ardupilot/libraries/AC_AutoTune/AC_AutoTune.cpp

2115 lines
89 KiB
C++
Raw Normal View History

#include "AC_AutoTune.h"
#include <GCS_MAVLink/GCS.h>
#include <AP_Scheduler/AP_Scheduler.h>
/*
* autotune support for multicopters
*
* Instructions:
* 1) Set up one flight mode switch position to be AltHold.
* 2) Set the Ch7 Opt or Ch8 Opt to AutoTune to allow you to turn the auto tuning on/off with the ch7 or ch8 switch.
* 3) Ensure the ch7 or ch8 switch is in the LOW position.
* 4) Wait for a calm day and go to a large open area.
* 5) Take off and put the vehicle into AltHold mode at a comfortable altitude.
* 6) Set the ch7/ch8 switch to the HIGH position to engage auto tuning:
* a) You will see it twitch about 20 degrees left and right for a few minutes, then it will repeat forward and back.
* b) Use the roll and pitch stick at any time to reposition the copter if it drifts away (it will use the original PID gains during repositioning and between tests).
* When you release the sticks it will continue auto tuning where it left off.
* c) Move the ch7/ch8 switch into the LOW position at any time to abandon the autotuning and return to the origin PIDs.
* d) Make sure that you do not have any trim set on your transmitter or the autotune may not get the signal that the sticks are centered.
* 7) When the tune completes the vehicle will change back to the original PID gains.
* 8) Put the ch7/ch8 switch into the LOW position then back to the HIGH position to test the tuned PID gains.
* 9) Put the ch7/ch8 switch into the LOW position to fly using the original PID gains.
* 10) If you are happy with the autotuned PID gains, leave the ch7/ch8 switch in the HIGH position, land and disarm to save the PIDs permanently.
* If you DO NOT like the new PIDS, switch ch7/ch8 LOW to return to the original PIDs. The gains will not be saved when you disarm
*
* What it's doing during each "twitch":
* a) invokes 90 deg/sec rate request
* b) records maximum "forward" roll rate and bounce back rate
* c) when copter reaches 20 degrees or 1 second has passed, it commands level
* d) tries to keep max rotation rate between 80% ~ 100% of requested rate (90deg/sec) by adjusting rate P
* e) increases rate D until the bounce back becomes greater than 10% of requested rate (90deg/sec)
* f) decreases rate D until the bounce back becomes less than 10% of requested rate (90deg/sec)
* g) increases rate P until the max rotate rate becomes greater than the request rate (90deg/sec)
* h) invokes a 20deg angle request on roll or pitch
* i) increases stab P until the maximum angle becomes greater than 110% of the requested angle (20deg)
* j) decreases stab P by 25%
*
*/
#define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds
#if APM_BUILD_TYPE(APM_BUILD_ArduPlane)
# define AUTOTUNE_LEVEL_ANGLE_CD 500 // angle which qualifies as level (Plane uses more relaxed 5deg)
# define AUTOTUNE_LEVEL_RATE_RP_CD 1000 // rate which qualifies as level for roll and pitch (Plane uses more relaxed 10deg/sec)
#else
# define AUTOTUNE_LEVEL_ANGLE_CD 250 // angle which qualifies as level
# define AUTOTUNE_LEVEL_RATE_RP_CD 500 // rate which qualifies as level for roll and pitch
#endif
#define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw
2018-12-20 09:57:30 -04:00
#define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 500 // time we require the aircraft to be level
#define AUTOTUNE_LEVEL_TIMEOUT_MS 2000 // time out for level
#define AUTOTUNE_LEVEL_WARNING_INTERVAL_MS 5000 // level failure warning messages sent at this interval to users
#define AUTOTUNE_Y_FILT_FREQ 10.0f // Autotune filter frequency when testing Yaw
#define AUTOTUNE_RD_BACKOFF 1.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning
#define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning
#define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration
#define AUTOTUNE_ACCEL_Y_BACKOFF 1.0f // back off from maximum acceleration
// roll and pitch axes
#define AUTOTUNE_TARGET_ANGLE_RLLPIT_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 18000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD 1000 // minimum target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
// yaw axis
#define AUTOTUNE_TARGET_ANGLE_YAW_CD 3000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_RATE_YAW_CDS 9000 // target yaw rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD 500 // minimum target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_MIN_RATE_YAW_CDS 1500 // minimum target yaw rate during AUTOTUNE_STEP_TWITCHING step
// ifdef is not working. Modified multi values to reflect heli requirements
#ifdef HELI_BUILD
// heli defines
#define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 5000U // timeout for tuning mode's testing step
#define AUTOTUNE_RP_ACCEL_MIN 20000.0f // Minimum acceleration for Roll and Pitch
#define AUTOTUNE_Y_ACCEL_MIN 10000.0f // Minimum acceleration for Yaw
#define AUTOTUNE_SP_BACKOFF 1.0f // Stab P gains are reduced to 90% of their maximum value discovered during tuning
#else
// Frame specific defaults
#define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 5000U // timeout for tuning mode's testing step
#define AUTOTUNE_RP_ACCEL_MIN 20000.0f // Minimum acceleration for Roll and Pitch
#define AUTOTUNE_Y_ACCEL_MIN 10000.0f // Minimum acceleration for Yaw
#define AUTOTUNE_SP_BACKOFF 1.0f // Stab P gains are reduced to 90% of their maximum value discovered during tuning
#endif // HELI_BUILD
// second table of user settable parameters for quadplanes, this
// allows us to go beyond the 64 parameter limit
const AP_Param::GroupInfo AC_AutoTune::var_info[] = {
// @Param: AXES
// @DisplayName: Autotune axis bitmask
// @Description: 1-byte bitmap of axes to autotune
// @Bitmask: 0:Roll,1:Pitch,2:Yaw
// @User: Standard
AP_GROUPINFO("AXES", 1, AC_AutoTune, axis_bitmask, 7), // AUTOTUNE_AXIS_BITMASK_DEFAULT
// Indices 2 and 3 where AGGR and MIN_D. These were moved to the Multi SubClass
AP_GROUPEND
};
AC_AutoTune::AC_AutoTune()
{
AP_Param::setup_object_defaults(this, var_info);
}
// autotune_init - should be called when autotune mode is selected
bool AC_AutoTune::init_internals(bool _use_poshold,
