ardupilot/ArduCopterMega/ArduCopterMega.pde

1166 lines
31 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
ArduCopterMega Version 0.1.3 Experimental
Authors: Jason Short
Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier
This firmware is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
#include <Wire.h> // Arduino I2C lib
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_IMU.h> // ArduPilot Mega IMU Library
#include <AP_DCM.h> // ArduPilot Mega DCM Library
#include <PID.h> // PID library
#include <RC_Channel.h> // RC Channel Library
#include <AP_RangeFinder.h> // Range finder library
#define MAVLINK_COMM_NUM_BUFFERS 2
#include <GCS_MAVLink.h> // MAVLink GCS definitions
// Configuration
#include "config.h"
// Local modules
#include "defines.h"
#include "Parameters.h"
#include "global_data.h"
#include "GCS.h"
#include "HIL.h"
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
FastSerialPort3(Serial3); // Telemetry port
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
void update_events(void);
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
GPS *g_gps;
#if HIL_MODE == HIL_MODE_NONE
// real sensors
AP_ADC_ADS7844 adc;
APM_BMP085_Class barometer;
AP_Compass_HMC5843 compass(Parameters::k_param_compass);
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
AP_GPS_MTK16 g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
#elif HIL_MODE == HIL_MODE_SENSORS
// sensor emulators
AP_ADC_HIL adc;
APM_BMP085_HIL_Class barometer;
AP_Compass_HIL compass;
AP_GPS_HIL g_gps_driver(NULL);
#elif HIL_MODE == HIL_MODE_ATTITUDE
AP_DCM_HIL dcm;
AP_GPS_HIL g_gps_driver(NULL);
AP_Compass_HIL compass; // never used
AP_IMU_Shim imu; // never used
#else
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
// HIL
#if HIL_MODE != HIL_MODE_DISABLED
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK
GCS_MAVLINK hil;
#elif HIL_PROTOCOL == HIL_PROTOCOL_XPLANE
HIL_XPLANE hil;
#endif // HIL PROTOCOL
#endif // HIL_MODE
#if HIL_MODE != HIL_MODE_ATTITUDE
#if HIL_MODE != HIL_MODE_SENSORS
// Normal
AP_IMU_Oilpan imu(&adc, Parameters::k_param_IMU_calibration);
#else
// hil imu
AP_IMU_Shim imu;
#endif
// normal dcm
AP_DCM dcm(&imu, g_gps);
#endif
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
//
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
GCS_MAVLINK gcs;
#else
// If we are not using a GCS, we need a stub that does nothing.
GCS_Class gcs;
#endif
AP_RangeFinder_MaxsonarXL sonar;
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
byte control_mode = STABILIZE;
byte oldSwitchPosition; // for remembering the control mode switch
const char *comma = ",";
const char* flight_mode_strings[] = {
"STABILIZE",
"ACRO",
"ALT_HOLD",
"SIMPLE",
"FBW",
"AUTO",
"GCS_AUTO",
"LOITER",
"RTL"};
/* Radio values
Channel assignments
1 Ailerons (rudder if no ailerons)
2 Elevator
3 Throttle
4 Rudder (if we have ailerons)
5 Mode - 3 position switch
6 User assignable
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
8 TBD
*/
// Radio
// -----
int motor_out[8];
Vector3f omega;
// Failsafe
// --------
boolean failsafe; // did our throttle dip below the failsafe value?
boolean ch3_failsafe;
boolean motor_armed;
boolean motor_auto_safe;
// PIDs
// ----
int max_stabilize_dampener; //
int max_yaw_dampener; //
boolean rate_yaw_flag; // used to transition yaw control from Rate control to Yaw hold
// LED output
// ----------
boolean motor_light; // status of the Motor safety
boolean GPS_light; // status of the GPS light
// GPS variables
// -------------
const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage
float scaleLongUp = 1; // used to reverse longtitude scaling
float scaleLongDown = 1; // used to reverse longtitude scaling
byte ground_start_count = 5; // have we achieved first lock and set Home?
