Ardupilot2/ArduPlane/GCS_Mavlink.cpp

1525 lines
51 KiB
C++
Raw Normal View History

#include "GCS_Mavlink.h"
2015-05-13 03:09:36 -03:00
#include "Plane.h"
2019-03-01 02:27:53 -04:00
MAV_TYPE GCS_Plane::frame_type() const
{
return plane.quadplane.get_mav_type();
}
MAV_MODE GCS_MAVLINK_Plane::base_mode() const
{
2018-04-03 11:35:37 -03:00
uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (plane.control_mode->mode_number()) {
case Mode::Number::MANUAL:
case Mode::Number::TRAINING:
case Mode::Number::ACRO:
case Mode::Number::QACRO:
2018-04-03 11:35:37 -03:00
_base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case Mode::Number::STABILIZE:
case Mode::Number::FLY_BY_WIRE_A:
case Mode::Number::AUTOTUNE:
case Mode::Number::FLY_BY_WIRE_B:
case Mode::Number::QSTABILIZE:
case Mode::Number::QHOVER:
case Mode::Number::QLOITER:
case Mode::Number::QLAND:
case Mode::Number::CRUISE:
case Mode::Number::QAUTOTUNE:
2018-04-03 11:35:37 -03:00
_base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
break;
case Mode::Number::AUTO:
case Mode::Number::RTL:
case Mode::Number::LOITER:
case Mode::Number::AVOID_ADSB:
case Mode::Number::GUIDED:
case Mode::Number::CIRCLE:
case Mode::Number::TAKEOFF:
case Mode::Number::QRTL:
2018-04-03 11:35:37 -03:00
_base_mode = MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case Mode::Number::INITIALISING:
break;
}
if (!plane.training_manual_pitch || !plane.training_manual_roll) {
2018-04-03 11:35:37 -03:00
_base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (plane.control_mode != &plane.mode_manual && plane.control_mode != &plane.mode_initializing) {
// stabiliser of some form is enabled
2018-04-03 11:35:37 -03:00
_base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (plane.g.stick_mixing != STICK_MIXING_DISABLED && plane.control_mode != &plane.mode_initializing) {
if ((plane.g.stick_mixing != STICK_MIXING_VTOL_YAW) || (plane.control_mode == &plane.mode_auto)) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
}
#if HIL_SUPPORT
if (plane.g.hil_mode == 1) {
2018-04-03 11:35:37 -03:00
_base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
}
#endif
// we are armed if we are not initialising
if (plane.control_mode != &plane.mode_initializing && plane.arming.is_armed()) {
2018-04-03 11:35:37 -03:00
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
2018-04-03 11:35:37 -03:00
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
2018-04-03 11:35:37 -03:00
return (MAV_MODE)_base_mode;
}
2019-03-01 02:27:53 -04:00
uint32_t GCS_Plane::custom_mode() const
{
return plane.control_mode->mode_number();
}
MAV_STATE GCS_MAVLINK_Plane::vehicle_system_status() const
{
if (plane.control_mode == &plane.mode_initializing) {
return MAV_STATE_CALIBRATING;
}
if (plane.any_failsafe_triggered()) {
return MAV_STATE_CRITICAL;
}
if (plane.crash_state.is_crashed) {
return MAV_STATE_EMERGENCY;
}
if (plane.is_flying()) {
return MAV_STATE_ACTIVE;
}
return MAV_STATE_STANDBY;
}
void GCS_MAVLINK_Plane::send_attitude() const
{
const AP_AHRS &ahrs = AP::ahrs();
float r = ahrs.roll;
float p = ahrs.pitch - radians(plane.g.pitch_trim_cd*0.01f);
float y = ahrs.yaw;
if (plane.quadplane.in_vtol_mode()) {
r = plane.quadplane.ahrs_view->roll;
p = plane.quadplane.ahrs_view->pitch;
y = plane.quadplane.ahrs_view->yaw;
}
const Vector3f &omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
r,
p,
y,
omega.x,
omega.y,
omega.z);
}
void GCS_MAVLINK_Plane::send_aoa_ssa()
{
AP_AHRS &ahrs = AP::ahrs();
mavlink_msg_aoa_ssa_send(
chan,
micros(),
ahrs.getAOA(),
ahrs.getSSA());
}
#if GEOFENCE_ENABLED == ENABLED
2015-05-13 03:09:36 -03:00
void Plane::send_fence_status(mavlink_channel_t chan)
{
geofence_send_status(chan);
}
#endif
void GCS_MAVLINK_Plane::send_nav_controller_output() const
{
if (plane.control_mode == &plane.mode_manual) {
return;
}
const QuadPlane &quadplane = plane.quadplane;
if (quadplane.in_vtol_mode()) {
const Vector3f &targets = quadplane.attitude_control->get_att_target_euler_cd();
bool wp_nav_valid = quadplane.using_wp_nav();
mavlink_msg_nav_controller_output_send(
chan,
targets.x * 1.0e-2f,
targets.y * 1.0e-2f,
targets.z * 1.0e-2f,
wp_nav_valid ? quadplane.wp_nav->get_wp_bearing_to_destination() : 0,
wp_nav_valid ? MIN(quadplane.wp_nav->get_wp_distance_to_destination(), UINT16_MAX) : 0,
(plane.control_mode != &plane.mode_qstabilize) ? quadplane.pos_control->get_alt_error() * 1.0e-2f : 0,
plane.airspeed_error * 100,
wp_nav_valid ? quadplane.wp_nav->crosstrack_error() : 0);
} else {
const AP_Navigation *nav_controller = plane.nav_controller;
mavlink_msg_nav_controller_output_send(
chan,
plane.nav_roll_cd * 0.01f,
plane.nav_pitch_cd * 0.01f,
nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f,
MIN(plane.auto_state.wp_distance, UINT16_MAX),