AC_AttitudeControl *_attitude_control,
AC_PosControl *_pos_control,
AP_AHRS_View *_ahrs_view,
AP_InertialNav *_inertial_nav)
{
use_poshold = _use_poshold;
attitude_control = _attitude_control;
pos_control = _pos_control;
ahrs_view = _ahrs_view;
inertial_nav = _inertial_nav;
motors = AP_Motors::get_singleton();
// exit immediately if motor are not armed
if ((motors == nullptr) || !motors->armed()) {
return false;
}
// initialise position controller
init_position_controller();
switch (mode) {
case FAILED:
// fall through to restart the tuning
FALLTHROUGH;
case UNINITIALISED:
// initializes dwell test sequence for rate_p_up and rate_d_up tests for tradheli
freq_cnt = 0;
start_freq = 0.0f;
stop_freq = 0.0f;
ff_up_first_iter = true;
// autotune has never been run
// so store current gains as original gains
backup_gains_and_initialise();
// advance mode to tuning
mode = TUNING;
// send message to ground station that we've started tuning
update_gcs(AUTOTUNE_MESSAGE_STARTED);
break;
case TUNING:
// we are restarting tuning so restart where we left off
// reset test variables to continue where we left off
// reset dwell test variables if sweep was interrupted in order to restart sweep
if (!is_equal(start_freq,stop_freq)) {
freq_cnt = 0;
start_freq = 0.0f;
stop_freq = 0.0f;
}
step = WAITING_FOR_LEVEL;
step_start_time_ms = AP_HAL::millis();
level_start_time_ms = step_start_time_ms;
// reset gains to tuning-start gains (i.e. low I term)
load_gains(GAIN_INTRA_TEST);
AP::logger().Write_Event(LogEvent::AUTOTUNE_RESTART);
update_gcs(AUTOTUNE_MESSAGE_STARTED);
break;
case SUCCESS:
// we have completed a tune and the pilot wishes to test the new gains
load_gains(GAIN_TUNED);
update_gcs(AUTOTUNE_MESSAGE_TESTING);
AP::logger().Write_Event(LogEvent::AUTOTUNE_PILOT_TESTING);
break;
}
have_position = false;
return true;
}
// stop - should be called when the ch7/ch8 switch is switched OFF
void AC_AutoTune::stop()
{
// set gains to their original values
load_gains(GAIN_ORIGINAL);
// re-enable angle-to-rate request limits
attitude_control->use_sqrt_controller(true);
update_gcs(AUTOTUNE_MESSAGE_STOPPED);
AP::logger().Write_Event(LogEvent::AUTOTUNE_OFF);
// Note: we leave the mode as it was so that we know how the autotune ended
// we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch
}
// initialise position controller
bool AC_AutoTune::init_position_controller(void)
{
2021-05-03 22:42:26 -03:00
// initialize vertical maximum speeds and acceleration
init_z_limits();
2021-05-19 11:09:48 -03:00
// initialise the vertical position controller
2021-05-03 22:42:26 -03:00
pos_control->init_z_controller();
return true;
}
const char *AC_AutoTune::level_issue_string() const
{
switch (level_problem.issue) {
case LevelIssue::NONE:
return "None";
case LevelIssue::ANGLE_ROLL:
return "Angle(R)";
case LevelIssue::ANGLE_PITCH:
return "Angle(P)";
case LevelIssue::ANGLE_YAW:
return "Angle(Y)";
case LevelIssue::RATE_ROLL:
return "Rate(R)";
case LevelIssue::RATE_PITCH:
return "Rate(P)";
case LevelIssue::RATE_YAW:
return "Rate(Y)";
}
return "Bug";
}
void AC_AutoTune::send_step_string()
{
if (pilot_override) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Paused: Pilot Override Active");
return;
}
switch (step) {
case WAITING_FOR_LEVEL:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Leveling (%s %4.1f > %4.1f)", level_issue_string(), (double)(level_problem.current*0.01f), (double)(level_problem.maximum*0.01f));
return;
case UPDATE_GAINS:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Updating Gains");
return;
case TESTING:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Testing");
return;
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: unknown step");
}
const char *AC_AutoTune::type_string() const
{
switch (tune_type) {
case RD_UP:
return "Rate D Up";
case RD_DOWN:
return "Rate D Down";
case RP_UP:
return "Rate P Up";
case RP_DOWN:
return "Rate P Down";
case RFF_UP:
return "Rate FF Up";
case RFF_DOWN:
return "Rate FF Down";
case SP_UP:
return "Angle P Up";
case SP_DOWN:
return "Angle P Down";
case MAX_GAINS:
return "Find Max Gains";
case TUNE_COMPLETE:
return "Tune Complete";
}
return "Bug";
}
// run - runs the autotune flight mode
// should be called at 100hz or more
void AC_AutoTune::run()
{
// initialize vertical speeds and acceleration
init_z_limits();
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
// this should not actually be possible because of the init() checks
2018-12-17 21:49:29 -04:00
if (!motors->armed() || !motors->get_interlock()) {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
attitude_control->set_throttle_out(0.0f, true, 0.0f);
2021-05-03 22:42:26 -03:00
pos_control->relax_z_controller(0.0f);
return;
}
float target_roll_cd, target_pitch_cd, target_yaw_rate_cds;
get_pilot_desired_rp_yrate_cd(target_roll_cd, target_pitch_cd, target_yaw_rate_cds);
// get pilot desired climb rate
const float target_climb_rate_cms = get_pilot_desired_climb_rate_cms();
bool zero_rp_input = is_zero(target_roll_cd) && is_zero(target_pitch_cd);
// allow pilots to make inputs less than 5 deg in pitch and roll
if (allow_pilot_rp_input() && !pilot_override && fabsf(target_roll_cd) < 500 && fabsf(target_pitch_cd) < 500) {
zero_rp_input = true;
}
const uint32_t now = AP_HAL::millis();
if (!zero_rp_input || !is_zero(target_yaw_rate_cds) || !is_zero(target_climb_rate_cms)) {
if (!pilot_override) {
pilot_override = true;
// set gains to their original values
load_gains(GAIN_ORIGINAL);
attitude_control->use_sqrt_controller(true);
}
// reset pilot override time
override_time = now;
if (!zero_rp_input) {
// only reset position on roll or pitch input
have_position = false;
}
} else if (pilot_override) {
// check if we should resume tuning after pilot's override
if (now - override_time > AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS) {
pilot_override = false; // turn off pilot override
// set gains to their intra-test values (which are very close to the original gains)
// load_gains(GAIN_INTRA_TEST); //I think we should be keeping the originals here to let the I term settle quickly
step = WAITING_FOR_LEVEL; // set tuning step back from beginning