// Location & Navigation
// ---------------------
const float radius_of_earth = 6378100; // meters
const float gravity = 9.81; // meters/ sec^2
long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate
long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target
int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate
float nav_gain_scaler = 1; // Gain scaling for headwind/tailwind TODO: why does this variable need to be initialized to 1?
byte command_must_index; // current command memory location
byte command_may_index; // current command memory location
byte command_must_ID; // current command ID
byte command_may_ID; // current command ID
float cos_roll_x = 1;
float cos_pitch_x = 1;
float cos_yaw_x = 1;
float sin_pitch_y, sin_yaw_y, sin_roll_y;
float sin_nav_y, cos_nav_x; // used in calc_waypoint_nav
long initial_simple_bearing; // used for Simple mode
// Airspeed
// --------
int airspeed; // m/s * 100
// Location Errors
// ---------------
long bearing_error; // deg * 100 : 0 to 36000
long altitude_error; // meters * 100 we are off in altitude
float crosstrack_error; // meters we are off trackline
long distance_error; // distance to the WP
long yaw_error; // how off are we pointed
long long_error, lat_error; // temp for debugging
// Battery Sensors
// ---------------
float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter
float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter
float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter
float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
float current_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
float current_amps;
float current_total;
// Airspeed Sensors
// ----------------
// Barometer Sensor variables
// --------------------------
unsigned long abs_pressure;
unsigned long ground_pressure;
int ground_temperature;
// Altitude Sensor variables
// ----------------------
long sonar_alt;
long baro_alt;
byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR
// flight mode specific
// --------------------
boolean takeoff_complete; // Flag for using take-off controls
boolean land_complete;
//int takeoff_altitude;
int landing_distance; // meters;
long old_alt; // used for managing altitude rates
int velocity_land;
bool nav_yaw_towards_wp; // point at the next WP
// Loiter management
// -----------------
long old_target_bearing; // deg * 100
int loiter_total; // deg : how many times to loiter * 360
int loiter_delta; // deg : how far we just turned
int loiter_sum; // deg : how far we have turned around a waypoint
long loiter_time; // millis : when we started LOITER mode
int loiter_time_max; // millis : how long to stay in LOITER mode
// these are the values for navigation control functions
// ----------------------------------------------------
long nav_roll; // deg * 100 : target roll angle
long nav_pitch; // deg * 100 : target pitch angle
long nav_yaw; // deg * 100 : target yaw angle
long nav_lat; // for error calcs
long nav_lon; // for error calcs
int nav_throttle; // 0-1000 for throttle control
int nav_throttle_old; // for filtering
long command_yaw_start; // what angle were we to begin with
long command_yaw_start_time; // when did we start turning
int command_yaw_time; // how long we are turning
long command_yaw_end; // what angle are we trying to be
long command_yaw_delta; // how many degrees will we turn
int command_yaw_speed; // how fast to turn
byte command_yaw_dir;
// Waypoints
// ---------
long wp_distance; // meters - distance between plane and next waypoint
long wp_totalDistance; // meters - distance between old and next waypoint
byte next_wp_index; // Current active command index
// repeating event control
// -----------------------
byte event_id; // what to do - see defines
long event_timer; // when the event was asked for in ms
int event_delay; // how long to delay the next firing of event in millis
int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice
int event_value; // per command value, such as PWM for servos
int event_undo_value; // the value used to undo commands
byte repeat_forever;
byte undo_event; // counter for timing the undo
// delay command
// --------------
long condition_value; // used in condition commands (eg delay, change alt, etc.)
