2019-05-28 02:47:34 -03:00
/*
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
2016-06-19 22:12:17 -03:00
2019-05-28 02:47:34 -03:00
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# include "AC_Avoid.h"
2019-05-22 03:03:57 -03:00
# include <AP_AHRS/AP_AHRS.h> // AHRS library
# include <AC_Fence/AC_Fence.h> // Failsafe fence library
# include <AP_Proximity/AP_Proximity.h>
# include <AP_Beacon/AP_Beacon.h>
2020-07-21 14:01:53 -03:00
# include <AP_Logger/AP_Logger.h>
2019-07-15 01:11:25 -03:00
# include <stdio.h>
2020-03-26 21:51:14 -03:00
# if APM_BUILD_TYPE(APM_BUILD_Rover)
2018-01-22 02:45:18 -04:00
# define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_STOP
# else
# define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_SLIDE
# endif
2020-12-06 08:45:16 -04:00
# if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
# define AP_AVOID_ENABLE_Z 1
# endif
2016-06-19 22:12:17 -03:00
const AP_Param : : GroupInfo AC_Avoid : : var_info [ ] = {
// @Param: ENABLE
// @DisplayName: Avoidance control enable/disable
2019-06-06 20:59:31 -03:00
// @Description: Enabled/disable avoidance input sources
// @Bitmask: 0:UseFence,1:UseProximitySensor,2:UseBeaconFence
2016-06-19 22:12:17 -03:00
// @User: Standard
2020-09-10 19:29:42 -03:00
AP_GROUPINFO_FLAGS ( " ENABLE " , 1 , AC_Avoid , _enabled , AC_AVOID_DEFAULT , AP_PARAM_FLAG_ENABLE ) ,
2016-06-19 22:12:17 -03:00
2020-07-13 15:35:53 -03:00
// @Param{Copter}: ANGLE_MAX
2016-12-16 23:42:40 -04:00
// @DisplayName: Avoidance max lean angle in non-GPS flight modes
// @Description: Max lean angle used to avoid obstacles while in non-GPS modes
2017-05-02 10:37:44 -03:00
// @Units: cdeg
2021-05-20 10:08:46 -03:00
// @Increment: 10
2016-12-16 23:42:40 -04:00
// @Range: 0 4500
// @User: Standard
2020-07-13 15:35:53 -03:00
AP_GROUPINFO_FRAME ( " ANGLE_MAX " , 2 , AC_Avoid , _angle_max , 1000 , AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER ) ,
2016-12-16 23:42:40 -04:00
2020-07-13 15:35:53 -03:00
// @Param{Copter}: DIST_MAX
2016-12-16 23:42:40 -04:00
// @DisplayName: Avoidance distance maximum in non-GPS flight modes
// @Description: Distance from object at which obstacle avoidance will begin in non-GPS modes
2017-05-02 10:37:44 -03:00
// @Units: m
2018-01-24 22:16:01 -04:00
// @Range: 1 30
2016-12-16 23:42:40 -04:00
// @User: Standard
2020-07-13 15:35:53 -03:00
AP_GROUPINFO_FRAME ( " DIST_MAX " , 3 , AC_Avoid , _dist_max , AC_AVOID_NONGPS_DIST_MAX_DEFAULT , AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER ) ,
2016-12-16 23:42:40 -04:00
2017-04-12 09:09:52 -03:00
// @Param: MARGIN
// @DisplayName: Avoidance distance margin in GPS modes
// @Description: Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes
2017-05-02 10:37:44 -03:00
// @Units: m
2017-04-12 09:09:52 -03:00
// @Range: 1 10
// @User: Standard
AP_GROUPINFO ( " MARGIN " , 4 , AC_Avoid , _margin , 2.0f ) ,
2020-07-13 15:35:53 -03:00
// @Param{Copter}: BEHAVE
2017-12-12 08:19:37 -04:00
// @DisplayName: Avoidance behaviour
// @Description: Avoidance behaviour (slide or stop)
// @Values: 0:Slide,1:Stop
// @User: Standard
2020-07-13 15:35:53 -03:00
AP_GROUPINFO_FRAME ( " BEHAVE " , 5 , AC_Avoid , _behavior , AP_AVOID_BEHAVE_DEFAULT , AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER ) ,
2017-12-12 08:19:37 -04:00
2020-07-21 14:01:53 -03:00
// @Param: BACKUP_SPD
// @DisplayName: Avoidance maximum backup speed
// @Description: Maximum speed that will be used to back away from obstacles in GPS modes (m/s). Set zero to disable
// @Units: m/s
// @Range: 0 2
// @User: Standard
2021-04-04 03:46:42 -03:00
AP_GROUPINFO ( " BACKUP_SPD " , 6 , AC_Avoid , _backup_speed_max , 0.75f ) ,
2020-07-21 14:01:53 -03:00
2021-06-02 15:59:10 -03:00
// @Param{Copter}: ALT_MIN
2021-02-09 13:57:23 -04:00
// @DisplayName: Avoidance minimum altitude
// @Description: Minimum altitude above which proximity based avoidance will start working. This requires a valid downward facing rangefinder reading to work. Set zero to disable
// @Units: m
// @Range: 0 6
// @User: Standard
2021-06-02 15:59:10 -03:00
AP_GROUPINFO_FRAME ( " ALT_MIN " , 7 , AC_Avoid , _alt_min , 0.0f , AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER ) ,
2021-02-09 13:57:23 -04:00
2021-02-09 13:57:55 -04:00
// @Param: ACCEL_MAX
// @DisplayName: Avoidance maximum acceleration
// @Description: Maximum acceleration with which obstacles will be avoided with. Set zero to disable acceleration limits
// @Units: m/s/s
// @Range: 0 9
// @User: Standard
AP_GROUPINFO ( " ACCEL_MAX " , 8 , AC_Avoid , _accel_max , 3.0f ) ,
2021-06-02 15:56:39 -03:00
// @Param: BACKUP_DZ
// @DisplayName: Avoidance deadzone between stopping and backing away from obstacle
// @Description: Distance beyond AVOID_MARGIN parameter, after which vehicle will backaway from obstacles. Increase this parameter if you see vehicle going back and forth in front of obstacle.
// @Units: m
// @Range: 0 2
// @User: Standard
AP_GROUPINFO ( " BACKUP_DZ " , 9 , AC_Avoid , _backup_deadzone , 0.10f ) ,
2016-06-19 22:12:17 -03:00
AP_GROUPEND
} ;
/// Constructor
2019-05-22 03:03:57 -03:00
AC_Avoid : : AC_Avoid ( )
2016-06-19 22:12:17 -03:00
{
2018-10-25 23:31:20 -03:00
_singleton = this ;
2016-06-19 22:12:17 -03:00
AP_Param : : setup_object_defaults ( this , var_info ) ;
}
2020-12-06 08:45:16 -04:00
/*
* This method limits velocity and calculates backaway velocity from various supported fences
* Also limits vertical velocity using adjust_velocity_z method
*/
void AC_Avoid : : adjust_velocity_fence ( float kP , float accel_cmss , Vector3f & desired_vel_cms , Vector3f & backup_vel , float kP_z , float accel_cmss_z , float dt )
{
// Only horizontal component needed for most fences, since fences are 2D
2021-01-10 14:12:52 -04:00
Vector2f desired_velocity_xy_cms { desired_vel_cms . x , desired_vel_cms . y } ;
2020-12-06 08:45:16 -04:00
2016-06-19 22:12:17 -03:00
// limit acceleration
2018-10-26 01:49:45 -03:00
const float accel_cmss_limited = MIN ( accel_cmss , AC_AVOID_ACCEL_CMSS_MAX ) ;
2020-07-21 14:01:53 -03:00
// maximum component of desired backup velocity in each quadrant
Vector2f quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ;
2016-06-19 22:12:17 -03:00
2016-08-15 08:59:35 -03:00
if ( ( _enabled & AC_AVOID_STOP_AT_FENCE ) > 0 ) {
2020-07-21 14:01:53 -03:00
// Store velocity needed to back away from fence
Vector2f backup_vel_fence ;
2021-01-10 14:12:52 -04:00
adjust_velocity_circle_fence ( kP , accel_cmss_limited , desired_velocity_xy_cms , backup_vel_fence , dt ) ;
2020-07-21 14:01:53 -03:00
find_max_quadrant_velocity ( backup_vel_fence , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ) ;
// backup_vel_fence is set to zero after each fence incase the velocity is unset from previous methods
backup_vel_fence . zero ( ) ;
2021-01-10 14:12:52 -04:00
adjust_velocity_inclusion_and_exclusion_polygons ( kP , accel_cmss_limited , desired_velocity_xy_cms , backup_vel_fence , dt ) ;
2020-07-21 14:01:53 -03:00
find_max_quadrant_velocity ( backup_vel_fence , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ) ;
backup_vel_fence . zero ( ) ;
2021-01-10 14:12:52 -04:00
adjust_velocity_inclusion_circles ( kP , accel_cmss_limited , desired_velocity_xy_cms , backup_vel_fence , dt ) ;
2020-07-21 14:01:53 -03:00
find_max_quadrant_velocity ( backup_vel_fence , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ) ;
backup_vel_fence . zero ( ) ;
2021-01-10 14:12:52 -04:00
adjust_velocity_exclusion_circles ( kP , accel_cmss_limited , desired_velocity_xy_cms , backup_vel_fence , dt ) ;
2020-07-21 14:01:53 -03:00
find_max_quadrant_velocity ( backup_vel_fence , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ) ;
2016-06-19 22:12:17 -03:00
}
2016-08-15 08:59:35 -03:00
2017-05-02 06:10:37 -03:00
if ( ( _enabled & AC_AVOID_STOP_AT_BEACON_FENCE ) > 0 ) {
2020-07-21 14:01:53 -03:00
// Store velocity needed to back away from beacon fence
Vector2f backup_vel_beacon ;
2021-01-10 14:12:52 -04:00
adjust_velocity_beacon_fence ( kP , accel_cmss_limited , desired_velocity_xy_cms , backup_vel_beacon , dt ) ;
2020-07-21 14:01:53 -03:00
find_max_quadrant_velocity ( backup_vel_beacon , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ) ;
2017-05-02 06:10:37 -03:00
}
2020-12-06 08:45:16 -04:00
// check for vertical fence
2021-01-10 14:12:52 -04:00
float desired_velocity_z_cms = desired_vel_cms . z ;
2020-12-06 08:45:16 -04:00
float desired_backup_vel_z = 0.0f ;
2021-01-10 14:12:52 -04:00
adjust_velocity_z ( kP_z , accel_cmss_z , desired_velocity_z_cms , desired_backup_vel_z , dt ) ;
2020-12-06 08:45:16 -04:00
// Desired backup velocity is sum of maximum velocity component in each quadrant
const Vector2f desired_backup_vel_xy = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
backup_vel = Vector3f { desired_backup_vel_xy . x , desired_backup_vel_xy . y , desired_backup_vel_z } ;
2021-01-10 14:12:52 -04:00
desired_vel_cms = Vector3f { desired_velocity_xy_cms . x , desired_velocity_xy_cms . y , desired_velocity_z_cms } ;
2020-12-06 08:45:16 -04:00
}
/*
* Adjusts the desired velocity so that the vehicle can stop
* before the fence / object .