step_start_time_ms = now;
level_start_time_ms = now;
desired_yaw_cd = ahrs_view->yaw_sensor;
}
}
if (pilot_override) {
if (now - last_pilot_override_warning > 1000) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: pilot overrides active");
last_pilot_override_warning = now;
}
}
if (zero_rp_input && !allow_pilot_rp_input()) {
// pilot input on throttle and yaw will still use position hold if enabled
get_poshold_attitude(target_roll_cd, target_pitch_cd, desired_yaw_cd);
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// if pilot override call attitude controller
if (pilot_override || mode != TUNING) {
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll_cd, target_pitch_cd, target_yaw_rate_cds);
} else {
// somehow get attitude requests from autotuning
control_attitude();
// tell the user what's going on
do_gcs_announcements();
}
// call position controller
pos_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate_cms);
pos_control->update_z_controller();
}
// check if current is greater than maximum and update level_problem structure
bool AC_AutoTune::check_level(const LevelIssue issue, const float current, const float maximum)
{
if (current > maximum) {
level_problem.current = current;
level_problem.maximum = maximum;
level_problem.issue = issue;
return false;
}
return true;
}
// return true if vehicle is close to level
bool AC_AutoTune::currently_level()
{
float threshold_mul = 1.0;
uint32_t now_ms = AP_HAL::millis();
if (now_ms - level_start_time_ms > AUTOTUNE_LEVEL_TIMEOUT_MS) {
// after a long wait we use looser threshold, to allow tuning
// with poor initial gains
threshold_mul *= 2;
}
// display warning if vehicle fails to level
if ((now_ms - level_start_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS) &&
(now_ms - level_fail_warning_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS)) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "AutoTune: failing to level, please tune manually");
level_fail_warning_time_ms = now_ms;
}
if (!check_level(LevelIssue::ANGLE_ROLL,
fabsf(ahrs_view->roll_sensor - roll_cd),
threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) {
return false;
}
if (!check_level(LevelIssue::ANGLE_PITCH,
fabsf(ahrs_view->pitch_sensor - pitch_cd),
threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) {
return false;
}
if (!check_level(LevelIssue::ANGLE_YAW,
fabsf(wrap_180_cd(ahrs_view->yaw_sensor - desired_yaw_cd)),
threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) {
return false;
}
if (!check_level(LevelIssue::RATE_ROLL,
(ToDeg(ahrs_view->get_gyro().x) * 100.0f),
threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD)) {
return false;
}
if (!check_level(LevelIssue::RATE_PITCH,
(ToDeg(ahrs_view->get_gyro().y) * 100.0f),
threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD)) {
return false;
}
if (!check_level(LevelIssue::RATE_YAW,
(ToDeg(ahrs_view->get_gyro().z) * 100.0f),
threshold_mul*AUTOTUNE_LEVEL_RATE_Y_CD)) {
return false;
}
return true;
}
// main state machine to level vehicle, perform a test and update gains
// directly updates attitude controller with targets
void AC_AutoTune::control_attitude()
{
rotation_rate = 0.0f; // rotation rate in radians/second
lean_angle = 0.0f;
const float direction_sign = positive_direction ? 1.0f : -1.0f;
const uint32_t now = AP_HAL::millis();
// check tuning step
switch (step) {
case WAITING_FOR_LEVEL: {
// Note: we should be using intra-test gains (which are very close to the original gains but have lower I)
// re-enable rate limits
attitude_control->use_sqrt_controller(true);
get_poshold_attitude(roll_cd, pitch_cd, desired_yaw_cd);
// hold level attitude
attitude_control->input_euler_angle_roll_pitch_yaw(roll_cd, pitch_cd, desired_yaw_cd, true);
// hold the copter level for 0.5 seconds before we begin a twitch
// reset counter if we are no longer level
if (!currently_level()) {
2018-12-20 09:57:30 -04:00
step_start_time_ms = now;
}
// if we have been level for a sufficient amount of time (0.5 seconds) move onto tuning step
if (now - step_start_time_ms > AUTOTUNE_REQUIRED_LEVEL_TIME_MS) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Start Test");
// initiate variables for next step
step = TESTING;
2018-12-20 09:57:30 -04:00
step_start_time_ms = now;
step_time_limit_ms = AUTOTUNE_TESTING_STEP_TIMEOUT_MS;
// set gains to their to-be-tested values
twitch_first_iter = true;
test_rate_max = 0.0f;
test_rate_min = 0.0f;
test_angle_max = 0.0f;
test_angle_min = 0.0f;
rotation_rate_filt.reset(0.0f);
rate_max = 0.0f;
load_gains(GAIN_TEST);
} else {
// when waiting for level we use the intra-test gains
load_gains(GAIN_INTRA_TEST);
}
// Initialize test specific variables
switch (axis) {
case ROLL:
abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD;
start_rate = ToDeg(ahrs_view->get_gyro().x) * 100.0f;
start_angle = ahrs_view->roll_sensor;
break;
case PITCH:
abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD;
start_rate = ToDeg(ahrs_view->get_gyro().y) * 100.0f;
start_angle = ahrs_view->pitch_sensor;
break;
case YAW:
abort_angle = AUTOTUNE_TARGET_ANGLE_YAW_CD;
start_rate = ToDeg(ahrs_view->get_gyro().z) * 100.0f;
start_angle = ahrs_view->yaw_sensor;
break;
}
// tests must be initialized last as some rely on variables above
test_init();
break;
}
case TESTING: {
// Run the twitching step
load_gains(GAIN_TEST);
// run the test
test_run(axis, direction_sign);
// Check for failure causing reverse response
if (lean_angle <= -AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD) {
step = WAITING_FOR_LEVEL;
}
// log this iterations lean angle and rotation rate
Log_AutoTuneDetails();
2021-01-09 04:09:12 -04:00
ahrs_view->Write_Rate(*motors, *attitude_control, *pos_control);
log_pids();
break;
}
case UPDATE_GAINS:
// re-enable rate limits
attitude_control->use_sqrt_controller(true);
// log the latest gains
Log_AutoTune();
switch (tune_type) {
// Check results after mini-step to increase rate D gain
case RD_UP:
updating_rate_d_up_all(axis);
break;
// Check results after mini-step to decrease rate D gain
case RD_DOWN:
updating_rate_d_down_all(axis);
break;
// Check results after mini-step to increase rate P gain