plane.altitude_error_cm * 0.01f,
plane.airspeed_error * 100,
nav_controller->crosstrack_error());
}
}
void GCS_MAVLINK_Plane::send_position_target_global_int()
{
if (plane.control_mode == &plane.mode_manual) {
return;
}
Location &next_WP_loc = plane.next_WP_loc;
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL, // targets are always global altitude
0xFFF8, // ignore everything except the x/y/z components
next_WP_loc.lat, // latitude as 1e7
next_WP_loc.lng, // longitude as 1e7
next_WP_loc.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
2015-05-13 03:09:36 -03:00
void Plane::send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with
// HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
2016-10-22 07:27:57 -03:00
10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_aileron) / 4500.0f),
10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_elevator) / 4500.0f),
10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) / 100.0f),
10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / 4500.0f),
0,
0,
0,
0,
rssi.read_receiver_rssi_uint8());
}
2018-01-28 18:59:58 -04:00
float GCS_MAVLINK_Plane::vfr_hud_airspeed() const
{
2018-01-28 18:59:58 -04:00
// airspeed sensors are best. While the AHRS airspeed_estimate
// will use an airspeed sensor, that value is constrained by the
// ground speed. When reporting we should send the true airspeed
// value if possible:
if (plane.airspeed.enabled() && plane.airspeed.healthy()) {
2018-01-28 18:59:58 -04:00
return plane.airspeed.get_airspeed();
}
// airspeed estimates are OK:
float aspeed;
if (AP::ahrs().airspeed_estimate(aspeed)) {
2018-01-28 18:59:58 -04:00
return aspeed;
}
2018-01-28 18:59:58 -04:00
// lying is worst:
return 0;
}
int16_t GCS_MAVLINK_Plane::vfr_hud_throttle() const
{
2019-10-31 19:35:13 -03:00
return plane.throttle_percentage();
2018-01-28 18:59:58 -04:00
}
float GCS_MAVLINK_Plane::vfr_hud_climbrate() const
{
#if SOARING_ENABLED == ENABLED
if (plane.g2.soaring_controller.is_active()) {
2018-01-28 18:59:58 -04:00
return plane.g2.soaring_controller.get_vario_reading();
}
#endif
2018-01-28 18:59:58 -04:00
return AP::baro().get_climb_rate();
}
/*
keep last HIL_STATE message to allow sending SIM_STATE
*/
#if HIL_SUPPORT
static mavlink_hil_state_t last_hil_state;
#endif
// report simulator state
2018-01-28 19:02:58 -04:00
void GCS_MAVLINK_Plane::send_simstate() const
{
2015-05-04 03:18:55 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
2018-01-28 19:02:58 -04:00
GCS_MAVLINK::send_simstate();
#elif HIL_SUPPORT
2018-01-28 19:02:58 -04:00
if (plane.g.hil_mode == 1) {
mavlink_msg_simstate_send(chan,
last_hil_state.roll,
last_hil_state.pitch,
last_hil_state.yaw,
last_hil_state.xacc*0.001f*GRAVITY_MSS,
last_hil_state.yacc*0.001f*GRAVITY_MSS,
last_hil_state.zacc*0.001f*GRAVITY_MSS,
last_hil_state.rollspeed,
last_hil_state.pitchspeed,
last_hil_state.yawspeed,
last_hil_state.lat,
last_hil_state.lon);
}
#endif
}
void GCS_MAVLINK_Plane::send_wind() const
2012-08-11 02:57:13 -03:00
{
const Vector3f wind = AP::ahrs().wind_estimate();
2012-08-11 02:57:13 -03:00
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)), // use negative, to give
// direction wind is coming from
2012-12-18 22:36:00 -04:00
wind.length(),
2012-08-11 02:57:13 -03:00
wind.z);
}
// sends a single pid info over the provided channel
void GCS_MAVLINK_Plane::send_pid_info(const AP_Logger::PID_Info *pid_info,
const uint8_t axis, const float achieved)
{
if (pid_info == nullptr) {
return;
}
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
mavlink_msg_pid_tuning_send(chan, axis,
pid_info->target,
achieved,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
}
/*
send PID tuning message
*/
void GCS_MAVLINK_Plane::send_pid_tuning()
{
if (plane.control_mode == &plane.mode_manual) {
// no PIDs should be used in manual
return;
}
const Parameters &g = plane.g;
const AP_Logger::PID_Info *pid_info;
if (g.gcs_pid_mask & TUNING_BITS_ROLL) {
if (plane.quadplane.in_vtol_mode()) {
pid_info = &plane.quadplane.attitude_control->get_rate_roll_pid().get_pid_info();
2016-02-28 23:10:20 -04:00
} else {
pid_info = &plane.rollController.get_pid_info();
2016-02-28 23:10:20 -04:00
}
2020-05-18 09:11:34 -03:00
send_pid_info(pid_info, PID_TUNING_ROLL, pid_info->actual);
}
if (g.gcs_pid_mask & TUNING_BITS_PITCH) {
if (plane.quadplane.in_vtol_mode()) {
pid_info = &plane.quadplane.attitude_control->get_rate_pitch_pid().get_pid_info();
2016-02-28 23:10:20 -04:00
} else {
pid_info = &plane.pitchController.get_pid_info();
2016-02-28 23:10:20 -04:00
}
2020-05-18 09:11:34 -03:00
send_pid_info(pid_info, PID_TUNING_PITCH, pid_info->actual);
}
if (g.gcs_pid_mask & TUNING_BITS_YAW) {
if (plane.quadplane.in_vtol_mode()) {
pid_info = &plane.quadplane.attitude_control->get_rate_yaw_pid().get_pid_info();