* kP , accel_cmss are for the horizontal axis
* kP_z , accel_cmss_z are for vertical axis
*/
2021-01-10 14:12:52 -04:00
void AC_Avoid : : adjust_velocity ( Vector3f & desired_vel_cms , bool & backing_up , float kP , float accel_cmss , float kP_z , float accel_cmss_z , float dt )
2020-12-06 08:45:16 -04:00
{
// exit immediately if disabled
if ( _enabled = = AC_AVOID_DISABLED ) {
return ;
}
2021-02-09 13:57:55 -04:00
// make a copy of input velocity, because desired_vel_cms might be changed
const Vector3f desired_vel_cms_original = desired_vel_cms ;
2020-12-06 08:45:16 -04:00
// limit acceleration
const float accel_cmss_limited = MIN ( accel_cmss , AC_AVOID_ACCEL_CMSS_MAX ) ;
// maximum component of horizontal desired backup velocity in each quadrant
Vector2f quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ;
float back_vel_up = 0.0f ;
float back_vel_down = 0.0f ;
// Avoidance in response to proximity sensor
2021-02-09 13:57:23 -04:00
if ( ( _enabled & AC_AVOID_USE_PROXIMITY_SENSOR ) > 0 & & _proximity_enabled & & _proximity_alt_enabled ) {
2020-07-21 14:01:53 -03:00
// Store velocity needed to back away from physical obstacles
2020-12-06 08:45:16 -04:00
Vector3f backup_vel_proximity ;
adjust_velocity_proximity ( kP , accel_cmss_limited , desired_vel_cms , backup_vel_proximity , kP_z , accel_cmss_z , dt ) ;
find_max_quadrant_velocity_3D ( backup_vel_proximity , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel , back_vel_up , back_vel_down ) ;
2020-07-21 14:01:53 -03:00
}
2020-12-06 08:45:16 -04:00
// Avoidance in response to various fences
Vector3f backup_vel_fence ;
adjust_velocity_fence ( kP , accel_cmss , desired_vel_cms , backup_vel_fence , kP_z , accel_cmss_z , dt ) ;
find_max_quadrant_velocity_3D ( backup_vel_fence , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel , back_vel_up , back_vel_down ) ;
// Desired backup velocity is sum of maximum velocity component in each quadrant
const Vector2f desired_backup_vel_xy = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
const float desired_backup_vel_z = back_vel_down + back_vel_up ;
Vector3f desired_backup_vel { desired_backup_vel_xy . x , desired_backup_vel_xy . y , desired_backup_vel_z } ;
2020-07-21 14:01:53 -03:00
const float max_back_spd_cms = _backup_speed_max * 100.0f ;
if ( ! desired_backup_vel . is_zero ( ) & & is_positive ( max_back_spd_cms ) ) {
backing_up = true ;
// Constrain backing away speed
if ( desired_backup_vel . length ( ) > max_back_spd_cms ) {
desired_backup_vel = desired_backup_vel . normalized ( ) * max_back_spd_cms ;
}
2020-12-27 12:31:05 -04:00
// let user take control if they are backing away at a greater speed than what we have calculated
// this has to be done for x,y,z seperately. For eg, user is doing fine in "x" direction but might need backing up in "y".
if ( ! is_zero ( desired_backup_vel . x ) ) {
if ( is_positive ( desired_backup_vel . x ) ) {
desired_vel_cms . x = MAX ( desired_vel_cms . x , desired_backup_vel . x ) ;
} else {
desired_vel_cms . x = MIN ( desired_vel_cms . x , desired_backup_vel . x ) ;
2020-12-06 08:45:16 -04:00
}
2020-12-27 12:31:05 -04:00
}
if ( ! is_zero ( desired_backup_vel . y ) ) {
if ( is_positive ( desired_backup_vel . y ) ) {
desired_vel_cms . y = MAX ( desired_vel_cms . y , desired_backup_vel . y ) ;
} else {
desired_vel_cms . y = MIN ( desired_vel_cms . y , desired_backup_vel . y ) ;
}
}
if ( ! is_zero ( desired_backup_vel . z ) ) {
if ( is_positive ( desired_backup_vel . z ) ) {
2020-12-06 08:45:16 -04:00
desired_vel_cms . z = MAX ( desired_vel_cms . z , desired_backup_vel . z ) ;
} else {
desired_vel_cms . z = MIN ( desired_vel_cms . z , desired_backup_vel . z ) ;
}
2020-07-21 14:01:53 -03:00
}
}
2021-02-09 13:57:55 -04:00
// limit acceleration
limit_accel ( desired_vel_cms_original , desired_vel_cms , dt ) ;
2021-02-11 08:05:52 -04:00
if ( desired_vel_cms_original ! = desired_vel_cms ) {
_last_limit_time = AP_HAL : : millis ( ) ;
}
2021-05-09 14:47:47 -03:00
if ( limits_active ( ) ) {
// log at not more than 10hz (adjust_velocity method can be potentially called at 400hz!)
uint32_t now = AP_HAL : : millis ( ) ;
if ( ( now - _last_log_ms ) > 100 ) {
_last_log_ms = now ;
Write_SimpleAvoidance ( true , desired_vel_cms_original , desired_vel_cms , backing_up ) ;
}
} else {
// avoidance isn't active anymore
// log once so that it registers in logs
if ( _last_log_ms ) {
Write_SimpleAvoidance ( false , desired_vel_cms_original , desired_vel_cms , backing_up ) ;
// this makes sure logging won't run again till it is active
_last_log_ms = 0 ;
}
}
2021-02-09 13:57:55 -04:00
}
2021-02-11 08:05:52 -04:00
/*
* Limit acceleration so that change of velocity output by avoidance library is controlled
* This helps reduce jerks and sudden movements in the vehicle
*/
2021-02-09 13:57:55 -04:00
void AC_Avoid : : limit_accel ( const Vector3f & original_vel , Vector3f & modified_vel , float dt )
{
if ( original_vel = = modified_vel | | is_zero ( _accel_max ) | | ! is_positive ( dt ) ) {
// we can't limit accel if any of these conditions are true
return ;
}
2021-02-11 08:05:52 -04:00
if ( AP_HAL : : millis ( ) - _last_limit_time > AC_AVOID_ACCEL_TIMEOUT_MS ) {
// reset this velocity because its been a long time since avoidance was active
_prev_avoid_vel = original_vel ;
}
// acceleration demanded by avoidance
const Vector3f accel = ( modified_vel - _prev_avoid_vel ) / dt ;
2021-02-09 13:57:55 -04:00
// max accel in cm
const float max_accel_cm = _accel_max * 100.0f ;
2021-02-11 08:05:52 -04:00
2021-02-09 13:57:55 -04:00
if ( accel . length ( ) > max_accel_cm ) {
// pull back on the acceleration
2021-02-11 08:05:52 -04:00
const Vector3f accel_direction = accel . normalized ( ) ;
modified_vel = ( accel_direction * max_accel_cm ) * dt + _prev_avoid_vel ;
2021-02-09 13:57:55 -04:00
}
2021-02-11 08:05:52 -04:00
_prev_avoid_vel = modified_vel ;
2021-02-09 13:57:55 -04:00
return ;
2016-07-25 00:16:26 -03:00
}
2020-12-06 08:45:16 -04:00
// This method is used in most Rover modes and not in Copter
2017-12-13 05:16:07 -04:00
// adjust desired horizontal speed so that the vehicle stops before the fence or object
// accel (maximum acceleration/deceleration) is in m/s/s
// heading is in radians
// speed is in m/s
// kP should be zero for linear response, non-zero for non-linear response
void AC_Avoid : : adjust_speed ( float kP , float accel , float heading , float & speed , float dt )
{
// convert heading and speed into velocity vector
2020-12-06 08:45:16 -04:00
Vector3f vel {
cosf ( heading ) * speed * 100.0f ,
sinf ( heading ) * speed * 100.0f ,
0.0f
} ;
2017-12-13 05:16:07 -04:00
2020-07-21 14:01:53 -03:00
bool backing_up = false ;
2021-01-10 14:12:52 -04:00
adjust_velocity ( vel , backing_up , kP , accel * 100.0f , 0 , 0 , dt ) ;
2020-12-06 08:45:16 -04:00
const Vector2f vel_xy { vel . x , vel . y } ;
2020-07-21 14:01:53 -03:00
if ( backing_up ) {
// back up
if ( fabsf ( wrap_180 ( degrees ( vel_xy . angle ( ) ) ) - degrees ( heading ) ) > 90.0f ) {
// Big difference between the direction of velocity vector and actual heading therefore we need to reverse the direction
speed = - vel_xy . length ( ) * 0.01f ;
} else {
speed = vel_xy . length ( ) * 0.01f ;
}
return ;
}
// No need to back up so adjust speed towards zero if needed
2017-12-13 05:16:07 -04:00
if ( is_negative ( speed ) ) {
speed = - vel_xy . length ( ) * 0.01f ;
} else {
speed = vel_xy . length ( ) * 0.01f ;
}
}
2017-01-05 02:21:55 -04:00
// adjust vertical climb rate so vehicle does not break the vertical fence
2020-12-06 08:45:16 -04:00
void AC_Avoid : : adjust_velocity_z ( float kP , float accel_cmss , float & climb_rate_cms , float & backup_speed , float dt )
2017-01-05 02:21:55 -04:00
{
2021-01-10 14:12:52 -04:00
# ifdef AP_AVOID_ENABLE_Z
2017-01-05 02:21:55 -04:00
// exit immediately if disabled
if ( _enabled = = AC_AVOID_DISABLED ) {
return ;
}
2021-01-10 14:12:52 -04:00
2017-01-05 02:21:55 -04:00
// do not adjust climb_rate if level or descending
if ( climb_rate_cms < = 0.0f ) {
return ;
}
// limit acceleration
2018-10-26 01:49:45 -03:00
const float accel_cmss_limited = MIN ( accel_cmss , AC_AVOID_ACCEL_CMSS_MAX ) ;
2017-01-05 02:21:55 -04:00
2017-01-16 00:49:51 -04:00
bool limit_alt = false ;
2017-12-07 00:13:03 -04:00