long condition_start;
int condition_rate;
// 3D Location vectors
// -------------------
struct Location home; // home location
struct Location prev_WP; // last waypoint
struct Location current_loc; // current location
struct Location next_WP; // next waypoint
struct Location tell_command; // command for telemetry
struct Location next_command; // command preloaded
long target_altitude; // used for
//long offset_altitude; // used for
boolean home_is_set; // Flag for if we have g_gps lock and have set the home location
// IMU variables
// -------------
float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm)
// Performance monitoring
// ----------------------
long perf_mon_timer;
float imu_health; // Metric based on accel gain deweighting
int G_Dt_max; // Max main loop cycle time in milliseconds
byte gyro_sat_count;
byte adc_constraints;
byte renorm_sqrt_count;
byte renorm_blowup_count;
int gps_fix_count;
byte gcs_messages_sent;
// GCS
// ---
char GCS_buffer[53];
char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed
// System Timers
// --------------
unsigned long fast_loopTimer; // Time in miliseconds of main control loop
unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete
uint8_t delta_ms_fast_loop; // Delta Time in miliseconds
int mainLoop_count;
unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop
byte medium_loopCounter; // Counters for branching from main control loop to slower loops
uint8_t delta_ms_medium_loop;
byte slow_loopCounter;
int superslow_loopCounter;
byte fbw_timer; // for limiting the execution of FBW input
//unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav
unsigned long nav2_loopTimer; // used to track the elapsed ime for GPS nav
//unsigned long dTnav; // Delta Time in milliseconds for navigation computations
unsigned long dTnav2; // Delta Time in milliseconds for navigation computations
unsigned long elapsedTime; // for doing custom events
float load; // % MCU cycles used
byte counter_one_herz;
byte GPS_failure_counter = 3;
bool GPS_disabled = false;
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
void setup() {
init_ardupilot();
}
void loop()
{
// We want this to execute at 100Hz
// --------------------------------
if (millis() - fast_loopTimer > 9) {
delta_ms_fast_loop = millis() - fast_loopTimer;
fast_loopTimer = millis();
load = float(fast_loopTimeStamp - fast_loopTimer) / delta_ms_fast_loop;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();
fast_loopTimeStamp = millis();
}
if (millis() - medium_loopTimer > 19) {
delta_ms_medium_loop = millis() - medium_loopTimer;
medium_loopTimer = millis();
medium_loop();
counter_one_herz++;
if(counter_one_herz == 50){
super_slow_loop();
counter_one_herz = 0;
}
if (millis() - perf_mon_timer > 20000) {
if (mainLoop_count != 0) {
gcs.send_message(MSG_PERF_REPORT);
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
resetPerfData();
}
}
}
}
// Main loop 50-100Hz
void fast_loop()
{
// IMU DCM Algorithm
read_AHRS();
// This is the fast loop - we want it to execute at >= 100Hz
// ---------------------------------------------------------
if (delta_ms_fast_loop > G_Dt_max)
G_Dt_max = delta_ms_fast_loop;
// custom code/exceptions for flight modes
// ---------------------------------------
update_current_flight_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK
// HIL for a copter needs very fast update of the servo values
gcs.send_message(MSG_RADIO_OUT);
#endif
}
void medium_loop()
{
// Read radio
// ----------
read_radio(); // read the radio first
// reads all of the necessary trig functions for cameras, throttle, etc.