case RP_UP:
updating_rate_p_up_all(axis);
break;
// Check results after mini-step to increase stabilize P gain
case SP_DOWN:
updating_angle_p_down_all(axis);
break;
// Check results after mini-step to increase stabilize P gain
case SP_UP:
updating_angle_p_up_all(axis);
break;
case RFF_UP:
updating_rate_ff_up_all(axis);
break;
case MAX_GAINS:
updating_max_gains_all(axis);
break;
case RP_DOWN:
case RFF_DOWN:
case TUNE_COMPLETE:
break;
}
// we've complete this step, finalize pids and move to next step
if (counter >= AUTOTUNE_SUCCESS_COUNT) {
// reset counter
counter = 0;
// reset scaling factor
step_scaler = 1.0f;
// move to the next tuning type
switch (tune_type) {
case RD_UP:
break;
case RD_DOWN:
switch (axis) {
case ROLL:
tune_roll_rd = MAX(min_d, tune_roll_rd * AUTOTUNE_RD_BACKOFF);
tune_roll_rp = MAX(get_rp_min(), tune_roll_rp * AUTOTUNE_RD_BACKOFF);
break;
case PITCH:
tune_pitch_rd = MAX(min_d, tune_pitch_rd * AUTOTUNE_RD_BACKOFF);
tune_pitch_rp = MAX(get_rp_min(), tune_pitch_rp * AUTOTUNE_RD_BACKOFF);
break;
case YAW:
tune_yaw_rLPF = MAX(get_yaw_rate_filt_min(), tune_yaw_rLPF * AUTOTUNE_RD_BACKOFF);
tune_yaw_rp = MAX(get_rp_min(), tune_yaw_rp * AUTOTUNE_RD_BACKOFF);
break;
}
break;
case RP_UP:
switch (axis) {
case ROLL:
tune_roll_rp = MAX(get_rp_min(), tune_roll_rp * AUTOTUNE_RP_BACKOFF);
break;
case PITCH:
tune_pitch_rp = MAX(get_rp_min(), tune_pitch_rp * AUTOTUNE_RP_BACKOFF);
break;
case YAW:
tune_yaw_rp = MAX(get_rp_min(), tune_yaw_rp * AUTOTUNE_RP_BACKOFF);
break;
}
break;
case SP_DOWN:
break;
case SP_UP:
switch (axis) {
case ROLL:
tune_roll_sp = MAX(get_sp_min(), tune_roll_sp * AUTOTUNE_SP_BACKOFF);
// trad heli uses original parameter value rather than max demostrated through test
if (set_accel_to_max_test_value()) {
tune_roll_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF);
}
break;
case PITCH:
tune_pitch_sp = MAX(get_sp_min(), tune_pitch_sp * AUTOTUNE_SP_BACKOFF);
// trad heli uses original parameter value rather than max demostrated through test
if (set_accel_to_max_test_value()) {
tune_pitch_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF);
}
break;
case YAW:
tune_yaw_sp = MAX(get_sp_min(), tune_yaw_sp * AUTOTUNE_SP_BACKOFF);
// trad heli uses original parameter value rather than max demostrated through test
if (set_accel_to_max_test_value()) {
tune_yaw_accel = MAX(AUTOTUNE_Y_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_Y_BACKOFF);
}
break;
}
break;
case RP_DOWN:
case RFF_UP:
case RFF_DOWN:
case MAX_GAINS:
case TUNE_COMPLETE:
break;
}
// increment the tune type to the next one in tune sequence
tune_seq_curr++;
tune_type = tune_seq[tune_seq_curr];
if (tune_type == TUNE_COMPLETE) {
// we've reached the end of a D-up-down PI-up-down tune type cycle
tune_seq_curr = 0;
tune_type = tune_seq[tune_seq_curr];
// advance to the next axis
bool complete = false;
switch (axis) {
case ROLL:
axes_completed |= AUTOTUNE_AXIS_BITMASK_ROLL;
if (pitch_enabled()) {
axis = PITCH;
} else if (yaw_enabled()) {
axis = YAW;
} else {
complete = true;
}
break;
case PITCH:
axes_completed |= AUTOTUNE_AXIS_BITMASK_PITCH;
if (yaw_enabled()) {
axis = YAW;
} else {
complete = true;
}
break;
case YAW:
axes_completed |= AUTOTUNE_AXIS_BITMASK_YAW;
complete = true;
break;
}
// if we've just completed all axes we have successfully completed the autotune
// change to TESTING mode to allow user to fly with new gains
if (complete) {
mode = SUCCESS;
update_gcs(AUTOTUNE_MESSAGE_SUCCESS);
AP::logger().Write_Event(LogEvent::AUTOTUNE_SUCCESS);
AP_Notify::events.autotune_complete = true;
} else {
AP_Notify::events.autotune_next_axis = true;
}
}
}
// reverse direction for multicopter twitch test
positive_direction = twitch_reverse_direction();
if (axis == YAW) {
attitude_control->input_euler_angle_roll_pitch_yaw(0.0f, 0.0f, ahrs_view->yaw_sensor, false);
}
// set gains to their intra-test values (which are very close to the original gains)
load_gains(GAIN_INTRA_TEST);
// reset testing step
step = WAITING_FOR_LEVEL;
2018-12-20 09:57:30 -04:00
step_start_time_ms = now;
level_start_time_ms = step_start_time_ms;
step_time_limit_ms = AUTOTUNE_REQUIRED_LEVEL_TIME_MS;
break;
}
}
// backup_gains_and_initialise - store current gains as originals
// called before tuning starts to backup original gains
void AC_AutoTune::backup_gains_and_initialise()
{
// initialise state because this is our first time
if (roll_enabled()) {
axis = ROLL;
} else if (pitch_enabled()) {
axis = PITCH;
} else if (yaw_enabled()) {
axis = YAW;
}
// no axes are complete
axes_completed = 0;
// set the tune sequence
set_tune_sequence();
// start at the beginning of tune sequence
tune_seq_curr = 0;
tune_type = tune_seq[tune_seq_curr];
positive_direction = false;
step = WAITING_FOR_LEVEL;
2018-12-20 09:57:30 -04:00
step_start_time_ms = AP_HAL::millis();
level_start_time_ms = step_start_time_ms;
step_scaler = 1.0f;
desired_yaw_cd = ahrs_view->yaw_sensor;
aggressiveness = constrain_float(aggressiveness, 0.05f, 0.2f);
orig_bf_feedforward = attitude_control->get_bf_feedforward();
// backup original pids and initialise tuned pid values
orig_roll_rp = attitude_control->get_rate_roll_pid().kP();
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
orig_roll_rd = attitude_control->get_rate_roll_pid().kD();
2018-12-21 04:21:59 -04:00
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
orig_roll_fltt = attitude_control->get_rate_roll_pid().filt_T_hz();
orig_roll_smax = attitude_control->get_rate_roll_pid().slew_limit();
orig_roll_sp = attitude_control->get_angle_roll_p().kP();
orig_roll_accel = attitude_control->get_accel_roll_max_cdss();
tune_roll_rp = attitude_control->get_rate_roll_pid().kP();
tune_roll_rd = attitude_control->get_rate_roll_pid().kD();
tune_roll_rff = attitude_control->get_rate_roll_pid().ff();
tune_roll_sp = attitude_control->get_angle_roll_p().kP();
tune_roll_accel = attitude_control->get_accel_roll_max_cdss();
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
2018-12-21 04:21:59 -04:00
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
orig_pitch_fltt = attitude_control->get_rate_pitch_pid().filt_T_hz();
orig_pitch_smax = attitude_control->get_rate_pitch_pid().slew_limit();