float alt_diff = 0.0f ; // distance from altitude limit to vehicle in metres (positive means vehicle is below limit)
2017-01-05 02:21:55 -04:00
2019-05-22 03:03:57 -03:00
const AP_AHRS & _ahrs = AP : : ahrs ( ) ;
2017-01-16 00:49:51 -04:00
// calculate distance below fence
2019-05-22 03:03:57 -03:00
AC_Fence * fence = AP : : fence ( ) ;
if ( ( _enabled & AC_AVOID_STOP_AT_FENCE ) > 0 & & fence & & ( fence - > get_enabled_fences ( ) & AC_FENCE_TYPE_ALT_MAX ) > 0 ) {
2017-01-05 02:21:55 -04:00
// calculate distance from vehicle to safe altitude
2017-12-07 00:03:36 -04:00
float veh_alt ;
_ahrs . get_relative_position_D_home ( veh_alt ) ;
// _fence.get_safe_alt_max() is UP, veh_alt is DOWN:
2019-05-22 03:03:57 -03:00
alt_diff = fence - > get_safe_alt_max ( ) + veh_alt ;
2017-01-16 00:49:51 -04:00
limit_alt = true ;
}
2017-12-06 23:08:29 -04:00
// calculate distance to (e.g.) optical flow altitude limit
// AHRS values are always in metres
float alt_limit ;
float curr_alt ;
if ( _ahrs . get_hgt_ctrl_limit ( alt_limit ) & &
_ahrs . get_relative_position_D_origin ( curr_alt ) ) {
// alt_limit is UP, curr_alt is DOWN:
2017-12-07 00:13:03 -04:00
const float ctrl_alt_diff = alt_limit + curr_alt ;
if ( ! limit_alt | | ctrl_alt_diff < alt_diff ) {
alt_diff = ctrl_alt_diff ;
2017-12-06 23:08:29 -04:00
limit_alt = true ;
2017-01-16 00:49:51 -04:00
}
}
2017-01-05 02:21:55 -04:00
2021-03-25 05:08:05 -03:00
# if HAL_PROXIMITY_ENABLED
2017-12-07 00:13:03 -04:00
// get distance from proximity sensor
float proximity_alt_diff ;
2019-05-22 03:03:57 -03:00
AP_Proximity * proximity = AP : : proximity ( ) ;
2021-07-29 21:17:29 -03:00
if ( proximity & & _proximity_enabled & & proximity - > get_upward_distance ( proximity_alt_diff ) ) {
2017-12-07 00:13:03 -04:00
proximity_alt_diff - = _margin ;
if ( ! limit_alt | | proximity_alt_diff < alt_diff ) {
alt_diff = proximity_alt_diff ;
limit_alt = true ;
2017-01-16 02:58:43 -04:00
}
}
2021-03-25 05:08:05 -03:00
# endif
2017-01-16 02:58:43 -04:00
2017-01-16 00:49:51 -04:00
// limit climb rate
if ( limit_alt ) {
2017-01-05 02:21:55 -04:00
// do not allow climbing if we've breached the safe altitude
2017-12-07 00:13:03 -04:00
if ( alt_diff < = 0.0f ) {
2017-01-05 02:21:55 -04:00
climb_rate_cms = MIN ( climb_rate_cms , 0.0f ) ;
2020-12-06 08:45:16 -04:00
// also calculate backup speed that will get us back to safe altitude
backup_speed = - 1 * ( get_max_speed ( kP , accel_cmss_limited , - alt_diff * 100.0f , dt ) ) ;
2017-01-05 02:21:55 -04:00
return ;
}
// limit climb rate
2017-06-26 05:48:48 -03:00
const float max_speed = get_max_speed ( kP , accel_cmss_limited , alt_diff * 100.0f , dt ) ;
2017-01-05 02:21:55 -04:00
climb_rate_cms = MIN ( max_speed , climb_rate_cms ) ;
}
2021-01-10 14:12:52 -04:00
# endif
2017-01-05 02:21:55 -04:00
}
2016-12-16 23:42:40 -04:00
// adjust roll-pitch to push vehicle away from objects
// roll and pitch value are in centi-degrees
2016-12-19 19:51:26 -04:00
void AC_Avoid : : adjust_roll_pitch ( float & roll , float & pitch , float veh_angle_max )
2016-12-16 23:42:40 -04:00
{
// exit immediately if proximity based avoidance is disabled
if ( ( _enabled & AC_AVOID_USE_PROXIMITY_SENSOR ) = = 0 | | ! _proximity_enabled ) {
return ;
}
// exit immediately if angle max is zero
2016-12-19 19:51:26 -04:00
if ( _angle_max < = 0.0f | | veh_angle_max < = 0.0f ) {
2016-12-16 23:42:40 -04:00
return ;
}
float roll_positive = 0.0f ; // maximum positive roll value
float roll_negative = 0.0f ; // minimum negative roll value
2018-04-20 11:53:35 -03:00
float pitch_positive = 0.0f ; // maximum positive pitch value
2016-12-16 23:42:40 -04:00
float pitch_negative = 0.0f ; // minimum negative pitch value
// get maximum positive and negative roll and pitch percentages from proximity sensor
get_proximity_roll_pitch_pct ( roll_positive , roll_negative , pitch_positive , pitch_negative ) ;
// add maximum positive and negative percentages together for roll and pitch, convert to centi-degrees
Vector2f rp_out ( ( roll_positive + roll_negative ) * 4500.0f , ( pitch_positive + pitch_negative ) * 4500.0f ) ;
// apply avoidance angular limits
// the object avoidance lean angle is never more than 75% of the total angle-limit to allow the pilot to override
2016-12-19 19:51:26 -04:00
const float angle_limit = constrain_float ( _angle_max , 0.0f , veh_angle_max * AC_AVOID_ANGLE_MAX_PERCENT ) ;
2016-12-16 23:42:40 -04:00
float vec_len = rp_out . length ( ) ;
if ( vec_len > angle_limit ) {
rp_out * = ( angle_limit / vec_len ) ;
}
// add passed in roll, pitch angles
rp_out . x + = roll ;
rp_out . y + = pitch ;
// apply total angular limits
vec_len = rp_out . length ( ) ;
2016-12-19 19:51:26 -04:00
if ( vec_len > veh_angle_max ) {
rp_out * = ( veh_angle_max / vec_len ) ;
2016-12-16 23:42:40 -04:00
}
// return adjusted roll, pitch
roll = rp_out . x ;
pitch = rp_out . y ;
}
2018-01-29 08:36:37 -04:00
/*
2020-12-06 08:45:16 -04:00
* Note : This method is used to limit velocity horizontally only
2018-02-15 15:16:42 -04:00
* Limits the component of desired_vel_cms in the direction of the unit vector
* limit_direction to be at most the maximum speed permitted by the limit_distance_cm .
2018-01-29 08:36:37 -04:00
*
* Uses velocity adjustment idea from Randy ' s second email on this thread :
* https : //groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ
*/
2020-12-06 08:45:16 -04:00
void AC_Avoid : : limit_velocity_2D ( float kP , float accel_cmss , Vector2f & desired_vel_cms , const Vector2f & limit_direction , float limit_distance_cm , float dt )
2018-01-29 08:36:37 -04:00
{
2018-02-15 15:16:42 -04:00
const float max_speed = get_max_speed ( kP , accel_cmss , limit_distance_cm , dt ) ;
2018-01-29 08:36:37 -04:00
// project onto limit direction
2018-02-15 15:16:42 -04:00
const float speed = desired_vel_cms * limit_direction ;
2018-01-29 08:36:37 -04:00
if ( speed > max_speed ) {
// subtract difference between desired speed and maximum acceptable speed
2018-02-15 15:16:42 -04:00
desired_vel_cms + = limit_direction * ( max_speed - speed ) ;
2018-01-29 08:36:37 -04:00
}
}
2020-07-21 14:01:53 -03:00
/*
2020-12-06 08:45:16 -04:00
* Note : This method is used to limit velocity horizontally and vertically given a 3 D desired velocity vector
* Limits the component of desired_vel_cms in the direction of the obstacle_vector based on the passed value of " margin "
*/
void AC_Avoid : : limit_velocity_3D ( float kP , float accel_cmss , Vector3f & desired_vel_cms , const Vector3f & obstacle_vector , float margin_cm , float kP_z , float accel_cmss_z , float dt )
{
if ( desired_vel_cms . is_zero ( ) ) {
// nothing to limit
return ;
}
// create a margin_cm length vector in the direction of desired_vel_cms
// this will create larger margin towards the direction vehicle is traveling in
const Vector3f margin_vector = desired_vel_cms . normalized ( ) * margin_cm ;
const Vector2f limit_direction_xy { obstacle_vector . x , obstacle_vector . y } ;
2021-01-10 14:12:52 -04:00
2020-12-06 08:45:16 -04:00
if ( ! limit_direction_xy . is_zero ( ) ) {
2021-01-10 14:12:52 -04:00
const float distance_from_fence_xy = MAX ( ( limit_direction_xy . length ( ) - Vector2f { margin_vector . x , margin_vector . y } . length ( ) ) , 0.0f ) ;
Vector2f velocity_xy { desired_vel_cms . x , desired_vel_cms . y } ;
2020-12-06 08:45:16 -04:00
limit_velocity_2D ( kP , accel_cmss , velocity_xy , limit_direction_xy . normalized ( ) , distance_from_fence_xy , dt ) ;
desired_vel_cms . x = velocity_xy . x ;
desired_vel_cms . y = velocity_xy . y ;
}
2021-01-10 14:12:52 -04:00
if ( is_zero ( desired_vel_cms . z ) | | is_zero ( obstacle_vector . z ) ) {
// nothing to limit vertically if desired_vel_cms.z is zero
// if obstacle_vector.z is zero then the obstacle is probably horizontally located, and we can move vertically
2020-12-06 08:45:16 -04:00
return ;
}
2021-01-10 14:12:52 -04:00
if ( is_positive ( desired_vel_cms . z ) ! = is_positive ( obstacle_vector . z ) ) {
2020-12-06 08:45:16 -04:00
// why limit velocity vertically when we are going the opposite direction
return ;
}
// to check if Z velocity changes
const float velocity_z_original = desired_vel_cms . z ;
const float z_speed = fabsf ( desired_vel_cms . z ) ;
2021-01-10 14:12:52 -04:00