2016-02-28 23:10:20 -04:00
} else {
pid_info = &plane.yawController.get_pid_info();
2016-02-28 23:10:20 -04:00
}
2020-05-18 09:11:34 -03:00
send_pid_info(pid_info, PID_TUNING_YAW, pid_info->actual);
}
if (g.gcs_pid_mask & TUNING_BITS_STEER) {
2020-05-18 09:11:34 -03:00
pid_info = &plane.steerController.get_pid_info();
send_pid_info(pid_info, PID_TUNING_STEER, pid_info->actual);
}
if ((g.gcs_pid_mask & TUNING_BITS_LAND) && (plane.flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND)) {
2020-05-18 09:11:34 -03:00
AP_AHRS &ahrs = AP::ahrs();
const Vector3f &gyro = ahrs.get_gyro();
send_pid_info(plane.landing.get_pid_info(), PID_TUNING_LANDING, degrees(gyro.z));
}
if (g.gcs_pid_mask & TUNING_BITS_ACCZ && plane.quadplane.in_vtol_mode()) {
pid_info = &plane.quadplane.pos_control->get_accel_z_pid().get_pid_info();
2020-05-18 09:11:34 -03:00
send_pid_info(pid_info, PID_TUNING_ACCZ, pid_info->actual);
2018-11-11 19:22:28 -04:00
}
}
uint8_t GCS_MAVLINK_Plane::sysid_my_gcs() const
{
return plane.g.sysid_my_gcs;
}
bool GCS_MAVLINK_Plane::sysid_enforce() const
{
return plane.g2.sysid_enforce;
}
uint32_t GCS_MAVLINK_Plane::telem_delay() const
{
return (uint32_t)(plane.g.telem_delay);
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK_Plane::try_send_message(enum ap_message id)
{
switch (id) {
case MSG_SERVO_OUT:
#if HIL_SUPPORT
2015-05-13 03:09:36 -03:00
if (plane.g.hil_mode == 1) {
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
2015-05-13 03:09:36 -03:00
plane.send_servo_out(chan);
}
#endif
break;
case MSG_FENCE_STATUS:
#if GEOFENCE_ENABLED == ENABLED
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
2015-05-13 03:09:36 -03:00
plane.send_fence_status(chan);
#endif
break;
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
2015-05-13 03:09:36 -03:00
plane.terrain.send_request(chan);
#endif
break;
2012-08-11 02:57:13 -03:00
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
send_wind();
2012-08-11 02:57:13 -03:00
break;
2016-06-15 17:57:48 -03:00
case MSG_ADSB_VEHICLE:
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
plane.adsb.send_adsb_vehicle(chan);
break;
2018-05-02 05:11:10 -03:00
case MSG_AOA_SSA:
CHECK_PAYLOAD_SIZE(AOA_SSA);
send_aoa_ssa();
break;
2017-04-13 03:58:05 -03:00
case MSG_LANDING:
plane.landing.send_landing_message(chan);
break;
default:
return GCS_MAVLINK::try_send_message(id);
2012-08-21 23:19:51 -03:00
}
return true;
}
2013-02-19 19:08:49 -04:00
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 10),
2016-06-15 17:57:48 -03:00
// @Param: ADSB
// @DisplayName: ADSB stream rate to ground station
// @Description: ADSB stream rate to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("ADSB", 9, GCS_MAVLINK_Parameters, streamRates[9], 5),
2012-02-12 04:20:56 -04:00
AP_GROUPEND
};
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
MSG_RAW_IMU,
MSG_SCALED_IMU2,
MSG_SCALED_IMU3,
MSG_SCALED_PRESSURE,
MSG_SCALED_PRESSURE2,
MSG_SCALED_PRESSURE3,
MSG_SENSOR_OFFSETS
2017-08-21 02:53:45 -03:00
};
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
MSG_SYS_STATUS,
MSG_POWER_STATUS,
MSG_MEMINFO,
2017-08-21 02:53:45 -03:00
MSG_CURRENT_WAYPOINT,
MSG_GPS_RAW,
MSG_GPS_RTK,
MSG_GPS2_RAW,
MSG_GPS2_RTK,
MSG_NAV_CONTROLLER_OUTPUT,
MSG_FENCE_STATUS,
MSG_POSITION_TARGET_GLOBAL_INT,
};
static const ap_message STREAM_POSITION_msgs[] = {
2017-08-21 02:53:45 -03:00
MSG_LOCATION,
MSG_LOCAL_POSITION
};
static const ap_message STREAM_RAW_CONTROLLER_msgs[] = {
2017-08-21 02:53:45 -03:00
MSG_SERVO_OUT,
};
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
2017-08-21 02:53:45 -03:00
MSG_SERVO_OUTPUT_RAW,
MSG_RC_CHANNELS,
MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection
2017-08-21 02:53:45 -03:00
};
static const ap_message STREAM_EXTRA1_msgs[] = {
2017-08-21 02:53:45 -03:00
MSG_ATTITUDE,
MSG_SIMSTATE,
MSG_AHRS2,
2017-08-21 02:53:45 -03:00
MSG_RPM,
MSG_AOA_SSA,
MSG_PID_TUNING,
MSG_LANDING,
MSG_ESC_TELEMETRY,
2019-11-09 04:55:05 -04:00
MSG_EFI_STATUS,
2017-08-21 02:53:45 -03:00
};
static const ap_message STREAM_EXTRA2_msgs[] = {
2017-08-21 02:53:45 -03:00
MSG_VFR_HUD
};
static const ap_message STREAM_EXTRA3_msgs[] = {
2017-08-21 02:53:45 -03:00
MSG_AHRS,
MSG_HWSTATUS,
MSG_WIND,
MSG_RANGEFINDER,
MSG_DISTANCE_SENSOR,
2017-08-21 02:53:45 -03:00
MSG_SYSTEM_TIME,
#if AP_TERRAIN_AVAILABLE
2017-08-21 02:53:45 -03:00
MSG_TERRAIN,
#endif
2017-08-21 02:53:45 -03:00
MSG_BATTERY2,
MSG_BATTERY_STATUS,
MSG_MOUNT_STATUS,
MSG_OPTICAL_FLOW,
MSG_GIMBAL_REPORT,
MSG_MAG_CAL_REPORT,
MSG_MAG_CAL_PROGRESS,
MSG_EKF_STATUS_REPORT,
MSG_VIBRATION,
};
static const ap_message STREAM_PARAMS_msgs[] = {
MSG_NEXT_PARAM
};
static const ap_message STREAM_ADSB_msgs[] = {
2017-08-21 02:53:45 -03:00
MSG_ADSB_VEHICLE
};
2016-06-15 17:57:48 -03:00