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP();
orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
tune_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
tune_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
tune_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
tune_pitch_sp = attitude_control->get_angle_pitch_p().kP();
tune_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
2018-12-21 04:21:59 -04:00
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
orig_yaw_fltt = attitude_control->get_rate_yaw_pid().filt_T_hz();
orig_yaw_smax = attitude_control->get_rate_yaw_pid().slew_limit();
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP();
tune_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
tune_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
tune_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
tune_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
tune_yaw_sp = attitude_control->get_angle_yaw_p().kP();
tune_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
AP::logger().Write_Event(LogEvent::AUTOTUNE_INITIALISED);
}
// load_orig_gains - set gains to their original values
// called by stop and failed functions
void AC_AutoTune::load_orig_gains()
{
attitude_control->bf_feedforward(orig_bf_feedforward);
if (roll_enabled()) {
if (!is_zero(orig_roll_rp) || allow_zero_rate_p()) {
attitude_control->get_rate_roll_pid().kP(orig_roll_rp);
attitude_control->get_rate_roll_pid().kI(orig_roll_ri);
attitude_control->get_rate_roll_pid().kD(orig_roll_rd);
2018-12-21 04:21:59 -04:00
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax);
attitude_control->get_angle_roll_p().kP(orig_roll_sp);
attitude_control->set_accel_roll_max_cdss(orig_roll_accel);
}
}
if (pitch_enabled()) {
if (!is_zero(orig_pitch_rp) || allow_zero_rate_p()) {
attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri);
attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd);
2018-12-21 04:21:59 -04:00
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax);
attitude_control->get_angle_pitch_p().kP(orig_pitch_sp);
attitude_control->set_accel_pitch_max_cdss(orig_pitch_accel);
}
}
if (yaw_enabled()) {
if (!is_zero(orig_yaw_rp)) {
attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(orig_yaw_ri);
attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd);
2018-12-21 04:21:59 -04:00
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax);
attitude_control->get_angle_yaw_p().kP(orig_yaw_sp);
attitude_control->set_accel_yaw_max_cdss(orig_yaw_accel);
}
}
}
// load_tuned_gains - load tuned gains
void AC_AutoTune::load_tuned_gains()
{
if (!attitude_control->get_bf_feedforward()) {
attitude_control->bf_feedforward(true);
attitude_control->set_accel_roll_max_cdss(0.0f);
attitude_control->set_accel_pitch_max_cdss(0.0f);
}
if (roll_enabled()) {
if (!is_zero(tune_roll_rp) || allow_zero_rate_p()) {
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kI(get_tuned_ri(axis));
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
attitude_control->get_rate_roll_pid().ff(tune_roll_rff);
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
attitude_control->set_accel_roll_max_cdss(tune_roll_accel);
}
}
if (pitch_enabled()) {
if (!is_zero(tune_pitch_rp) || allow_zero_rate_p()) {
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(get_tuned_ri(axis));
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff);
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
attitude_control->set_accel_pitch_max_cdss(tune_pitch_accel);
}
}
if (yaw_enabled()) {
if (!is_zero(tune_yaw_rp)) {
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(get_tuned_ri(axis));
attitude_control->get_rate_yaw_pid().kD(get_tuned_yaw_rd());
attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF);
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
attitude_control->set_accel_yaw_max_cdss(tune_yaw_accel);
}
}
}
// load_intra_test_gains - gains used between tests
// called during testing mode's update-gains step to set gains ahead of return-to-level step
void AC_AutoTune::load_intra_test_gains()
{
// we are restarting tuning so reset gains to tuning-start gains (i.e. low I term)
// sanity check the gains
attitude_control->bf_feedforward(true);
if (roll_enabled()) {
attitude_control->get_rate_roll_pid().kP(orig_roll_rp);
attitude_control->get_rate_roll_pid().kI(get_intra_test_ri(axis));
attitude_control->get_rate_roll_pid().kD(orig_roll_rd);
2018-12-21 04:21:59 -04:00
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax);
attitude_control->get_angle_roll_p().kP(orig_roll_sp);
attitude_control->set_accel_roll_max_cdss(orig_roll_accel);
}
if (pitch_enabled()) {
attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(get_intra_test_ri(axis));
attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd);
2018-12-21 04:21:59 -04:00
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax);
attitude_control->get_angle_pitch_p().kP(orig_pitch_sp);
attitude_control->set_accel_pitch_max_cdss(orig_pitch_accel);
}
if (yaw_enabled()) {
attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(get_intra_test_ri(axis));
attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd);
2018-12-21 04:21:59 -04:00
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax);
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF);
attitude_control->get_angle_yaw_p().kP(orig_yaw_sp);
attitude_control->set_accel_yaw_max_cdss(orig_yaw_accel);
}
}
// load_test_gains - load the to-be-tested gains for a single axis
// called by control_attitude() just before it beings testing a gain (i.e. just before it twitches)
void AC_AutoTune::load_test_gains()
{
switch (axis) {
case ROLL:
if (tune_type == MAX_GAINS && !is_zero(tune_roll_rff)) {
attitude_control->get_rate_roll_pid().kP(0.0f);
attitude_control->get_rate_roll_pid().kD(0.0f);
} else {
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
}
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
break;
case PITCH:
if (tune_type == MAX_GAINS && !is_zero(tune_pitch_rff)) {
attitude_control->get_rate_pitch_pid().kP(0.0f);
attitude_control->get_rate_pitch_pid().kD(0.0f);
} else {
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