// obstacle_vector.z and margin_vector.z should be in same direction as checked above
const float dist_z = MAX ( fabsf ( obstacle_vector . z ) - fabsf ( margin_vector . z ) , 0.0f ) ;
2020-12-06 08:45:16 -04:00
if ( is_zero ( dist_z ) ) {
// eliminate any vertical velocity
desired_vel_cms . z = 0.0f ;
} else {
const float max_z_speed = get_max_speed ( kP_z , accel_cmss_z , dist_z , dt ) ;
desired_vel_cms . z = MIN ( max_z_speed , z_speed ) ;
}
2021-01-10 14:12:52 -04:00
2020-12-06 08:45:16 -04:00
// make sure the direction of the Z velocity did not change
// we are only limiting speed here, not changing directions
2021-01-10 14:12:52 -04:00
// check if original z velocity is positive or negative
if ( is_negative ( velocity_z_original ) ) {
desired_vel_cms . z = desired_vel_cms . z * - 1.0f ;
}
2020-12-06 08:45:16 -04:00
}
/*
* Compute the back away horizontal velocity required to avoid breaching margin
2020-07-21 14:01:53 -03:00
* INPUT : This method requires the breach in margin distance ( back_distance_cm ) , direction towards the breach ( limit_direction )
* It then calculates the desired backup velocity and passes it on to " find_max_quadrant_velocity " method to distribute the velocity vectors into respective quadrants
2020-12-06 08:45:16 -04:00
* OUTPUT : The method then outputs four velocities ( quad1 / 2 / 3 / 4 _back_vel_cms ) , which correspond to the maximum horizontal desired backup velocity in each quadrant
2020-07-21 14:01:53 -03:00
*/
2020-12-06 08:45:16 -04:00
void AC_Avoid : : calc_backup_velocity_2D ( float kP , float accel_cmss , Vector2f & quad1_back_vel_cms , Vector2f & quad2_back_vel_cms , Vector2f & quad3_back_vel_cms , Vector2f & quad4_back_vel_cms , float back_distance_cm , Vector2f limit_direction , float dt )
2020-07-21 14:01:53 -03:00
{
if ( limit_direction . is_zero ( ) ) {
// protect against divide by zero
return ;
}
// speed required to move away the exact distance that we have breached the margin with
const float back_speed = get_max_speed ( kP , 0.4f * accel_cmss , fabsf ( back_distance_cm ) , dt ) ;
// direction to the obstacle
limit_direction . normalize ( ) ;
// move in the opposite direction with the required speed
Vector2f back_direction_vel = limit_direction * ( - back_speed ) ;
// divide the vector into quadrants, find maximum velocity component in each quadrant
find_max_quadrant_velocity ( back_direction_vel , quad1_back_vel_cms , quad2_back_vel_cms , quad3_back_vel_cms , quad4_back_vel_cms ) ;
}
2020-12-06 08:45:16 -04:00
/*
* Compute the back away velocity required to avoid breaching margin , including vertical component
2021-01-10 14:12:52 -04:00
* min_z_vel is < = 0 , and stores the greatest velocity in the downwards direction
2020-12-06 08:45:16 -04:00
* max_z_vel is > = 0 , and stores the greatest velocity in the upwards direction
* eventually max_z_vel + min_z_vel will give the final desired Z backaway velocity
*/
2021-01-10 14:12:52 -04:00
void AC_Avoid : : calc_backup_velocity_3D ( float kP , float accel_cmss , Vector2f & quad1_back_vel_cms , Vector2f & quad2_back_vel_cms , Vector2f & quad3_back_vel_cms , Vector2f & quad4_back_vel_cms , float back_distance_cms , Vector3f limit_direction , float kp_z , float accel_cmss_z , float back_distance_z , float & min_z_vel , float & max_z_vel , float dt )
2020-12-06 08:45:16 -04:00
{
// backup horizontally
2021-01-10 14:12:52 -04:00
if ( is_positive ( back_distance_cms ) ) {
2020-12-06 08:45:16 -04:00
Vector2f limit_direction_2d { limit_direction . x , limit_direction . y } ;
2021-01-10 14:12:52 -04:00
calc_backup_velocity_2D ( kP , accel_cmss , quad1_back_vel_cms , quad2_back_vel_cms , quad3_back_vel_cms , quad4_back_vel_cms , back_distance_cms , limit_direction_2d , dt ) ;
2020-12-06 08:45:16 -04:00
}
// backup vertically
if ( ! is_zero ( back_distance_z ) ) {
float back_speed_z = get_max_speed ( kp_z , 0.4f * accel_cmss_z , fabsf ( back_distance_z ) , dt ) ;
// Down is positive
if ( is_positive ( back_distance_z ) ) {
back_speed_z * = - 1.0f ;
}
// store the z backup speed into min or max z if possible
if ( back_speed_z < min_z_vel ) {
min_z_vel = back_speed_z ;
}
if ( back_speed_z > max_z_vel ) {
max_z_vel = back_speed_z ;
}
}
}
2020-07-21 14:01:53 -03:00
/*
* Calculate maximum velocity vector that can be formed in each quadrant
* This method takes the desired backup velocity , and four other velocities corresponding to each quadrant
* The desired velocity is then fit into one of the 4 quadrant velocities as per the sign of its components
* This ensures that if we have multiple backup velocities , we can get the maximum of all of those velocities in each quadrant
*/
void AC_Avoid : : find_max_quadrant_velocity ( Vector2f & desired_vel , Vector2f & quad1_vel , Vector2f & quad2_vel , Vector2f & quad3_vel , Vector2f & quad4_vel )
{
if ( desired_vel . is_zero ( ) ) {
return ;
}
// first quadrant: +ve x, +ve y direction
if ( is_positive ( desired_vel . x ) & & is_positive ( desired_vel . y ) ) {
quad1_vel = Vector2f { MAX ( quad1_vel . x , desired_vel . x ) , MAX ( quad1_vel . y , desired_vel . y ) } ;
}
// second quadrant: -ve x, +ve y direction
if ( is_negative ( desired_vel . x ) & & is_positive ( desired_vel . y ) ) {
quad2_vel = Vector2f { MIN ( quad2_vel . x , desired_vel . x ) , MAX ( quad2_vel . y , desired_vel . y ) } ;
}
// third quadrant: -ve x, -ve y direction
if ( is_negative ( desired_vel . x ) & & is_negative ( desired_vel . y ) ) {
quad3_vel = Vector2f { MIN ( quad3_vel . x , desired_vel . x ) , MIN ( quad3_vel . y , desired_vel . y ) } ;
}
// fourth quadrant: +ve x, -ve y direction
if ( is_positive ( desired_vel . x ) & & is_negative ( desired_vel . y ) ) {
quad4_vel = Vector2f { MAX ( quad4_vel . x , desired_vel . x ) , MIN ( quad4_vel . y , desired_vel . y ) } ;
}
}
2020-12-06 08:45:16 -04:00
/*
Calculate maximum velocity vector that can be formed in each quadrant and separately store max & min of vertical components
*/
void AC_Avoid : : find_max_quadrant_velocity_3D ( Vector3f & desired_vel , Vector2f & quad1_vel , Vector2f & quad2_vel , Vector2f & quad3_vel , Vector2f & quad4_vel , float & max_z_vel , float & min_z_vel )
{
// split into horizontal and vertical components
Vector2f velocity_xy { desired_vel . x , desired_vel . y } ;
find_max_quadrant_velocity ( velocity_xy , quad1_vel , quad2_vel , quad3_vel , quad4_vel ) ;
// store maximum and minimum of z
if ( is_positive ( desired_vel . z ) & & ( desired_vel . z > max_z_vel ) ) {
max_z_vel = desired_vel . z ;
}
if ( is_negative ( desired_vel . z ) & & ( desired_vel . z < min_z_vel ) ) {
min_z_vel = desired_vel . z ;
}
}
2018-01-29 08:36:37 -04:00
/*
* Computes the speed such that the stopping distance
* of the vehicle will be exactly the input distance .
*/
float AC_Avoid : : get_max_speed ( float kP , float accel_cmss , float distance_cm , float dt ) const
{
if ( is_zero ( kP ) ) {
return safe_sqrt ( 2.0f * distance_cm * accel_cmss ) ;
} else {
2020-12-15 08:48:49 -04:00
return sqrt_controller ( distance_cm , kP , accel_cmss , dt ) ;
2018-01-29 08:36:37 -04:00
}
}
2016-06-19 22:12:17 -03:00
/*
* Adjusts the desired velocity for the circular fence .
*/
2020-07-21 14:01:53 -03:00
void AC_Avoid : : adjust_velocity_circle_fence ( float kP , float accel_cmss , Vector2f & desired_vel_cms , Vector2f & backup_vel , float dt )
2016-06-19 22:12:17 -03:00
{
2019-05-22 03:03:57 -03:00
AC_Fence * fence = AP : : fence ( ) ;
if ( fence = = nullptr ) {
return ;
}
AC_Fence & _fence = * fence ;
2016-06-19 22:12:17 -03:00
// exit if circular fence is not enabled
if ( ( _fence . get_enabled_fences ( ) & AC_FENCE_TYPE_CIRCLE ) = = 0 ) {
return ;
}
2016-06-23 01:16:26 -03:00
// exit if the circular fence has already been breached
if ( ( _fence . get_breaches ( ) & AC_FENCE_TYPE_CIRCLE ) ! = 0 ) {
return ;
}
2019-06-07 06:30:52 -03:00
// get desired speed
const float desired_speed = desired_vel_cms . length ( ) ;
if ( is_zero ( desired_speed ) ) {
// no avoidance necessary when desired speed is zero
return ;
}
2019-05-22 03:03:57 -03:00
const AP_AHRS & _ahrs = AP : : ahrs ( ) ;
2017-12-07 00:03:36 -04:00
// get position as a 2D offset from ahrs home
Vector2f position_xy ;
if ( ! _ahrs . get_relative_position_NE_home ( position_xy ) ) {
// we have no idea where we are....