2017-08-21 02:53:45 -03:00
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
MAV_STREAM_ENTRY(STREAM_POSITION),
MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER),
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
MAV_STREAM_ENTRY(STREAM_EXTRA1),
MAV_STREAM_ENTRY(STREAM_EXTRA2),
MAV_STREAM_ENTRY(STREAM_EXTRA3),
MAV_STREAM_ENTRY(STREAM_PARAMS),
2017-08-21 02:53:45 -03:00
MAV_STREAM_ENTRY(STREAM_ADSB),
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
};
2016-06-15 17:57:48 -03:00
2017-08-21 02:53:45 -03:00
bool GCS_MAVLINK_Plane::in_hil_mode() const
{
#if HIL_SUPPORT
return plane.g.hil_mode == 1;
#endif
return false;
}
2014-03-18 19:59:51 -03:00
/*
handle a request to switch to guided mode. This happens via a
callback from handle_mission_item()
*/
bool GCS_MAVLINK_Plane::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
if (plane.control_mode != &plane.mode_guided) {
// only accept position updates when in GUIDED mode
return false;
}
2015-05-13 03:09:36 -03:00
plane.guided_WP_loc = cmd.content.location;
2014-03-18 19:59:51 -03:00
// add home alt if needed
if (plane.guided_WP_loc.relative_alt) {
2015-05-13 03:09:36 -03:00
plane.guided_WP_loc.alt += plane.home.alt;
plane.guided_WP_loc.relative_alt = 0;
2014-03-18 19:59:51 -03:00
}
2015-05-13 03:09:36 -03:00
plane.set_guided_WP();
return true;
2014-03-18 19:59:51 -03:00
}
/*
handle a request to change current WP altitude. This happens via a
callback from handle_mission_item()
*/
void GCS_MAVLINK_Plane::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
2014-03-18 19:59:51 -03:00
{
2015-05-13 03:09:36 -03:00
plane.next_WP_loc.alt = cmd.content.location.alt;
if (cmd.content.location.relative_alt) {
2015-05-13 03:09:36 -03:00
plane.next_WP_loc.alt += plane.home.alt;
2014-03-18 19:59:51 -03:00
}
plane.next_WP_loc.relative_alt = false;
plane.next_WP_loc.terrain_alt = cmd.content.location.terrain_alt;
2015-05-13 03:09:36 -03:00
plane.reset_offset_altitude();
2014-03-18 19:59:51 -03:00
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
plane.in_calibration = true;
MAV_RESULT ret = GCS_MAVLINK::handle_command_preflight_calibration(packet);
plane.in_calibration = false;
return ret;
}
MAV_RESULT GCS_MAVLINK_Plane::_handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
if (is_equal(packet.param4,1.0f)) {
if (plane.trim_radio()) {
return MAV_RESULT_ACCEPTED;
} else {
return MAV_RESULT_FAILED;
}
}
return GCS_MAVLINK::_handle_command_preflight_calibration(packet);
}
void GCS_MAVLINK_Plane::packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg)
{
plane.avoidance_adsb.handle_msg(msg);
GCS_MAVLINK::packetReceived(status, msg);
}
bool GCS_MAVLINK_Plane::set_home_to_current_location(bool _lock)
{
if (!plane.set_home_persistently(AP::gps().location())) {
return false;
}
if (_lock) {
AP::ahrs().lock_home();
}
return true;
}
bool GCS_MAVLINK_Plane::set_home(const Location& loc, bool _lock)
{
if (!AP::ahrs().set_home(loc)) {
return false;
}
if (_lock) {
AP::ahrs().lock_home();
}
return true;
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_do_reposition(const mavlink_command_int_t &packet)
{
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
return MAV_RESULT_FAILED;
}
Location requested_position {};
requested_position.lat = packet.x;
requested_position.lng = packet.y;
// check the floating representation for overflow of altitude
if (fabsf(packet.z * 100.0f) >= 0x7fffff) {
return MAV_RESULT_FAILED;
}
requested_position.alt = (int32_t)(packet.z * 100.0f);
// load option flags
if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
requested_position.relative_alt = 1;
}
else if (packet.frame == MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) {
requested_position.terrain_alt = 1;
}
else if (packet.frame != MAV_FRAME_GLOBAL_INT &&
packet.frame != MAV_FRAME_GLOBAL) {
// not a supported frame
return MAV_RESULT_FAILED;
}
if (is_zero(packet.param4)) {
requested_position.loiter_ccw = 0;
} else {
requested_position.loiter_ccw = 1;
}
if (requested_position.sanitize(plane.current_loc)) {
// if the location wasn't already sane don't load it
return MAV_RESULT_FAILED; // failed as the location is not valid
}
// location is valid load and set
if (((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) ||
(plane.control_mode == &plane.mode_guided)) {
plane.set_mode(plane.mode_guided, ModeReason::GCS_COMMAND);
plane.guided_WP_loc = requested_position;
// add home alt if needed
if (plane.guided_WP_loc.relative_alt) {
plane.guided_WP_loc.alt += plane.home.alt;
plane.guided_WP_loc.relative_alt = 0;
}
plane.set_guided_WP();
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
// these are GUIDED mode commands that are RATE or slew enabled, so you can have more powerful control than default controls.