update_trig();
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS and Compass
//-----------------------------------------
case 0:
medium_loopCounter++;
if(GPS_failure_counter > 0){
update_GPS();
}else if(GPS_failure_counter == 0){
GPS_disabled = true;
}
//readCommands();
if(g.compass_enabled){
compass.read(); // Read magnetometer
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading
compass.null_offsets(dcm.get_dcm_matrix());
}
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
// calc pitch and roll to target
// -----------------------------
dTnav2 = millis() - nav2_loopTimer;
nav2_loopTimer = millis();
// hack to stop navigation in Simple mode
if (control_mode == SIMPLE)
break;
if (control_mode == FBW)
break;
// Auto control modes:
if(g_gps->new_data){
g_gps->new_data = false;
// we are not tracking I term on navigation, so this isn't needed
//dTnav = millis() - nav_loopTimer;
//nav_loopTimer = millis();
// calculate the copter's desired bearing and WP distance
// ------------------------------------------------------
navigate();
}
// we call these regardless of GPS because of the rapid nature of the yaw sensor
// -----------------------------------------------------------------------------
if(wp_distance < 800){ // 8 meters
calc_loiter_nav();
}else{
calc_waypoint_nav();
}
break;
// command processing
//-------------------
case 2:
medium_loopCounter++;
// Read altitude from sensors
// --------------------------
update_alt();
// perform next command
// --------------------
if(control_mode == AUTO || control_mode == GCS_AUTO){
update_commands();
}
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED && (g.log_bitmask & MASK_LOG_ATTITUDE_FAST == 0))
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor);
#if HIL_MODE != HIL_MODE_ATTITUDE
if (g.log_bitmask & MASK_LOG_CTUN)
Log_Write_Control_Tuning();
#endif
if (g.log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
if (g.log_bitmask & MASK_LOG_GPS){
if(home_is_set){
Log_Write_GPS(g_gps->time,
current_loc.lat,
current_loc.lng,
g_gps->altitude,
current_loc.alt,
(long)g_gps->ground_speed,
g_gps->ground_course,
g_gps->fix,
g_gps->num_sats);
}
}
// XXX this should be a "GCS medium loop" interface
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
gcs.data_stream_send(5,45);
// send all requested output streams with rates requested
// between 5 and 45 Hz
#else
gcs.send_message(MSG_ATTITUDE); // Sends attitude data
#endif
break;
// This case controls the slow loop
//---------------------------------
case 4:
medium_loopCounter = 0;
if (g.current_enabled){
read_current();
}
// Accel trims = hold > 2 seconds
// Throttle cruise = switch less than 1 second
// --------------------------------------------
read_trim_switch();
// Check for engine arming
// -----------------------
arm_motors();
slow_loop();
break;
default:
// this is just a catch all
// ------------------------
medium_loopCounter = 0;
break;
}
// stuff that happens at 50 hz
// ---------------------------
// use Yaw to find our bearing error
calc_bearing_error();
// guess how close we are - fixed observer calc
//calc_distance_error();
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor);
#if HIL_MODE != HIL_MODE_ATTITUDE
if (g.log_bitmask & MASK_LOG_RAW)
Log_Write_Raw();
#endif
#if GCS_PROTOCOL == 6 // This is here for Benjamin Pelletier. Please do not remove without checking with me. Doug W
readgcsinput();
#endif
#if ENABLE_CAM
camera_stabilization();
#endif
// kick the GCS to process uplink data
gcs.update();
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
gcs.data_stream_send(45,1000);
#endif
}
void slow_loop()
{
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter){
case 0:
slow_loopCounter++;
superslow_loopCounter++;
if(superslow_loopCounter > 1400){ // every 7 minutes
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.rc_3.control_in == 0 && g.compass_enabled){
compass.save_offsets();
superslow_loopCounter = 0;
}
#endif
}
break;
case 1:
slow_loopCounter++;
// Read 3-position switch on radio
// -------------------------------
read_control_switch();
// Read main battery voltage if hooked up - does not read the 5v from radio
// ------------------------------------------------------------------------
#if BATTERY_EVENT == 1
read_battery();
#endif
break;
case 2:
slow_loopCounter = 0;