return ;
}
position_xy * = 100.0f ; // m -> cm
2016-06-19 22:12:17 -03:00
// get the fence radius in cm
const float fence_radius = _fence . get_radius ( ) * 100.0f ;
// get the margin to the fence in cm
2017-04-12 09:09:52 -03:00
const float margin_cm = _fence . get_margin ( ) * 100.0f ;
2019-06-07 06:30:52 -03:00
2020-07-21 14:01:53 -03:00
if ( margin_cm > fence_radius ) {
return ;
}
2019-06-04 08:20:45 -03:00
// get vehicle distance from home
const float dist_from_home = position_xy . length ( ) ;
2019-06-07 06:30:52 -03:00
if ( dist_from_home > fence_radius ) {
// outside of circular fence, no velocity adjustments
return ;
}
2020-07-21 14:01:53 -03:00
const float distance_to_boundary = fence_radius - dist_from_home ;
// for backing away
Vector2f quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ;
// back away if vehicle has breached margin
if ( is_negative ( distance_to_boundary - margin_cm ) ) {
2020-12-06 08:45:16 -04:00
calc_backup_velocity_2D ( kP , accel_cmss , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel , margin_cm - distance_to_boundary , position_xy , dt ) ;
2020-07-21 14:01:53 -03:00
}
// desired backup velocity is sum of maximum velocity component in each quadrant
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
2019-06-07 06:30:52 -03:00
// vehicle is inside the circular fence
2021-01-10 14:12:52 -04:00
switch ( _behavior ) {
case BEHAVIOR_SLIDE : {
2019-06-07 06:30:52 -03:00
// implement sliding behaviour
const Vector2f stopping_point = position_xy + desired_vel_cms * ( get_stopping_distance ( kP , accel_cmss , desired_speed ) / desired_speed ) ;
const float stopping_point_dist_from_home = stopping_point . length ( ) ;
if ( stopping_point_dist_from_home < = fence_radius - margin_cm ) {
// stopping before before fence so no need to adjust
return ;
}
// unsafe desired velocity - will not be able to stop before reaching margin from fence
// Project stopping point radially onto fence boundary
// Adjusted velocity will point towards this projected point at a safe speed
const Vector2f target_offset = stopping_point * ( ( fence_radius - margin_cm ) / stopping_point_dist_from_home ) ;
const Vector2f target_direction = target_offset - position_xy ;
const float distance_to_target = target_direction . length ( ) ;
2019-07-15 01:11:25 -03:00
if ( is_positive ( distance_to_target ) ) {
const float max_speed = get_max_speed ( kP , accel_cmss , distance_to_target , dt ) ;
desired_vel_cms = target_direction * ( MIN ( desired_speed , max_speed ) / distance_to_target ) ;
}
2021-01-10 14:12:52 -04:00
break ;
}
case ( BEHAVIOR_STOP ) : {
2019-06-07 06:30:52 -03:00
// implement stopping behaviour
// calculate stopping point plus a margin so we look forward far enough to intersect with circular fence
const Vector2f stopping_point_plus_margin = position_xy + desired_vel_cms * ( ( 2.0f + margin_cm + get_stopping_distance ( kP , accel_cmss , desired_speed ) ) / desired_speed ) ;
const float stopping_point_plus_margin_dist_from_home = stopping_point_plus_margin . length ( ) ;
if ( dist_from_home > = fence_radius - margin_cm ) {
2019-07-15 01:11:25 -03:00
// vehicle has already breached margin around fence
2019-06-07 06:30:52 -03:00
// if stopping point is even further from home (i.e. in wrong direction) then adjust speed to zero
// otherwise user is backing away from fence so do not apply limits
if ( stopping_point_plus_margin_dist_from_home > = dist_from_home ) {
desired_vel_cms . zero ( ) ;
2019-06-04 08:20:45 -03:00
}
} else {
2019-06-07 06:30:52 -03:00
// shorten vector without adjusting its direction
Vector2f intersection ;
if ( Vector2f : : circle_segment_intersection ( position_xy , stopping_point_plus_margin , Vector2f ( 0.0f , 0.0f ) , fence_radius - margin_cm , intersection ) ) {
2020-07-14 05:25:06 -03:00
const float distance_to_target = ( intersection - position_xy ) . length ( ) ;
2019-06-07 06:30:52 -03:00
const float max_speed = get_max_speed ( kP , accel_cmss , distance_to_target , dt ) ;
if ( max_speed < desired_speed ) {
desired_vel_cms * = MAX ( max_speed , 0.0f ) / desired_speed ;
2017-12-12 08:19:37 -04:00
}
}
2016-06-19 22:12:17 -03:00
}
2021-01-10 14:12:52 -04:00
break ;
}
2016-06-19 22:12:17 -03:00
}
}
2016-06-22 23:45:01 -03:00
/*
2019-07-15 01:11:25 -03:00
* Adjusts the desired velocity for the exclusion polygons
2016-06-22 23:45:01 -03:00
*/
2020-07-21 14:01:53 -03:00
void AC_Avoid : : adjust_velocity_inclusion_and_exclusion_polygons ( float kP , float accel_cmss , Vector2f & desired_vel_cms , Vector2f & backup_vel , float dt )
2016-06-22 23:45:01 -03:00
{
2019-07-15 01:11:25 -03:00
const AC_Fence * fence = AP : : fence ( ) ;
2019-05-22 03:03:57 -03:00
if ( fence = = nullptr ) {
return ;
}
2019-07-15 01:11:25 -03:00
// exit if polygon fences are not enabled
if ( ( fence - > get_enabled_fences ( ) & AC_FENCE_TYPE_POLYGON ) = = 0 ) {
return ;
}
2020-07-21 14:01:53 -03:00
// for backing away
Vector2f quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ;
2019-07-15 01:11:25 -03:00
// iterate through inclusion polygons
const uint8_t num_inclusion_polygons = fence - > polyfence ( ) . get_inclusion_polygon_count ( ) ;
for ( uint8_t i = 0 ; i < num_inclusion_polygons ; i + + ) {
uint16_t num_points ;
const Vector2f * boundary = fence - > polyfence ( ) . get_inclusion_polygon ( i , num_points ) ;
2020-07-21 14:01:53 -03:00
Vector2f backup_vel_inc ;
2019-07-15 01:11:25 -03:00
// adjust velocity
2020-12-06 08:45:16 -04:00
adjust_velocity_polygon ( kP , accel_cmss , desired_vel_cms , backup_vel_inc , boundary , num_points , fence - > get_margin ( ) , dt , true ) ;
2020-07-21 14:01:53 -03:00
find_max_quadrant_velocity ( backup_vel_inc , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ) ;
2019-07-15 01:11:25 -03:00
}
// iterate through exclusion polygons
const uint8_t num_exclusion_polygons = fence - > polyfence ( ) . get_exclusion_polygon_count ( ) ;
for ( uint8_t i = 0 ; i < num_exclusion_polygons ; i + + ) {
uint16_t num_points ;
const Vector2f * boundary = fence - > polyfence ( ) . get_exclusion_polygon ( i , num_points ) ;
2020-07-21 14:01:53 -03:00
Vector2f backup_vel_exc ;
2019-07-15 01:11:25 -03:00
// adjust velocity
2020-12-06 08:45:16 -04:00
adjust_velocity_polygon ( kP , accel_cmss , desired_vel_cms , backup_vel_exc , boundary , num_points , fence - > get_margin ( ) , dt , false ) ;
2020-07-21 14:01:53 -03:00
find_max_quadrant_velocity ( backup_vel_exc , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ) ;
2019-07-15 01:11:25 -03:00
}
2020-07-21 14:01:53 -03:00
// desired backup velocity is sum of maximum velocity component in each quadrant
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
2019-07-15 01:11:25 -03:00
}
/*
* Adjusts the desired velocity for the inclusion circles
*/
2020-07-21 14:01:53 -03:00
void AC_Avoid : : adjust_velocity_inclusion_circles ( float kP , float accel_cmss , Vector2f & desired_vel_cms , Vector2f & backup_vel , float dt )
2019-07-15 01:11:25 -03:00
{
const AC_Fence * fence = AP : : fence ( ) ;
if ( fence = = nullptr ) {
return ;
}
// return immediately if no inclusion circles
const uint8_t num_circles = fence - > polyfence ( ) . get_inclusion_circle_count ( ) ;
if ( num_circles = = 0 ) {
return ;
}
// exit if polygon fences are not enabled
if ( ( fence - > get_enabled_fences ( ) & AC_FENCE_TYPE_POLYGON ) = = 0 ) {
return ;
}
// get vehicle position
Vector2f position_NE ;
if ( ! AP : : ahrs ( ) . get_relative_position_NE_origin ( position_NE ) ) {
// do not limit velocity if we don't have a position estimate
return ;
}
position_NE = position_NE * 100.0f ; // m to cm
2019-05-22 03:03:57 -03:00
2019-07-15 01:11:25 -03:00
// get the margin to the fence in cm
const float margin_cm = fence - > get_margin ( ) * 100.0f ;
2020-07-21 14:01:53 -03:00
// get desired speed
const float desired_speed = desired_vel_cms . length ( ) ;
2019-07-15 01:11:25 -03:00
// get stopping distance as an offset from the vehicle
Vector2f stopping_offset ;
2020-07-21 14:01:53 -03:00
if ( ! is_zero ( desired_speed ) ) {
2021-01-10 14:12:52 -04:00
switch ( _behavior ) {
2020-07-21 14:01:53 -03:00
case BEHAVIOR_SLIDE :
stopping_offset = desired_vel_cms * ( get_stopping_distance ( kP , accel_cmss , desired_speed ) / desired_speed ) ;
break ;
case BEHAVIOR_STOP :
// calculate stopping point plus a margin so we look forward far enough to intersect with circular fence
stopping_offset = desired_vel_cms * ( ( 2.0f + margin_cm + get_stopping_distance ( kP , accel_cmss , desired_speed ) ) / desired_speed ) ;
break ;
}
2019-07-15 01:11:25 -03:00
}
2020-07-21 14:01:53 -03:00
// for backing away
Vector2f quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ;
2019-07-15 01:11:25 -03:00
// iterate through inclusion circles
for ( uint8_t i = 0 ; i < num_circles ; i + + ) {
Vector2f center_pos_cm ;
float radius ;
if ( fence - > polyfence ( ) . get_inclusion_circle ( i , center_pos_cm , radius ) ) {
// get position relative to circle's center
const Vector2f position_NE_rel = ( position_NE - center_pos_cm ) ;