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_guided_slew_commands(const mavlink_command_int_t &packet)
{
switch(packet.command) {
#if OFFBOARD_GUIDED == ENABLED
case MAV_CMD_GUIDED_CHANGE_SPEED: {
// command is only valid in guided mode
if (plane.control_mode != &plane.mode_guided) {
return MAV_RESULT_FAILED;
}
// only airspeed commands are supported right now...
if (int(packet.param1) != SPEED_TYPE_AIRSPEED) { // since SPEED_TYPE is int in range 0-1 and packet.param1 is a *float* this works.
return MAV_RESULT_DENIED;
}
// reject airspeeds that are outside of the tuning envelope
if (packet.param2 > plane.aparm.airspeed_max || packet.param2 < plane.aparm.airspeed_min) {
return MAV_RESULT_DENIED;
}
// no need to process any new packet/s with the
// same airspeed any further, if we are already doing it.
float new_target_airspeed_cm = packet.param2 * 100;
if ( is_equal(new_target_airspeed_cm,plane.guided_state.target_airspeed_cm)) {
return MAV_RESULT_ACCEPTED;
}
plane.guided_state.target_airspeed_cm = new_target_airspeed_cm;
plane.guided_state.target_airspeed_time_ms = AP_HAL::millis();
if (is_zero(packet.param3)) {
// the user wanted /maximum acceleration, pick a large value as close enough
plane.guided_state.target_airspeed_accel = 1000.0f;
} else {
plane.guided_state.target_airspeed_accel = fabsf(packet.param3);
}
// assign an acceleration direction
if (plane.guided_state.target_airspeed_cm < plane.target_airspeed_cm) {
plane.guided_state.target_airspeed_accel *= -1.0f;
}
return MAV_RESULT_ACCEPTED;
}
case MAV_CMD_GUIDED_CHANGE_ALTITUDE: {
// command is only valid in guided
if (plane.control_mode != &plane.mode_guided) {
return MAV_RESULT_FAILED;
}
// disallow default value of -1 and dangerous value of zero
if (is_equal(packet.z, -1.0f) || is_equal(packet.z, 0.0f)){
return MAV_RESULT_DENIED;
}
// the requested alt data might be relative or absolute
float new_target_alt = packet.z * 100;
float new_target_alt_rel = packet.z * 100 + plane.home.alt;
// only global/relative/terrain frames are supported
switch(packet.frame) {
case MAV_FRAME_GLOBAL_RELATIVE_ALT: {
if (is_equal(plane.guided_state.target_alt,new_target_alt_rel) ) { // compare two floats as near-enough
// no need to process any new packet/s with the same ALT any further, if we are already doing it.
return MAV_RESULT_ACCEPTED;
}
plane.guided_state.target_alt = new_target_alt_rel;
break;
}
case MAV_FRAME_GLOBAL: {
if (is_equal(plane.guided_state.target_alt,new_target_alt) ) { // compare two floats as near-enough
// no need to process any new packet/s with the same ALT any further, if we are already doing it.
return MAV_RESULT_ACCEPTED;
}
plane.guided_state.target_alt = new_target_alt;
break;
}
default:
// MAV_RESULT_DENIED means Command is invalid (is supported but has invalid parameters).
return MAV_RESULT_DENIED;
}
plane.guided_state.target_alt_frame = packet.frame;
plane.guided_state.last_target_alt = plane.current_loc.alt; // FIXME: Reference frame is not corrected for here
plane.guided_state.target_alt_time_ms = AP_HAL::millis();
if (is_zero(packet.param3)) {
// the user wanted /maximum acceleration, pick a large value as close enough
plane.guided_state.target_alt_accel = 1000.0;
} else {
plane.guided_state.target_alt_accel = fabsf(packet.param3);
}
// assign an acceleration direction
if (plane.guided_state.target_alt < plane.current_loc.alt) {
plane.guided_state.target_alt_accel *= -1.0f;
}
return MAV_RESULT_ACCEPTED;
}
case MAV_CMD_GUIDED_CHANGE_HEADING: {
// command is only valid in guided mode
if (plane.control_mode != &plane.mode_guided) {
return MAV_RESULT_FAILED;
}
// don't accept packets outside of [0-360] degree range
if (packet.param2 < 0.0f || packet.param2 >= 360.0f) {
return MAV_RESULT_DENIED;
}
float new_target_heading = radians(wrap_180(packet.param2));
// if packet is requesting us to go to the heading we are already going to, we-re already on it.
if ( (is_equal(new_target_heading,plane.guided_state.target_heading))) { // compare two floats as near-enough
return MAV_RESULT_ACCEPTED;
}
// course over ground
if ( int(packet.param1) == HEADING_TYPE_COURSE_OVER_GROUND) { // compare as nearest int
plane.guided_state.target_heading_type = GUIDED_HEADING_COG;
plane.prev_WP_loc = plane.current_loc;
// normal vehicle heading
} else if (int(packet.param1) == HEADING_TYPE_HEADING) { // compare as nearest int
plane.guided_state.target_heading_type = GUIDED_HEADING_HEADING;
} else {
// MAV_RESULT_DENIED means Command is invalid (is supported but has invalid parameters).
return MAV_RESULT_DENIED;
}
plane.g2.guidedHeading.reset_I();
plane.guided_state.target_heading = new_target_heading;
plane.guided_state.target_heading_accel_limit = MAX(packet.param3, 0.05f);
plane.guided_state.target_heading_time_ms = AP_HAL::millis();
return MAV_RESULT_ACCEPTED;
}
#endif // OFFBOARD_GUIDED == ENABLED
}
// anything else ...