update_events();
// blink if we are armed
update_motor_light();
// XXX this should be a "GCS slow loop" interface
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
gcs.data_stream_send(1,5);
// send all requested output streams with rates requested
// between 1 and 5 Hz
#else
gcs.send_message(MSG_LOCATION);
#endif
break;
default:
slow_loopCounter = 0;
break;
}
}
// 1Hz loop
void super_slow_loop()
{
if (g.log_bitmask & MASK_LOG_CUR)
Log_Write_Current();
gcs.send_message(MSG_HEARTBEAT); // XXX This is running at 3 1/3 Hz instead of 1 Hz
// gcs.send_message(MSG_CPU_LOAD, load*100);
}
void update_GPS(void)
{
g_gps->update();
update_GPS_light();
if (g_gps->new_data && g_gps->fix) {
GPS_failure_counter = 3;
// XXX We should be sending GPS data off one of the regular loops so that we send
// no-GPS-fix data too
#if GCS_PROTOCOL != GCS_PROTOCOL_MAVLINK
gcs.send_message(MSG_LOCATION);
#endif
// for performance
// ---------------
gps_fix_count++;
if(ground_start_count > 1){
ground_start_count--;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
SendDebugln("!! bad loc");
ground_start_count = 5;
}else{
//Serial.printf("init Home!");
if (g.log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
// reset our nav loop timer
//nav_loopTimer = millis();
init_home();
// init altitude
current_loc.alt = g_gps->altitude;
ground_start_count = 0;
}
}
current_loc.lng = g_gps->longitude; // Lon * 10 * *7
current_loc.lat = g_gps->latitude; // Lat * 10 * *7
}else{
if(GPS_failure_counter > 0)
GPS_failure_counter--;
}
}
void update_current_flight_mode(void)
{
if(control_mode == AUTO){
switch(command_must_ID){
//case MAV_CMD_NAV_TAKEOFF:
// break;
//case MAV_CMD_NAV_LAND:
// break;
default:
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
auto_yaw();
// mix in user control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
// apply throttle control
output_auto_throttle();
break;
}
}else{
switch(control_mode){
case ACRO:
// clear any AP naviagtion values
nav_pitch = 0;
nav_roll = 0;
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// Yaw control
output_manual_yaw();
// apply throttle control
output_manual_throttle();
// mix in user control
control_nav_mixer();
// perform rate or stabilzation
// ----------------------------
// Roll control
if(abs(g.rc_1.control_in) >= ACRO_RATE_TRIGGER){
output_rate_roll(); // rate control yaw
}else{
output_stabilize_roll(); // hold yaw
}
// Roll control
if(abs(g.rc_2.control_in) >= ACRO_RATE_TRIGGER){
output_rate_pitch(); // rate control yaw
}else{
output_stabilize_pitch(); // hold yaw
}
break;
//case LOITER:
case STABILIZE:
// clear any AP naviagtion values
nav_pitch = 0;
nav_roll = 0;
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// Yaw control
output_manual_yaw();
// apply throttle control
output_manual_throttle();
// mix in user control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
case SIMPLE:
fbw_timer++;
// 25 hz
if(fbw_timer > 4){
fbw_timer = 0;
current_loc.lat = 0;
current_loc.lng = 0;
next_WP.lng = (float)g.rc_1.control_in *.4; // X: 4500 / 2 = 2250 = 25 meteres
next_WP.lat = -((float)g.rc_2.control_in *.4); // Y: 4500 / 2 = 2250 = 25 meteres
// calc a new bearing
nav_bearing = get_bearing(&current_loc, &next_WP) + initial_simple_bearing;
nav_bearing = wrap_360(nav_bearing);
wp_distance = get_distance(&current_loc, &next_WP);
calc_bearing_error();
/*
Serial.printf("lat: %ld lon:%ld, bear:%ld, dist:%ld, init:%ld, err:%ld ",
next_WP.lat,
next_WP.lng,
nav_bearing,
wp_distance,
initial_simple_bearing,
bearing_error);
*/
// get nav_pitch and nav_roll
calc_waypoint_nav();
}
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// Yaw control
output_manual_yaw();
// apply throttle control
output_manual_throttle();
// apply nav_pitch and nav_roll to output
fbw_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
case FBW:
// we are currently using manual throttle during alpha testing.
fbw_timer++;
// 10 hz
if(fbw_timer > 10){
fbw_timer = 0;
if(GPS_disabled){
current_loc.lat = home.lat = 0;
current_loc.lng = home.lng = 0;
}
next_WP.lng = home.lng + g.rc_1.control_in / 2; // X: 4500 / 2 = 2250 = 25 meteres
next_WP.lat = home.lat - g.rc_2.control_in / 2; // Y: 4500 / 2 = 2250 = 25 meteres
calc_loiter_nav();
}
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// REMOVE AFTER TESTING !!!