// if we are outside this circle do not limit velocity for this circle
const float dist_sq_cm = position_NE_rel . length_squared ( ) ;
const float radius_cm = ( radius * 100.0f ) ;
if ( dist_sq_cm > sq ( radius_cm ) ) {
continue ;
}
2020-07-21 14:01:53 -03:00
const float radius_with_margin = radius_cm - margin_cm ;
if ( is_negative ( radius_with_margin ) ) {
return ;
}
const float margin_breach = radius_with_margin - safe_sqrt ( dist_sq_cm ) ;
// back away if vehicle has breached margin
if ( is_negative ( margin_breach ) ) {
2020-12-06 08:45:16 -04:00
calc_backup_velocity_2D ( kP , accel_cmss , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel , margin_breach , position_NE_rel , dt ) ;
2020-07-21 14:01:53 -03:00
}
if ( is_zero ( desired_speed ) ) {
// no avoidance necessary when desired speed is zero
continue ;
}
2021-01-10 14:12:52 -04:00
switch ( _behavior ) {
2019-07-15 01:11:25 -03:00
case BEHAVIOR_SLIDE : {
// implement sliding behaviour
const Vector2f stopping_point = position_NE_rel + stopping_offset ;
const float stopping_point_dist = stopping_point . length ( ) ;
if ( is_zero ( stopping_point_dist ) | | ( stopping_point_dist < = ( radius_cm - margin_cm ) ) ) {
// stopping before before fence so no need to adjust for this circle
continue ;
}
// unsafe desired velocity - will not be able to stop before reaching margin from fence
// project stopping point radially onto fence boundary
// adjusted velocity will point towards this projected point at a safe speed
const Vector2f target_offset = stopping_point * ( ( radius_cm - margin_cm ) / stopping_point_dist ) ;
const Vector2f target_direction = target_offset - position_NE_rel ;
const float distance_to_target = target_direction . length ( ) ;
if ( is_positive ( distance_to_target ) ) {
const float max_speed = get_max_speed ( kP , accel_cmss , distance_to_target , dt ) ;
desired_vel_cms = target_direction * ( MIN ( desired_speed , max_speed ) / distance_to_target ) ;
}
}
break ;
case BEHAVIOR_STOP : {
// implement stopping behaviour
const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset ;
const float dist_cm = safe_sqrt ( dist_sq_cm ) ;
if ( dist_cm > = radius_cm - margin_cm ) {
// vehicle has already breached margin around fence
// if stopping point is even further from center (i.e. in wrong direction) then adjust speed to zero
// otherwise user is backing away from fence so do not apply limits
if ( stopping_point_plus_margin . length ( ) > = dist_cm ) {
desired_vel_cms . zero ( ) ;
2020-07-21 14:01:53 -03:00
// desired backup velocity is sum of maximum velocity component in each quadrant
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
2019-07-15 01:11:25 -03:00
return ;
}
} else {
// shorten vector without adjusting its direction
Vector2f intersection ;
if ( Vector2f : : circle_segment_intersection ( position_NE_rel , stopping_point_plus_margin , Vector2f ( 0.0f , 0.0f ) , radius_cm - margin_cm , intersection ) ) {
2020-07-14 05:25:06 -03:00
const float distance_to_target = ( intersection - position_NE_rel ) . length ( ) ;
2019-07-15 01:11:25 -03:00
const float max_speed = get_max_speed ( kP , accel_cmss , distance_to_target , dt ) ;
if ( max_speed < desired_speed ) {
desired_vel_cms * = MAX ( max_speed , 0.0f ) / desired_speed ;
}
}
}
}
break ;
}
}
}
2020-07-21 14:01:53 -03:00
// desired backup velocity is sum of maximum velocity component in each quadrant
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
2019-07-15 01:11:25 -03:00
}
/*
* Adjusts the desired velocity for the exclusion circles
*/
2020-07-21 14:01:53 -03:00
void AC_Avoid : : adjust_velocity_exclusion_circles ( float kP , float accel_cmss , Vector2f & desired_vel_cms , Vector2f & backup_vel , float dt )
2019-07-15 01:11:25 -03:00
{
const AC_Fence * fence = AP : : fence ( ) ;
if ( fence = = nullptr ) {
2016-06-22 23:45:01 -03:00
return ;
}
2019-07-15 01:11:25 -03:00
// return immediately if no inclusion circles
const uint8_t num_circles = fence - > polyfence ( ) . get_exclusion_circle_count ( ) ;
if ( num_circles = = 0 ) {
2016-06-22 23:45:01 -03:00
return ;
}
2019-07-15 01:11:25 -03:00
// exit if polygon fences are not enabled
if ( ( fence - > get_enabled_fences ( ) & AC_FENCE_TYPE_POLYGON ) = = 0 ) {
return ;
}
2016-06-22 23:45:01 -03:00
2019-07-15 01:11:25 -03:00
// get vehicle position
Vector2f position_NE ;
if ( ! AP : : ahrs ( ) . get_relative_position_NE_origin ( position_NE ) ) {
// do not limit velocity if we don't have a position estimate
return ;
}
position_NE = position_NE * 100.0f ; // m to cm
// get the margin to the fence in cm
const float margin_cm = fence - > get_margin ( ) * 100.0f ;
2020-07-21 14:01:53 -03:00
// for backing away
Vector2f quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ;
// get desired speed
const float desired_speed = desired_vel_cms . length ( ) ;
2019-07-15 01:11:25 -03:00
// calculate stopping distance as an offset from the vehicle (only used for BEHAVIOR_STOP)
// add a margin so we look forward far enough to intersect with circular fence
Vector2f stopping_offset ;
2020-07-21 14:01:53 -03:00
if ( ! is_zero ( desired_speed ) ) {
if ( ( AC_Avoid : : BehaviourType ) _behavior . get ( ) = = BEHAVIOR_STOP ) {
stopping_offset = desired_vel_cms * ( ( 2.0f + margin_cm + get_stopping_distance ( kP , accel_cmss , desired_speed ) ) / desired_speed ) ;
}
2019-07-15 01:11:25 -03:00
}
// iterate through exclusion circles
for ( uint8_t i = 0 ; i < num_circles ; i + + ) {
Vector2f center_pos_cm ;
float radius ;
if ( fence - > polyfence ( ) . get_exclusion_circle ( i , center_pos_cm , radius ) ) {
// get position relative to circle's center
const Vector2f position_NE_rel = ( position_NE - center_pos_cm ) ;
// if we are inside this circle do not limit velocity for this circle
const float dist_sq_cm = position_NE_rel . length_squared ( ) ;
const float radius_cm = ( radius * 100.0f ) ;
2020-07-21 14:01:53 -03:00
if ( radius_cm < margin_cm ) {
return ;
}
2019-07-15 01:11:25 -03:00
if ( dist_sq_cm < sq ( radius_cm ) ) {
continue ;
}
2020-07-21 14:01:53 -03:00
const Vector2f vector_to_center = center_pos_cm - position_NE ;
const float dist_to_boundary = vector_to_center . length ( ) - radius_cm ;
// back away if vehicle has breached margin
if ( is_negative ( dist_to_boundary - margin_cm ) ) {
2020-12-06 08:45:16 -04:00
calc_backup_velocity_2D ( kP , accel_cmss , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel , margin_cm - dist_to_boundary , vector_to_center , dt ) ;
2020-07-21 14:01:53 -03:00
}
if ( is_zero ( desired_speed ) ) {
// no avoidance necessary when desired speed is zero
continue ;
}
2019-07-15 01:11:25 -03:00
2021-01-10 14:12:52 -04:00
switch ( _behavior ) {
2019-07-15 01:11:25 -03:00
case BEHAVIOR_SLIDE : {
// vector from current position to circle's center
2020-07-21 14:01:53 -03:00
Vector2f limit_direction = vector_to_center ;
2019-07-15 01:11:25 -03:00
if ( limit_direction . is_zero ( ) ) {
// vehicle is exactly on circle center so do not limit velocity
continue ;
}
// calculate distance to edge of circle
const float limit_distance_cm = limit_direction . length ( ) - radius_cm ;
if ( ! is_positive ( limit_distance_cm ) ) {
// vehicle is within circle so do not limit velocity
continue ;
}
// vehicle is outside the circle, adjust velocity to stay outside
limit_direction . normalize ( ) ;
2020-12-06 08:45:16 -04:00
limit_velocity_2D ( kP , accel_cmss , desired_vel_cms , limit_direction , MAX ( limit_distance_cm - margin_cm , 0.0f ) , dt ) ;
2019-07-15 01:11:25 -03:00
}
break ;
case BEHAVIOR_STOP : {
// implement stopping behaviour
const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset ;
const float dist_cm = safe_sqrt ( dist_sq_cm ) ;
if ( dist_cm < radius_cm + margin_cm ) {
// vehicle has already breached margin around fence
// if stopping point is closer to center (i.e. in wrong direction) then adjust speed to zero
// otherwise user is backing away from fence so do not apply limits
if ( stopping_point_plus_margin . length ( ) < = dist_cm ) {
desired_vel_cms . zero ( ) ;
2020-07-21 14:01:53 -03:00
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
2019-07-15 01:11:25 -03:00
return ;
}
} else {
// shorten vector without adjusting its direction
Vector2f intersection ;
if ( Vector2f : : circle_segment_intersection ( position_NE_rel , stopping_point_plus_margin , Vector2f ( 0.0f , 0.0f ) , radius_cm + margin_cm , intersection ) ) {
2020-07-14 05:25:06 -03:00
const float distance_to_target = ( intersection - position_NE_rel ) . length ( ) ;
2019-07-15 01:11:25 -03:00
const float max_speed = get_max_speed ( kP , accel_cmss , distance_to_target , dt ) ;
if ( max_speed < desired_speed ) {
desired_vel_cms * = MAX ( max_speed , 0.0f ) / desired_speed ;
}
}
}
}
break ;
}
}
}
2020-07-21 14:01:53 -03:00
// desired backup velocity is sum of maximum velocity component in each quadrant
backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
2016-11-08 00:57:31 -04:00
}
2017-05-02 06:10:37 -03:00
/*
* Adjusts the desired velocity for the beacon fence .
