When using GPS after previously rejecting it, the GPS position will
always be offset if outside the specified glitch radius. This was the
original intent of the design and makes handling of glitches smoother.
It has been tested on replay using glitchy flight data
Aliasing can causes the bias estimate to fluctuate very rapidly as it tries
to keep up, which degrades the benefit of switching between
accelerometers to avoid aliasing.
This patch give a much more stable bias estimate during aliasing, and
allows the bias to adapt at a maximum rate of 1.0 m/s2 in 50 seconds
This changes the definition sof the messages in the EKF4 message to make it more useful
The values shown now relate directly to how much margin there is before a measurement
is rejected, enabling better tuning of error trap parameters
This adds new functionality to the detection and compensation of GPS
glitches:
1) A maximum allowable innovation is calculated using the GPS noise
parameter multiplied by the gate, with an additional component allowing
for growth in position uncertainty due to acceleration error since
the last valid measurement
2) Includes per vehicle type values for the acceleration error limit
3) If the innovation length exceeds the maximum allowable, no fusion occurs
4) If no fusion has occurred for long enough such that the position uncertainty
exceeds the maximum set by a per vehicle parameter or a maximum time, an offset
is applied to the GPS data to so that it matches the value predicted by the filter
5) The offset is never allowed to be bigger than 100m
6) The offset is decayed to zero at a rate of 1.0 m/s to allow GPS jumps to
be accommodated gradually
7) The default velocity innovation gate has been tightened up for copter and rover
8) The variance data logging output has been updated to make it more useful