return MAV_RESULT_UNSUPPORTED;
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_packet(const mavlink_command_int_t &packet)
{
plane.Log_Write_MavCmdI(packet);
switch(packet.command) {
case MAV_CMD_DO_REPOSITION:
return handle_command_int_do_reposition(packet);
// special 'slew-enabled' guided commands here... for speed,alt, and direction commands
case MAV_CMD_GUIDED_CHANGE_SPEED:
case MAV_CMD_GUIDED_CHANGE_ALTITUDE:
case MAV_CMD_GUIDED_CHANGE_HEADING:
return handle_command_int_guided_slew_commands(packet);
default:
return GCS_MAVLINK::handle_command_int_packet(packet);
}
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_long_packet(const mavlink_command_long_t &packet)
{
switch(packet.command) {
case MAV_CMD_DO_CHANGE_SPEED: {
// if we're in failsafe modes (e.g., RTL, LOITER) or in pilot
// controlled modes (e.g., MANUAL, TRAINING)
// this command should be ignored since it comes in from GCS
// or a companion computer:
if ((plane.control_mode != &plane.mode_guided) &&
(plane.control_mode != &plane.mode_auto) &&
(plane.control_mode != &plane.mode_avoidADSB)) {
// failed
return MAV_RESULT_FAILED;
}
AP_Mission::Mission_Command cmd;
if (AP_Mission::mavlink_cmd_long_to_mission_cmd(packet, cmd) == MAV_MISSION_ACCEPTED) {
plane.do_change_speed(cmd);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
case MAV_CMD_NAV_LOITER_UNLIM:
plane.set_mode(plane.mode_loiter, ModeReason::GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
plane.set_mode(plane.mode_rtl, ModeReason::GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_TAKEOFF: {
// user takeoff only works with quadplane code for now
// param7 : altitude [metres]
float takeoff_alt = packet.param7;
if (plane.quadplane.available() && plane.quadplane.do_user_takeoff(takeoff_alt)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
case MAV_CMD_MISSION_START:
plane.set_mode(plane.mode_auto, ModeReason::GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
case MAV_CMD_DO_LAND_START:
// attempt to switch to next DO_LAND_START command in the mission
if (plane.mission.jump_to_landing_sequence()) {
plane.set_mode(plane.mode_auto, ModeReason::UNKNOWN);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_GO_AROUND:
{
uint16_t mission_id = plane.mission.get_current_nav_cmd().id;
bool is_in_landing = (plane.flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) ||
(mission_id == MAV_CMD_NAV_LAND) ||
(mission_id == MAV_CMD_NAV_VTOL_LAND);
if (is_in_landing) {
// fly a user planned abort pattern if available
if (plane.mission.jump_to_abort_landing_sequence()) {
return MAV_RESULT_ACCEPTED;
}
// only fly a fixed wing abort if we aren't doing quadplane stuff, or potentially
// shooting a quadplane approach
if ((!plane.quadplane.available()) ||
((!plane.quadplane.in_vtol_auto()) &&
(!(plane.quadplane.options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH)))) {
// Initiate an aborted landing. This will trigger a pitch-up and
// climb-out to a safe altitude holding heading then one of the
// following actions will occur, check for in this order:
// - If MAV_CMD_CONTINUE_AND_CHANGE_ALT is next command in mission,
// increment mission index to execute it
// - else if DO_LAND_START is available, jump to it
// - else decrement the mission index to repeat the landing approach
if (!is_zero(packet.param1)) {
plane.auto_state.takeoff_altitude_rel_cm = packet.param1 * 100;
}
if (plane.landing.request_go_around()) {
plane.auto_state.next_wp_crosstrack = false;
return MAV_RESULT_ACCEPTED;
}
}
}
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_FENCE_ENABLE:
if (!plane.geofence_present()) {
gcs().send_text(MAV_SEVERITY_NOTICE,"Fence not configured");
return MAV_RESULT_FAILED;
}
switch((uint16_t)packet.param1) {
case 0:
if (! plane.geofence_set_enabled(false)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case 1:
if (! plane.geofence_set_enabled(true)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case 2: //disable fence floor only
if (! plane.geofence_set_floor_enabled(false)) {
return MAV_RESULT_FAILED;
}
gcs().send_text(MAV_SEVERITY_NOTICE,"Fence floor disabled");
return MAV_RESULT_ACCEPTED;
default:
break;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_SET_HOME: {
// param1 : use current (1=use current location, 0=use specified location)
// param5 : latitude
// param6 : longitude
// param7 : altitude (absolute)
if (is_equal(packet.param1,1.0f)) {
if (!plane.set_home_persistently(AP::gps().location())) {
return MAV_RESULT_FAILED;
}
AP::ahrs().lock_home();
return MAV_RESULT_ACCEPTED;
} else {
// ensure param1 is zero
if (!is_zero(packet.param1)) {
return MAV_RESULT_FAILED;
}
Location new_home_loc {};
new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
new_home_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (!set_home(new_home_loc, true)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
break;
}
case MAV_CMD_DO_AUTOTUNE_ENABLE:
// param1 : enable/disable
plane.autotune_enable(!is_zero(packet.param1));
return MAV_RESULT_ACCEPTED;
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
// configure or release parachute
switch ((uint16_t)packet.param1) {
case PARACHUTE_DISABLE:
plane.parachute.enabled(false);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_ENABLE:
plane.parachute.enabled(true);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_RELEASE:
// treat as a manual release which performs some additional check of altitude
if (plane.parachute.released()) {
gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute already released");
return MAV_RESULT_FAILED;
}
if (!plane.parachute.enabled()) {
gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute not enabled");
return MAV_RESULT_FAILED;
}
if (!plane.parachute_manual_release()) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
default:
break;
}
return MAV_RESULT_FAILED;
#endif
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
// param5 : motor count (number of motors to test in sequence)