*/
2020-07-21 14:01:53 -03:00
void AC_Avoid : : adjust_velocity_beacon_fence ( float kP , float accel_cmss , Vector2f & desired_vel_cms , Vector2f & backup_vel , float dt )
2017-05-02 06:10:37 -03:00
{
2019-05-22 03:03:57 -03:00
AP_Beacon * _beacon = AP : : beacon ( ) ;
2017-05-02 06:10:37 -03:00
// exit if the beacon is not present
if ( _beacon = = nullptr ) {
return ;
}
// get boundary from beacons
2019-07-15 01:11:25 -03:00
uint16_t num_points = 0 ;
2017-05-02 06:10:37 -03:00
const Vector2f * boundary = _beacon - > get_boundary_points ( num_points ) ;
2019-07-15 01:11:25 -03:00
if ( ( boundary = = nullptr ) | | ( num_points = = 0 ) ) {
2017-05-02 06:10:37 -03:00
return ;
}
// adjust velocity using beacon
2019-05-22 03:03:57 -03:00
float margin = 0 ;
if ( AP : : fence ( ) ) {
margin = AP : : fence ( ) - > get_margin ( ) ;
}
2020-12-06 08:45:16 -04:00
adjust_velocity_polygon ( kP , accel_cmss , desired_vel_cms , backup_vel , boundary , num_points , margin , dt , true ) ;
2017-05-02 06:10:37 -03:00
}
2016-11-08 00:57:31 -04:00
/*
* Adjusts the desired velocity based on output from the proximity sensor
*/
2020-12-06 08:45:16 -04:00
void AC_Avoid : : adjust_velocity_proximity ( float kP , float accel_cmss , Vector3f & desired_vel_cms , Vector3f & backup_vel , float kP_z , float accel_cmss_z , float dt )
2016-11-08 00:57:31 -04:00
{
2021-03-25 05:08:05 -03:00
# if HAL_PROXIMITY_ENABLED
2016-11-08 00:57:31 -04:00
// exit immediately if proximity sensor is not present
2019-05-22 03:03:57 -03:00
AP_Proximity * proximity = AP : : proximity ( ) ;
if ( ! proximity ) {
return ;
}
AP_Proximity & _proximity = * proximity ;
2021-01-10 14:12:52 -04:00
// check for status of the sensor
2019-09-27 05:59:19 -03:00
if ( _proximity . get_status ( ) ! = AP_Proximity : : Status : : Good ) {
2016-11-08 00:57:31 -04:00
return ;
}
2021-01-10 14:12:52 -04:00
// get total number of obstacles
const uint8_t obstacle_num = _proximity . get_obstacle_count ( ) ;
if ( obstacle_num = = 0 ) {
// no obstacles
return ;
}
2020-12-06 08:45:16 -04:00
const AP_AHRS & _ahrs = AP : : ahrs ( ) ;
// for backing away
Vector2f quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ;
float max_back_vel_z = 0.0f ;
float min_back_vel_z = 0.0f ;
// rotate velocity vector from earth frame to body-frame since obstacles are in body-frame
2021-01-10 14:12:52 -04:00
const Vector2f desired_vel_body_cms = _ahrs . earth_to_body2D ( Vector2f { desired_vel_cms . x , desired_vel_cms . y } ) ;
// safe_vel will be adjusted to stay away from Proximity Obstacles
Vector3f safe_vel = Vector3f { desired_vel_body_cms . x , desired_vel_body_cms . y , desired_vel_cms . z } ;
2021-02-11 03:36:18 -04:00
const Vector3f safe_vel_orig = safe_vel ;
2020-12-06 08:45:16 -04:00
// calc margin in cm
const float margin_cm = MAX ( _margin * 100.0f , 0.0f ) ;
2021-05-26 16:04:02 -03:00
Vector3f stopping_point_plus_margin ;
2020-12-06 08:45:16 -04:00
if ( ! desired_vel_cms . is_zero ( ) ) {
2021-01-10 14:12:52 -04:00
// only used for "stop mode". Pre-calculating the stopping point here makes sure we do not need to repeat the calculations under iterations.
2020-12-06 08:45:16 -04:00
const float speed = safe_vel . length ( ) ;
2021-05-26 16:04:02 -03:00
stopping_point_plus_margin = safe_vel * ( ( 2.0f + margin_cm + get_stopping_distance ( kP , accel_cmss , speed ) ) / speed ) ;
2020-12-06 08:45:16 -04:00
}
2021-02-11 03:36:18 -04:00
2020-12-06 08:45:16 -04:00
for ( uint8_t i = 0 ; i < obstacle_num ; i + + ) {
// get obstacle from proximity library
Vector3f vector_to_obstacle ;
2020-12-27 12:32:34 -04:00
if ( ! _proximity . get_obstacle ( i , vector_to_obstacle ) ) {
// this one is not valid
continue ;
}
2021-05-26 16:04:02 -03:00
2020-12-06 08:45:16 -04:00
const float dist_to_boundary = vector_to_obstacle . length ( ) ;
if ( is_zero ( dist_to_boundary ) ) {
continue ;
}
// back away if vehicle has breached margin
if ( is_negative ( dist_to_boundary - margin_cm ) ) {
const float breach_dist = margin_cm - dist_to_boundary ;
2020-12-27 12:30:07 -04:00
// add a deadzone so that the vehicle doesn't backup and go forward again and again
2021-06-02 15:56:39 -03:00
const float deadzone = MAX ( 0.0f , _backup_deadzone ) * 100.0f ;
if ( breach_dist > deadzone ) {
2021-01-10 14:12:52 -04:00
// this vector will help us decide how much we have to back away horizontally and vertically
2020-12-27 12:30:07 -04:00
const Vector3f margin_vector = vector_to_obstacle . normalized ( ) * breach_dist ;
const float xy_back_dist = norm ( margin_vector . x , margin_vector . y ) ;
const float z_back_dist = margin_vector . z ;
calc_backup_velocity_3D ( kP , accel_cmss , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel , xy_back_dist , vector_to_obstacle , kP_z , accel_cmss_z , z_back_dist , min_back_vel_z , max_back_vel_z , dt ) ;
2021-06-02 15:56:39 -03:00
}
2020-12-06 08:45:16 -04:00
}
2020-12-27 12:30:07 -04:00
2020-12-06 08:45:16 -04:00
if ( desired_vel_cms . is_zero ( ) ) {
// cannot limit velocity if there is nothing to limit
// backing up (if needed) has already been done
continue ;
}
2021-01-10 14:12:52 -04:00
switch ( _behavior ) {
case BEHAVIOR_SLIDE : {
Vector3f limit_direction { vector_to_obstacle } ;
2020-12-06 08:45:16 -04:00
// distance to closest point
const float limit_distance_cm = limit_direction . length ( ) ;
2021-01-10 14:12:52 -04:00
if ( is_zero ( limit_distance_cm ) ) {
2020-12-06 08:45:16 -04:00
// We are exactly on the edge, this should ideally never be possible
// i.e. do not adjust velocity.
continue ;
}
2021-01-10 14:12:52 -04:00
// Adjust velocity to not violate margin.
limit_velocity_3D ( kP , accel_cmss , safe_vel , limit_direction , margin_cm , kP_z , accel_cmss_z , dt ) ;
break ;
}
2021-05-26 16:04:02 -03:00
2021-01-10 14:12:52 -04:00
case BEHAVIOR_STOP : {
2020-12-06 08:45:16 -04:00
// vector from current position to obstacle
Vector3f limit_direction ;
2021-05-26 16:04:02 -03:00
// find closest point with line segment
// also see if the vehicle will "roughly" intersect the boundary with the projected stopping point
const bool intersect = _proximity . closest_point_from_segment_to_obstacle ( i , Vector3f { } , stopping_point_plus_margin , limit_direction ) ;
if ( intersect ) {
// the vehicle is intersecting the plane formed by the boundary
// distance to the closest point from the stopping point
float limit_distance_cm = limit_direction . length ( ) ;
if ( is_zero ( limit_distance_cm ) ) {
// We are exactly on the edge, this should ideally never be possible
// i.e. do not adjust velocity.
return ;
}
if ( limit_distance_cm < = margin_cm ) {
// we are within the margin so stop vehicle
safe_vel . zero ( ) ;
} else {
// vehicle inside the given edge, adjust velocity to not violate this edge
limit_velocity_3D ( kP , accel_cmss , safe_vel , limit_direction , margin_cm , kP_z , accel_cmss_z , dt ) ;
}
break ;
2021-01-10 14:12:52 -04:00
}
2020-12-06 08:45:16 -04:00
}
2021-05-26 16:04:02 -03:00
}
2020-12-06 08:45:16 -04:00
}
// desired backup velocity is sum of maximum velocity component in each quadrant
2021-01-10 14:12:52 -04:00
const Vector2f desired_back_vel_cms_xy = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
2020-12-06 08:45:16 -04:00
const float desired_back_vel_cms_z = max_back_vel_z + min_back_vel_z ;
2021-02-11 03:36:18 -04:00
if ( safe_vel = = safe_vel_orig & & desired_back_vel_cms_xy . is_zero ( ) & & is_zero ( desired_back_vel_cms_z ) ) {
// proximity avoidance did nothing, no point in doing the calculations below. Return early
backup_vel . zero ( ) ;
return ;
}
2020-12-06 08:45:16 -04:00
// set modified desired velocity vector and back away velocity vector
// vectors were in body-frame, rotate resulting vector back to earth-frame
2021-01-10 14:12:52 -04:00
const Vector2f safe_vel_2d = _ahrs . body_to_earth2D ( Vector2f { safe_vel . x , safe_vel . y } ) ;
2020-12-06 08:45:16 -04:00
desired_vel_cms = Vector3f { safe_vel_2d . x , safe_vel_2d . y , safe_vel . z } ;
const Vector2f backup_vel_xy = _ahrs . body_to_earth2D ( desired_back_vel_cms_xy ) ;
backup_vel = Vector3f { backup_vel_xy . x , backup_vel_xy . y , desired_back_vel_cms_z } ;
2021-03-25 05:08:05 -03:00
# endif // HAL_PROXIMITY_ENABLED
2016-11-08 00:57:31 -04:00
}
/*
* Adjusts the desired velocity for the polygon fence .
*/
2020-12-06 08:45:16 -04:00
void AC_Avoid : : adjust_velocity_polygon ( float kP , float accel_cmss , Vector2f & desired_vel_cms , Vector2f & backup_vel , const Vector2f * boundary , uint16_t num_points , float margin , float dt , bool stay_inside )
2016-11-08 00:57:31 -04:00
{
2016-06-22 23:45:01 -03:00
// exit if there are no points
2016-10-30 02:24:21 -03:00
if ( boundary = = nullptr | | num_points = = 0 ) {
2016-06-22 23:45:01 -03:00
return ;
}
2019-05-22 03:03:57 -03:00
const AP_AHRS & _ahrs = AP : : ahrs ( ) ;
2016-06-22 23:45:01 -03:00
// do not adjust velocity if vehicle is outside the polygon fence
2017-08-08 06:55:07 -03:00
Vector2f position_xy ;
2020-12-06 08:45:16 -04:00
if ( ! _ahrs . get_relative_position_NE_origin ( position_xy ) ) {
// boundary is in earth frame but we have no idea
// where we are
return ;
2016-11-08 01:36:39 -04:00
}
2020-12-06 08:45:16 -04:00
position_xy = position_xy * 100.0f ; // m to cm
2017-08-08 06:55:07 -03:00
2019-07-15 01:11:25 -03:00
// return if we have already breached polygon
const bool inside_polygon = ! Polygon_outside ( position_xy , boundary , num_points ) ;
if ( inside_polygon ! = stay_inside ) {
2016-06-22 23:45:01 -03:00
return ;
}
// Safe_vel will be adjusted to remain within fence.