}
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
break;
case YAW:
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF);
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
break;
}
}
/*
load a specified set of gains
*/
void AC_AutoTune::load_gains(enum GainType gain_type)
{
switch (gain_type) {
case GAIN_ORIGINAL:
load_orig_gains();
break;
case GAIN_INTRA_TEST:
load_intra_test_gains();
break;
case GAIN_TEST:
load_test_gains();
break;
case GAIN_TUNED:
load_tuned_gains();
break;
}
}
// save_tuning_gains - save the final tuned gains for each axis
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position)
void AC_AutoTune::save_tuning_gains()
{
// see if we successfully completed tuning of at least one axis
if (axes_completed == 0) {
return;
}
if (!attitude_control->get_bf_feedforward()) {
attitude_control->bf_feedforward_save(true);
attitude_control->save_accel_roll_max_cdss(0.0f);
attitude_control->save_accel_pitch_max_cdss(0.0f);
}
// sanity check the rate P values
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled() && (!is_zero(tune_roll_rp) || allow_zero_rate_p())) {
// rate roll gains
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
// stabilize roll
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
attitude_control->get_angle_roll_p().save_gains();
// acceleration roll
attitude_control->save_accel_roll_max_cdss(tune_roll_accel);
// resave pids to originals in case the autotune is run again
orig_roll_rp = attitude_control->get_rate_roll_pid().kP();
orig_roll_rd = attitude_control->get_rate_roll_pid().kD();
orig_roll_sp = attitude_control->get_angle_roll_p().kP();
orig_roll_accel = attitude_control->get_accel_roll_max_cdss();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled() && (!is_zero(tune_pitch_rp) || allow_zero_rate_p())) {
// rate pitch gains
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
// stabilize pitch
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
attitude_control->get_angle_pitch_p().save_gains();
// acceleration pitch
attitude_control->save_accel_pitch_max_cdss(tune_pitch_accel);
// resave pids to originals in case the autotune is run again
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP();
orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) {
// rate yaw gains
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
// stabilize yaw
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
attitude_control->get_angle_yaw_p().save_gains();
// acceleration yaw
attitude_control->save_accel_yaw_max_cdss(tune_yaw_accel);
// resave pids to originals in case the autotune is run again
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP();
orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
}
}
// update_gcs - send message to ground station
void AC_AutoTune::update_gcs(uint8_t message_id) const
{
switch (message_id) {
case AUTOTUNE_MESSAGE_STARTED:
gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Started");
break;
case AUTOTUNE_MESSAGE_STOPPED:
gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Stopped");
break;
case AUTOTUNE_MESSAGE_SUCCESS:
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Success");
break;
case AUTOTUNE_MESSAGE_FAILED:
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Failed");
break;
case AUTOTUNE_MESSAGE_TESTING:
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Pilot Testing");
break;
case AUTOTUNE_MESSAGE_SAVED_GAINS:
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Saved gains for %s%s%s",
(axes_completed&AUTOTUNE_AXIS_BITMASK_ROLL)?"Roll ":"",
(axes_completed&AUTOTUNE_AXIS_BITMASK_PITCH)?"Pitch ":"",
(axes_completed&AUTOTUNE_AXIS_BITMASK_YAW)?"Yaw":"");
break;
}
}
// axis helper functions
bool AC_AutoTune::roll_enabled() const
{
return axis_bitmask & AUTOTUNE_AXIS_BITMASK_ROLL;
}
bool AC_AutoTune::pitch_enabled() const
{
return axis_bitmask & AUTOTUNE_AXIS_BITMASK_PITCH;
}
bool AC_AutoTune::yaw_enabled() const
{
return axis_bitmask & AUTOTUNE_AXIS_BITMASK_YAW;
}
// twitching_test_rate - twitching tests
// update min and max and test for end conditions
void AC_AutoTune::twitching_test_rate(float rate, float rate_target_max, float &meas_rate_min, float &meas_rate_max)
{
const uint32_t now = AP_HAL::millis();
// capture maximum rate
if (rate > meas_rate_max) {
// the measurement is continuing to increase without stopping
meas_rate_max = rate;
meas_rate_min = rate;
}
// capture minimum measurement after the measurement has peaked (aka "bounce back")
if ((rate < meas_rate_min) && (meas_rate_max > rate_target_max * 0.5f)) {
// the measurement is bouncing back
meas_rate_min = rate;
}
// calculate early stopping time based on the time it takes to get to 75%
if (meas_rate_max < rate_target_max * 0.75f) {
// the measurement not reached the 75% threshold yet
step_time_limit_ms = (now - step_start_time_ms) * 3;
step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS);
}
if (meas_rate_max > rate_target_max) {
// the measured rate has passed the maximum target rate
step = UPDATE_GAINS;
}
if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) {
// the measurement has passed 50% of the maximum rate and bounce back is larger than the threshold
step = UPDATE_GAINS;
}
2018-12-20 09:57:30 -04:00
if (now - step_start_time_ms >= step_time_limit_ms) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
// twitching_test_rate - twitching tests
// update min and max and test for end conditions
void AC_AutoTune::twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min)
{
if (angle >= angle_max) {
if (is_equal(rate, meas_rate_min) && step_scaler > 0.5f) {
// we have reached the angle limit before completing the measurement of maximum and minimum
// reduce the maximum target rate
step_scaler *= 0.9f;
// ignore result and start test again
step = WAITING_FOR_LEVEL;
} else {
step = UPDATE_GAINS;
}
}
}
// twitching_test_angle - twitching tests
// update min and max and test for end conditions
void AC_AutoTune::twitching_test_angle(float angle, float rate, float angle_target_max, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max)
{
const uint32_t now = AP_HAL::millis();
// capture maximum angle
if (angle > meas_angle_max) {
