approximately 45 degree turn rate in either direction
break;
2013-08-18 03:44:54 -03:00
case CH6_SONAR_GAIN:
// set sonar gain
g.sonar_gain.set(tuning_value);
break;
2012-08-21 23:19:50 -03:00
}
}
2012-12-13 16:02:27 -04:00
AP_HAL_MAIN();