// We need a separate vector in case adjustment fails,
// e.g. if we are exactly on the boundary.
2018-02-15 15:16:42 -04:00
Vector2f safe_vel ( desired_vel_cms ) ;
2020-07-21 14:01:53 -03:00
Vector2f desired_back_vel_cms ;
2016-06-22 23:45:01 -03:00
2017-04-12 09:09:52 -03:00
// calc margin in cm
2018-10-26 01:49:45 -03:00
const float margin_cm = MAX ( margin * 100.0f , 0.0f ) ;
2017-12-12 08:19:37 -04:00
// for stopping
2018-10-26 01:49:45 -03:00
const float speed = safe_vel . length ( ) ;
2020-07-21 14:01:53 -03:00
Vector2f stopping_point_plus_margin ;
if ( ! desired_vel_cms . is_zero ( ) ) {
stopping_point_plus_margin = position_xy + safe_vel * ( ( 2.0f + margin_cm + get_stopping_distance ( kP , accel_cmss , speed ) ) / speed ) ;
}
2017-04-12 09:09:52 -03:00
2020-07-21 14:01:53 -03:00
// for backing away
Vector2f quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel ;
2019-05-29 04:01:56 -03:00
for ( uint16_t i = 0 ; i < num_points ; i + + ) {
uint16_t j = i + 1 ;
if ( j > = num_points ) {
j = 0 ;
}
2016-06-22 23:45:01 -03:00
// end points of current edge
Vector2f start = boundary [ j ] ;
Vector2f end = boundary [ i ] ;
2020-07-21 14:01:53 -03:00
Vector2f vector_to_boundary = Vector2f : : closest_point ( position_xy , start , end ) - position_xy ;
// back away if vehicle has breached margin
if ( is_negative ( vector_to_boundary . length ( ) - margin_cm ) ) {
2020-12-06 08:45:16 -04:00
calc_backup_velocity_2D ( kP , accel_cmss , quad_1_back_vel , quad_2_back_vel , quad_3_back_vel , quad_4_back_vel , margin_cm - vector_to_boundary . length ( ) , vector_to_boundary , dt ) ;
2020-07-21 14:01:53 -03:00
}
// exit immediately if no desired velocity
if ( desired_vel_cms . is_zero ( ) ) {
continue ;
}
2021-01-10 14:12:52 -04:00
switch ( _behavior ) {
case ( BEHAVIOR_SLIDE ) : {
2017-12-12 08:19:37 -04:00
// vector from current position to closest point on current edge
2020-07-21 14:01:53 -03:00
Vector2f limit_direction = vector_to_boundary ;
2017-12-12 08:19:37 -04:00
// distance to closest point
2018-02-15 15:16:42 -04:00
const float limit_distance_cm = limit_direction . length ( ) ;
2021-01-10 14:12:52 -04:00
if ( is_zero ( limit_distance_cm ) ) {
2017-12-12 08:19:37 -04:00
// We are exactly on the edge - treat this as a fence breach.
// i.e. do not adjust velocity.
return ;
}
2021-01-10 14:12:52 -04:00
// We are strictly inside the given edge.
// Adjust velocity to not violate this edge.
limit_direction / = limit_distance_cm ;
limit_velocity_2D ( kP , accel_cmss , safe_vel , limit_direction , MAX ( limit_distance_cm - margin_cm , 0.0f ) , dt ) ;
break ;
}
case ( BEHAVIOR_STOP ) : {
2017-12-12 08:19:37 -04:00
// find intersection with line segment
Vector2f intersection ;
2018-10-24 03:31:36 -03:00
if ( Vector2f : : segment_intersection ( position_xy , stopping_point_plus_margin , start , end , intersection ) ) {
2017-12-12 08:19:37 -04:00
// vector from current position to point on current edge
Vector2f limit_direction = intersection - position_xy ;
2018-02-15 15:16:42 -04:00
const float limit_distance_cm = limit_direction . length ( ) ;
2021-01-10 14:12:52 -04:00
if ( is_zero ( limit_distance_cm ) ) {
2017-12-12 08:19:37 -04:00
// We are exactly on the edge - treat this as a fence breach.
// i.e. do not adjust velocity.
return ;
}
2021-01-10 14:12:52 -04:00
if ( limit_distance_cm < = margin_cm ) {
// we are within the margin so stop vehicle
safe_vel . zero ( ) ;
} else {
// vehicle inside the given edge, adjust velocity to not violate this edge
limit_direction / = limit_distance_cm ;
limit_velocity_2D ( kP , accel_cmss , safe_vel , limit_direction , MAX ( limit_distance_cm - margin_cm , 0.0f ) , dt ) ;
}
2017-12-12 08:19:37 -04:00
}
2021-01-10 14:12:52 -04:00
break ;
}
2016-06-22 23:45:01 -03:00
}
}
2020-07-21 14:01:53 -03:00
// desired backup velocity is sum of maximum velocity component in each quadrant
desired_back_vel_cms = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel ;
2016-06-22 23:45:01 -03:00
2020-07-21 14:01:53 -03:00
// set modified desired velocity vector or back away velocity vector
2020-12-06 08:45:16 -04:00
desired_vel_cms = safe_vel ;
backup_vel = desired_back_vel_cms ;
2016-06-22 23:45:01 -03:00
}
2016-06-19 22:12:17 -03:00
/*
* Computes distance required to stop , given current speed .
*
* Implementation copied from AC_PosControl .
*/
2017-12-13 21:42:17 -04:00
float AC_Avoid : : get_stopping_distance ( float kP , float accel_cmss , float speed_cms ) const
2016-06-19 22:12:17 -03:00
{
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
2017-12-13 21:42:17 -04:00
if ( accel_cmss < = 0.0f | | is_zero ( speed_cms ) ) {
2016-06-19 22:12:17 -03:00
return 0.0f ;
}
2017-12-13 21:42:17 -04:00
// handle linear deceleration
if ( kP < = 0.0f ) {
return 0.5f * sq ( speed_cms ) / accel_cmss ;
}
2016-06-19 22:12:17 -03:00
// calculate distance within which we can stop
2016-10-03 08:44:30 -03:00
// accel_cmss/kP is the point at which velocity switches from linear to sqrt
2017-12-13 21:42:17 -04:00
if ( speed_cms < accel_cmss / kP ) {
return speed_cms / kP ;
2016-06-19 22:12:17 -03:00
} else {
2016-10-03 08:44:30 -03:00
// accel_cmss/(2.0f*kP*kP) is the distance at which we switch from linear to sqrt response
2017-12-13 21:42:17 -04:00
return accel_cmss / ( 2.0f * kP * kP ) + ( speed_cms * speed_cms ) / ( 2.0f * accel_cmss ) ;
2016-06-19 22:12:17 -03:00
}
}
2016-12-16 23:42:40 -04:00
// convert distance (in meters) to a lean percentage (in 0~1 range) for use in manual flight modes
float AC_Avoid : : distance_to_lean_pct ( float dist_m )
{
// ignore objects beyond DIST_MAX
2016-12-19 19:51:26 -04:00
if ( dist_m < 0.0f | | dist_m > = _dist_max | | _dist_max < = 0.0f ) {
2016-12-16 23:42:40 -04:00
return 0.0f ;
}
// inverted but linear response
return 1.0f - ( dist_m / _dist_max ) ;
}
// returns the maximum positive and negative roll and pitch percentages (in -1 ~ +1 range) based on the proximity sensor
void AC_Avoid : : get_proximity_roll_pitch_pct ( float & roll_positive , float & roll_negative , float & pitch_positive , float & pitch_negative )
{
2021-03-25 05:08:05 -03:00
# if HAL_PROXIMITY_ENABLED
2019-05-22 03:03:57 -03:00
AP_Proximity * proximity = AP : : proximity ( ) ;
if ( proximity = = nullptr ) {
return ;
}
AP_Proximity & _proximity = * proximity ;
2016-12-16 23:42:40 -04:00
// exit immediately if proximity sensor is not present
2019-09-27 05:59:19 -03:00
if ( _proximity . get_status ( ) ! = AP_Proximity : : Status : : Good ) {
2016-12-16 23:42:40 -04:00
return ;
}
2018-10-26 01:49:45 -03:00
const uint8_t obj_count = _proximity . get_object_count ( ) ;
2016-12-16 23:42:40 -04:00
// if no objects return
if ( obj_count = = 0 ) {
return ;
}
// calculate maximum roll, pitch values from objects
for ( uint8_t i = 0 ; i < obj_count ; i + + ) {
float ang_deg , dist_m ;
if ( _proximity . get_object_angle_and_distance ( i , ang_deg , dist_m ) ) {
if ( dist_m < _dist_max ) {
// convert distance to lean angle (in 0 to 1 range)
2016-12-19 19:51:26 -04:00
const float lean_pct = distance_to_lean_pct ( dist_m ) ;
2016-12-16 23:42:40 -04:00
// convert angle to roll and pitch lean percentages
2016-12-19 19:51:26 -04:00
const float angle_rad = radians ( ang_deg ) ;
const float roll_pct = - sinf ( angle_rad ) * lean_pct ;
const float pitch_pct = cosf ( angle_rad ) * lean_pct ;
2016-12-16 23:42:40 -04:00
// update roll, pitch maximums
if ( roll_pct > 0.0f ) {
roll_positive = MAX ( roll_positive , roll_pct ) ;
2018-04-20 12:09:22 -03:00
} else if ( roll_pct < 0.0f ) {
2016-12-16 23:42:40 -04:00
roll_negative = MIN ( roll_negative , roll_pct ) ;
}
if ( pitch_pct > 0.0f ) {
pitch_positive = MAX ( pitch_positive , pitch_pct ) ;
2018-04-20 12:09:22 -03:00
} else if ( pitch_pct < 0.0f ) {
2016-12-16 23:42:40 -04:00
pitch_negative = MIN ( pitch_negative , pitch_pct ) ;
}
}
}
}
2021-03-25 05:08:05 -03:00
# endif // HAL_PROXIMITY_ENABLED
2016-12-16 23:42:40 -04:00
}
2018-10-25 23:31:20 -03:00
// singleton instance
AC_Avoid * AC_Avoid : : _singleton ;
namespace AP {
AC_Avoid * ac_avoid ( )
{
return AC_Avoid : : get_singleton ( ) ;
}
}