// the angle still increasing
meas_angle_max = angle;
meas_angle_min = angle;
}
// capture minimum angle after we have reached a reasonable maximum angle
if ((angle < meas_angle_min) && (meas_angle_max > angle_target_max * 0.5f)) {
// the measurement is bouncing back
meas_angle_min = angle;
}
// capture maximum rate
if (rate > meas_rate_max) {
// the measurement is still increasing
meas_rate_max = rate;
meas_rate_min = rate;
}
// capture minimum rate after we have reached maximum rate
if (rate < meas_rate_min) {
// the measurement is still decreasing
meas_rate_min = rate;
}
// calculate early stopping time based on the time it takes to get to 75%
if (meas_angle_max < angle_target_max * 0.75f) {
// the measurement not reached the 75% threshold yet
step_time_limit_ms = (now - step_start_time_ms) * 3;
step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS);
}
if (meas_angle_max > angle_target_max) {
// the measurement has passed the maximum angle
step = UPDATE_GAINS;
}
if (meas_angle_max-meas_angle_min > meas_angle_max*aggressiveness) {
// the measurement has passed 50% of the maximum angle and bounce back is larger than the threshold
step = UPDATE_GAINS;
}
2018-12-20 09:57:30 -04:00
if (now - step_start_time_ms >= step_time_limit_ms) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
// twitching_measure_acceleration - measure rate of change of measurement
void AC_AutoTune::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const
{
if (rate_measurement_max < rate_measurement) {
rate_measurement_max = rate_measurement;
2018-12-20 09:57:30 -04:00
rate_of_change = (1000.0f*rate_measurement_max)/(AP_HAL::millis() - step_start_time_ms);
}
}
/*
check if we have a good position estimate
*/
bool AC_AutoTune::position_ok(void)
{
if (!AP::ahrs().have_inertial_nav()) {
// do not allow navigation with dcm position
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav->get_filter_status();
// require a good absolute position and EKF must not be in const_pos_mode
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
}
// get attitude for slow position hold in autotune mode
void AC_AutoTune::get_poshold_attitude(float &roll_cd_out, float &pitch_cd_out, float &yaw_cd_out)
{
roll_cd_out = pitch_cd_out = 0;
if (!use_poshold) {
// we are not trying to hold position
return;
}
// do we know where we are? If not then don't do poshold
if (!position_ok()) {
return;
}
if (!have_position) {
have_position = true;
start_position = inertial_nav->get_position_neu_cm();
}
// don't go past 10 degrees, as autotune result would deteriorate too much
const float angle_max_cd = 1000;
// hit the 10 degree limit at 20 meters position error
const float dist_limit_cm = 2000;
// we only start adjusting yaw if we are more than 5m from the
// target position. That corresponds to a lean angle of 2.5 degrees
const float yaw_dist_limit_cm = 500;
Vector3f pdiff = inertial_nav->get_position_neu_cm() - start_position;
pdiff.z = 0;
float dist_cm = pdiff.length();
if (dist_cm < 10) {
// don't do anything within 10cm
return;
}
/*
very simple linear controller
*/
float scaling = constrain_float(angle_max_cd * dist_cm / dist_limit_cm, 0, angle_max_cd);
Vector2f angle_ne(pdiff.x, pdiff.y);
angle_ne *= scaling / dist_cm;
// rotate into body frame
pitch_cd_out = angle_ne.x * ahrs_view->cos_yaw() + angle_ne.y * ahrs_view->sin_yaw();
roll_cd_out = angle_ne.x * ahrs_view->sin_yaw() - angle_ne.y * ahrs_view->cos_yaw();
if (dist_cm < yaw_dist_limit_cm) {
// no yaw adjustment
return;
}
/*
also point so that twitching occurs perpendicular to the wind,
if we have drifted more than yaw_dist_limit_cm from the desired
position. This ensures that autotune doesn't have to deal with
more than 2.5 degrees of attitude on the axis it is tuning
*/
float target_yaw_cd = degrees(atan2f(pdiff.y, pdiff.x)) * 100;
if (axis == PITCH) {
// for roll and yaw tuning we point along the wind, for pitch
// we point across the wind
target_yaw_cd += 9000;
}
// go to the nearest 180 degree mark, with 5 degree slop to prevent oscillation
if (fabsf(yaw_cd_out - target_yaw_cd) > 9500) {
target_yaw_cd += 18000;
}
yaw_cd_out = target_yaw_cd;
}
void AC_AutoTune::twitch_test_init()
{
float target_max_rate;
switch (axis) {
case ROLL: {
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS);
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate);
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD);
rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_roll_pid().filt_D_hz()*2.0f);
break;
}
case PITCH: {
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS);
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate);
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD);
rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_pitch_pid().filt_D_hz()*2.0f);
break;
}
case YAW: {
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_YAW_CDS);
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_RATE_YAW_CDS, target_max_rate);
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD, AUTOTUNE_TARGET_ANGLE_YAW_CD);
rotation_rate_filt.set_cutoff_frequency(AUTOTUNE_Y_FILT_FREQ);
break;
}
}
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
rotation_rate_filt.reset(start_rate);
} else {
rotation_rate_filt.reset(0);
}
}
//run twitch test
void AC_AutoTune::twitch_test_run(AxisType test_axis, const float dir_sign)
{
// disable rate limits
attitude_control->use_sqrt_controller(false);
// hold current attitude
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
// step angle targets on first iteration
if (twitch_first_iter) {
twitch_first_iter = false;
// Testing increasing stabilize P gain so will set lean angle target
switch (test_axis) {
case ROLL:
// request roll to 20deg
attitude_control->input_angle_step_bf_roll_pitch_yaw(dir_sign * target_angle, 0.0f, 0.0f);
break;
case PITCH:
// request pitch to 20deg
attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, dir_sign * target_angle, 0.0f);
break;
case YAW:
// request pitch to 20deg
attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, 0.0f, dir_sign * target_angle);
break;
}
}
} else {
// Testing rate P and D gains so will set body-frame rate targets.