return plane.quadplane.mavlink_motor_test_start(chan,
(uint8_t)packet.param1,
(uint8_t)packet.param2,
(uint16_t)packet.param3,
packet.param4,
(uint8_t)packet.param5);
case MAV_CMD_DO_VTOL_TRANSITION:
if (!plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)packet.param1)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_DO_ENGINE_CONTROL:
if (!plane.g2.ice_control.engine_control(packet.param1, packet.param2, packet.param3)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
default:
return GCS_MAVLINK::handle_command_long_packet(packet);
}
}
void GCS_MAVLINK_Plane::handleMessage(const mavlink_message_t &msg)
2014-03-18 19:59:51 -03:00
{
switch (msg.msgid) {
#if GEOFENCE_ENABLED == ENABLED
2012-08-21 23:19:51 -03:00
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(&msg, &packet);
2015-05-13 03:09:36 -03:00
if (plane.g.fence_action != FENCE_ACTION_NONE) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Fencing must be disabled");
2015-05-13 03:09:36 -03:00
} else if (packet.count != plane.g.fence_total) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Bad fence point");
2016-06-01 18:49:50 -03:00
} else if (!check_latlng(packet.lat,packet.lng)) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Invalid fence point, lat or lng too large");
} else {
2017-11-21 19:49:12 -04:00
plane.set_fence_point_with_index(Vector2l(packet.lat*1.0e7f, packet.lng*1.0e7f), packet.idx);
}
break;
}
2012-08-21 23:19:51 -03:00
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(&msg, &packet);
2015-05-13 03:09:36 -03:00
if (packet.idx >= plane.g.fence_total) {
2015-11-18 15:17:50 -04:00
send_text(MAV_SEVERITY_WARNING,"Bad fence point");
} else {
2015-05-13 03:09:36 -03:00
Vector2l point = plane.get_fence_point_with_index(packet.idx);
mavlink_msg_fence_point_send(chan, msg.sysid, msg.compid, packet.idx, plane.g.fence_total,
point.x*1.0e-7f, point.y*1.0e-7f);
}
break;
}
#endif // GEOFENCE_ENABLED
case MAVLINK_MSG_ID_MANUAL_CONTROL:
{
if (msg.sysid != plane.g.sysid_my_gcs) {
2018-04-03 20:20:13 -03:00
break; // only accept control from our gcs
}
mavlink_manual_control_t packet;
mavlink_msg_manual_control_decode(&msg, &packet);
2018-04-03 20:20:13 -03:00
if (packet.target != plane.g.sysid_this_mav) {
break; // only accept messages aimed at us
}
uint32_t tnow = AP_HAL::millis();
manual_override(plane.channel_roll, packet.y, 1000, 2000, tnow);
manual_override(plane.channel_pitch, packet.x, 1000, 2000, tnow, true);
manual_override(plane.channel_throttle, packet.z, 0, 1000, tnow);
manual_override(plane.channel_rudder, packet.r, 1000, 2000, tnow);
// a manual control message is considered to be a 'heartbeat' from the ground station for failsafe purposes
plane.failsafe.last_heartbeat_ms = tnow;
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
2012-08-21 23:19:51 -03:00
{
// We keep track of the last time we received a heartbeat from
// our GCS for failsafe purposes
if (msg.sysid != plane.g.sysid_my_gcs) break;
plane.failsafe.last_heartbeat_ms = AP_HAL::millis();
2012-08-21 23:19:51 -03:00
break;
}
2012-08-21 23:19:51 -03:00
case MAVLINK_MSG_ID_HIL_STATE:
{
#if HIL_SUPPORT
2015-05-13 03:09:36 -03:00
if (plane.g.hil_mode != 1) {
break;
}
2016-06-01 18:49:50 -03:00
2012-08-21 23:19:51 -03:00
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(&msg, &packet);
2012-08-21 23:19:51 -03:00
2016-06-01 18:49:50 -03:00
// sanity check location
if (!check_latlng(packet.lat, packet.lon)) {
break;
}
last_hil_state = packet;
2014-03-28 16:52:48 -03:00
// set gps hil sensor
const Location loc{packet.lat, packet.lon, packet.alt/10, Location::AltFrame::ABSOLUTE};
2014-03-28 16:52:48 -03:00
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
// setup airspeed pressure based on 3D speed, no wind
2015-05-13 03:09:36 -03:00
plane.airspeed.setHIL(sq(vel.length()) / 2.0f + 2013);
2015-05-13 03:09:36 -03:00
plane.gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
packet.time_usec/1000,
2016-05-04 22:42:32 -03:00
loc, vel, 10, 0);
2012-08-21 23:19:51 -03:00
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * GRAVITY_MSS*0.001f;
accels.y = packet.yacc * GRAVITY_MSS*0.001f;
accels.z = packet.zacc * GRAVITY_MSS*0.001f;
2015-05-13 03:09:36 -03:00
plane.ins.set_gyro(0, gyros);
plane.ins.set_accel(0, accels);
2012-08-21 23:19:51 -03:00
2015-05-13 03:09:36 -03:00
plane.barometer.setHIL(packet.alt*0.001f);
plane.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw);
plane.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw);
// cope with DCM getting badly off due to HIL lag
2015-05-13 03:09:36 -03:00
if (plane.g.hil_err_limit > 0 &&
(fabsf(packet.roll - plane.ahrs.roll) > ToRad(plane.g.hil_err_limit) ||
fabsf(packet.pitch - plane.ahrs.pitch) > ToRad(plane.g.hil_err_limit) ||
wrap_PI(fabsf(packet.yaw - plane.ahrs.yaw)) > ToRad(plane.g.hil_err_limit))) {
plane.ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw);
}
#endif
2012-08-21 23:19:51 -03:00
break;
}
case MAVLINK_MSG_ID_RADIO:
2013-08-24 04:59:02 -03:00
case MAVLINK_MSG_ID_RADIO_STATUS:
2012-08-21 23:19:51 -03:00
{
handle_radio_status(msg, plane.should_log(MASK_LOG_PM));
2012-08-21 23:19:51 -03:00
break;
}
case MAVLINK_MSG_ID_TERRAIN_DATA:
2014-07-22 05:08:03 -03:00
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE
2015-05-13 03:09:36 -03:00
plane.terrain.handle_data(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET:
{
// Only allow companion computer (or other external controller) to
// control attitude in GUIDED mode. We DON'T want external control
// in e.g., RTL, CICLE. Specifying a single mode for companion
// computer control is more safe (even more so when using
// FENCE_ACTION = 4 for geofence failures).
if (plane.control_mode != &plane.mode_guided) { // don't screw up failsafes
break;
}
mavlink_set_attitude_target_t att_target;
mavlink_msg_set_attitude_target_decode(&msg, &att_target);
// Mappings: If any of these bits are set, the corresponding input should be ignored.