//nav_yaw = dcm.yaw_sensor;
// Yaw control
output_manual_yaw();
// apply throttle control
output_manual_throttle();
// apply nav_pitch and nav_roll to output
fbw_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
case ALT_HOLD:
// clear any AP naviagtion values
nav_pitch = 0;
nav_roll = 0;
//if(g.rc_3.control_in)
// get desired height from the throttle
next_WP.alt = home.alt + (g.rc_3.control_in); // 0 - 1000 (40 meters)
next_WP.alt = max(next_WP.alt, 30);
// !!! testing
//next_WP.alt -= 500;
// Yaw control
// -----------
output_manual_yaw();
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// apply throttle control
output_auto_throttle();
// mix in user control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
case RTL:
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
auto_yaw();
// apply throttle control
output_auto_throttle();
// mix in user control with Nav control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
case LOITER:
// Yaw control
// -----------
output_manual_yaw();
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// apply throttle control
output_auto_throttle();
// mix in user control with Nav control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
default:
//Serial.print("$");
break;
}
}
}
// called after a GPS read
void update_navigation()
{
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
// ------------------------------------------------------------------------
// distance and bearing calcs only
if(control_mode == AUTO || control_mode == GCS_AUTO){
verify_commands();
}else{
switch(control_mode){
case RTL:
update_crosstrack();
break;
}
}
}
void read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
dcm.update_DCM(G_Dt);
omega = dcm.get_gyro();
// Testing remove !!!
//dcm.pitch_sensor = 0;
//dcm.roll_sensor = 0;
}
void update_trig(void){
Vector2f yawvector;
Matrix3f temp = dcm.get_dcm_matrix();
yawvector.x = temp.a.x; // sin
yawvector.y = temp.b.x; // cos
yawvector.normalize();
cos_yaw_x = yawvector.y; // 0 x = north
sin_yaw_y = yawvector.x; // 1 y
sin_pitch_y = -temp.c.x;
cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x));
cos_roll_x = temp.c.z / cos_pitch_x;
sin_roll_y = temp.c.y / cos_pitch_x;
}
void update_alt()
{
#if HIL_MODE == HIL_MODE_ATTITUDE
current_loc.alt = g_gps->altitude;
#else
altitude_sensor = BARO;
baro_alt = read_barometer();
//Serial.printf("b_alt: %ld, home: %ld ", baro_alt, home.alt);
if(g.sonar_enabled){
// decide which sensor we're usings
sonar_alt = sonar.read();
if(baro_alt < 550){
altitude_sensor = SONAR;
}
if(sonar_alt > 600){
altitude_sensor = BARO;
}
//altitude_sensor = (target_altitude > (home.alt + 500)) ? BARO : SONAR;
if(altitude_sensor == BARO){
current_loc.alt = baro_alt + home.alt;
}else{
sonar_alt = min(sonar_alt, 600);
current_loc.alt = sonar_alt + home.alt;
}
}else{
// no sonar altitude
current_loc.alt = baro_alt + home.alt;
}
//Serial.printf("b_alt: %ld, home: %ld ", baro_alt, home.alt);
#endif
// altitude smoothing
// ------------------
calc_altitude_smoothing_error();
//calc_altitude_error();
// Amount of throttle to apply for hovering
// ----------------------------------------
calc_nav_throttle();
}