// NOTE, when parsing the bits we invert them for easier interpretation but transport has them inverted
// bit 1: body roll rate
// bit 2: body pitch rate
// bit 3: body yaw rate
// bit 4: unknown
// bit 5: unknown
// bit 6: reserved
// bit 7: throttle
// bit 8: attitude
// if not setting all Quaternion values, use _rate flags to indicate which fields.
// Extract the Euler roll angle from the Quaternion.
Quaternion q(att_target.q[0], att_target.q[1],
att_target.q[2], att_target.q[3]);
// NOTE: att_target.type_mask is inverted for easier interpretation
att_target.type_mask = att_target.type_mask ^ 0xFF;
uint8_t attitude_mask = att_target.type_mask & 0b10000111; // q plus rpy
uint32_t now = AP_HAL::millis();
if ((attitude_mask & 0b10000001) || // partial, including roll
(attitude_mask == 0b10000000)) { // all angles
plane.guided_state.forced_rpy_cd.x = degrees(q.get_euler_roll()) * 100.0f;
// Update timer for external roll to the nav control
plane.guided_state.last_forced_rpy_ms.x = now;
}
if ((attitude_mask & 0b10000010) || // partial, including pitch
(attitude_mask == 0b10000000)) { // all angles
plane.guided_state.forced_rpy_cd.y = degrees(q.get_euler_pitch()) * 100.0f;
// Update timer for external pitch to the nav control
plane.guided_state.last_forced_rpy_ms.y = now;
}
if ((attitude_mask & 0b10000100) || // partial, including yaw
(attitude_mask == 0b10000000)) { // all angles
plane.guided_state.forced_rpy_cd.z = degrees(q.get_euler_yaw()) * 100.0f;
// Update timer for external yaw to the nav control
plane.guided_state.last_forced_rpy_ms.z = now;
}
if (att_target.type_mask & 0b01000000) { // throttle
plane.guided_state.forced_throttle = att_target.thrust * 100.0f;
// Update timer for external throttle
plane.guided_state.last_forced_throttle_ms = now;
}
break;
}
case MAVLINK_MSG_ID_SET_HOME_POSITION:
{
mavlink_set_home_position_t packet;
mavlink_msg_set_home_position_decode(&msg, &packet);
Location new_home_loc {};
new_home_loc.lat = packet.latitude;
new_home_loc.lng = packet.longitude;
new_home_loc.alt = packet.altitude / 10;
if (!set_home(new_home_loc, false)) {
// silently fails...
break;
}
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED:
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(&msg, &packet);
// exit if vehicle is not in Guided mode
if (plane.control_mode != &plane.mode_guided) {
break;
}
// only local moves for now
if (packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED) {
break;
}
// just do altitude for now
plane.next_WP_loc.alt += -packet.z*100.0;
gcs().send_text(MAV_SEVERITY_INFO, "Change alt to %.1f",
(double)((plane.next_WP_loc.alt - plane.home.alt)*0.01));
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT:
{
2016-06-07 12:27:40 -03:00
// Only want to allow companion computer position control when
// in a certain mode to avoid inadvertently sending these
// kinds of commands when the autopilot is responding to problems
// in modes such as RTL, CIRCLE, etc. Specifying ONLY one mode
// for companion computer control is more safe (provided
// one uses the FENCE_ACTION = 4 (RTL) for geofence failures).
if (plane.control_mode != &plane.mode_guided) {
2016-06-07 12:27:40 -03:00
//don't screw up failsafes
break;
}
mavlink_set_position_target_global_int_t pos_target;
mavlink_msg_set_position_target_global_int_decode(&msg, &pos_target);
2016-06-07 12:27:40 -03:00
// Unexpectedly, the mask is expecting "ones" for dimensions that should
// be IGNORNED rather than INCLUDED. See mavlink documentation of the
// SET_POSITION_TARGET_GLOBAL_INT message, type_mask field.
const uint16_t alt_mask = 0b1111111111111011; // (z mask at bit 3)
bool msg_valid = true;
AP_Mission::Mission_Command cmd = {0};
if (pos_target.type_mask & alt_mask)
{
cmd.content.location.alt = pos_target.alt * 100;
cmd.content.location.relative_alt = false;
cmd.content.location.terrain_alt = false;
switch (pos_target.coordinate_frame)
{
case MAV_FRAME_GLOBAL:
case MAV_FRAME_GLOBAL_INT:
break; //default to MSL altitude
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
cmd.content.location.relative_alt = true;
break;
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
cmd.content.location.relative_alt = true;
cmd.content.location.terrain_alt = true;
break;
default:
gcs().send_text(MAV_SEVERITY_WARNING, "Invalid coord frame in SET_POSTION_TARGET_GLOBAL_INT");
msg_valid = false;
break;
}
if (msg_valid) {
handle_change_alt_request(cmd);
}
} // end if alt_mask
break;
}
case MAVLINK_MSG_ID_ADSB_VEHICLE:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC:
2016-08-16 19:29:44 -03:00
case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT:
plane.adsb.handle_message(chan, msg);
break;
2016-11-06 20:04:15 -04:00
default:
handle_common_message(msg);
break;
} // end switch
} // end handle mavlink
// a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes
void GCS_MAVLINK_Plane::handle_rc_channels_override(const mavlink_message_t &msg)
{
plane.failsafe.last_heartbeat_ms = AP_HAL::millis();
GCS_MAVLINK::handle_rc_channels_override(msg);
}
void GCS_MAVLINK_Plane::handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg)
{
plane.auto_state.next_wp_crosstrack = false;
GCS_MAVLINK::handle_mission_set_current(mission, msg);
if (plane.control_mode == &plane.mode_auto && plane.mission.state() == AP_Mission::MISSION_STOPPED) {
plane.mission.resume();
}
}
2017-07-12 21:48:41 -03:00
uint64_t GCS_MAVLINK_Plane::capabilities() const
{
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
MAV_PROTOCOL_CAPABILITY_COMMAND_INT |
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
#if AP_TERRAIN_AVAILABLE
(plane.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) |
#endif
GCS_MAVLINK::capabilities());
}