// Rate controller will use existing body-frame rates and convert to motor outputs
// for all axes except the one we override here.
switch (test_axis) {
case ROLL:
// override body-frame roll rate
attitude_control->rate_bf_roll_target(dir_sign * target_rate + start_rate);
break;
case PITCH:
// override body-frame pitch rate
attitude_control->rate_bf_pitch_target(dir_sign * target_rate + start_rate);
break;
case YAW:
// override body-frame yaw rate
attitude_control->rate_bf_yaw_target(dir_sign * target_rate + start_rate);
break;
}
}
// capture this iterations rotation rate and lean angle
float gyro_reading = 0;
switch (test_axis) {
case ROLL:
gyro_reading = ahrs_view->get_gyro().x;
lean_angle = dir_sign * (ahrs_view->roll_sensor - (int32_t)start_angle);
break;
case PITCH:
gyro_reading = ahrs_view->get_gyro().y;
lean_angle = dir_sign * (ahrs_view->pitch_sensor - (int32_t)start_angle);
break;
case YAW:
gyro_reading = ahrs_view->get_gyro().z;
lean_angle = dir_sign * wrap_180_cd(ahrs_view->yaw_sensor-(int32_t)start_angle);
break;
}
// Add filter to measurements
float filter_value;
switch (tune_type) {
case SP_DOWN:
case SP_UP:
filter_value = dir_sign * (ToDeg(gyro_reading) * 100.0f);
break;
default:
filter_value = dir_sign * (ToDeg(gyro_reading) * 100.0f - start_rate);
break;
}
rotation_rate = rotation_rate_filt.apply(filter_value,
AP::scheduler().get_loop_period_s());
switch (tune_type) {
case RD_UP:
case RD_DOWN:
twitching_test_rate(rotation_rate, target_rate, test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max);
twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min);
break;
case RP_UP:
twitching_test_rate(rotation_rate, target_rate*(1+0.5f*aggressiveness), test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max);
twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min);
break;
case SP_DOWN:
case SP_UP:
twitching_test_angle(lean_angle, rotation_rate, target_angle*(1+0.5f*aggressiveness), test_angle_min, test_angle_max, test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate - dir_sign * start_rate, rate_max);
break;
default:
break;
}
}
void AC_AutoTune::rate_ff_test_init()
{
ff_test_phase = 0;
rotation_rate_filt.reset(0);
rotation_rate_filt.set_cutoff_frequency(5.0f);
command_filt.reset(0);
command_filt.set_cutoff_frequency(5.0f);
target_rate_filt.reset(0);
target_rate_filt.set_cutoff_frequency(5.0f);
test_command_filt = 0.0f;
test_rate_filt = 0.0f;
test_tgt_rate_filt = 0.0f;
filt_target_rate = 0.0f;
settle_time = 200;
phase_out_time = 500;
}
void AC_AutoTune::rate_ff_test_run(float max_angle_cd, float target_rate_cds, float dir_sign)
{
float gyro_reading = 0.0f;
float command_reading = 0.0f;
float tgt_rate_reading = 0.0f;
const uint32_t now = AP_HAL::millis();
static float trim_command_reading = 0.0f;
static float trim_heading = 0.0f;
static float rate_request_cds;
static float angle_request_cd;
// TODO make filter leak dependent on dt
const float filt_alpha = 0.0123f;
target_rate_cds = dir_sign * target_rate_cds;
switch (axis) {
case ROLL:
gyro_reading = ahrs_view->get_gyro().x;
command_reading = motors->get_roll();
tgt_rate_reading = attitude_control->rate_bf_targets().x;
if (settle_time > 0) {
settle_time--;
trim_command_reading = motors->get_roll();
rate_request_cds = gyro_reading;
} else if (((ahrs_view->roll_sensor <= max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
rate_request_cds += (target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds, 0.0f, 0.0f);
} else if (((ahrs_view->roll_sensor > max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
ff_test_phase = 1;
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds, 0.0f, 0.0f);
attitude_control->rate_bf_roll_target(rate_request_cds);
} else if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds, 0.0f, 0.0f);
attitude_control->rate_bf_roll_target(rate_request_cds);
} else if (((ahrs_view->roll_sensor < -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor > max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
ff_test_phase = 2;
angle_request_cd = attitude_control->get_att_target_euler_cd().x;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd, start_angles.y, 0.0f);
} else if (ff_test_phase == 2 ) {
angle_request_cd += (start_angles.x - angle_request_cd) * filt_alpha;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd, start_angles.y, 0.0f);
phase_out_time--;
}
break;
case PITCH:
gyro_reading = ahrs_view->get_gyro().y;
command_reading = motors->get_pitch();
tgt_rate_reading = attitude_control->rate_bf_targets().y;
if (settle_time > 0) {
settle_time--;
trim_command_reading = motors->get_pitch();
rate_request_cds = gyro_reading;
} else if (((ahrs_view->pitch_sensor <= max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
rate_request_cds += (target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds, 0.0f);
} else if (((ahrs_view->pitch_sensor > max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
ff_test_phase = 1;
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds, 0.0f);
attitude_control->rate_bf_pitch_target(rate_request_cds);
} else if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds, 0.0f);
attitude_control->rate_bf_pitch_target(rate_request_cds);
} else if (((ahrs_view->pitch_sensor < -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor > max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
ff_test_phase = 2;
angle_request_cd = attitude_control->get_att_target_euler_cd().y;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd, 0.0f);
} else if (ff_test_phase == 2 ) {
angle_request_cd += (start_angles.x - angle_request_cd) * filt_alpha;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd, 0.0f);
phase_out_time--;
}
break;
case YAW:
gyro_reading = ahrs_view->get_gyro().z;
command_reading = motors->get_yaw();
tgt_rate_reading = attitude_control->rate_bf_targets().z;
if (settle_time > 0) {
settle_time--;
trim_command_reading = motors->get_yaw();
trim_heading = ahrs_view->yaw_sensor;
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
rate_request_cds += (target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds);
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
ff_test_phase = 1;
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds);
attitude_control->rate_bf_yaw_target(rate_request_cds);
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds);
attitude_control->rate_bf_yaw_target(rate_request_cds);
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
ff_test_phase = 2;
angle_request_cd = attitude_control->get_att_target_euler_cd().z;
attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, angle_request_cd, false);
} else if (ff_test_phase == 2 ) {
angle_request_cd += wrap_180_cd(trim_heading - angle_request_cd) * filt_alpha;
attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, angle_request_cd, false);
}
break;
}
rotation_rate = rotation_rate_filt.apply(gyro_reading,
AP::scheduler().get_loop_period_s());
command_out = command_filt.apply((command_reading - trim_command_reading),
AP::scheduler().get_loop_period_s());
filt_target_rate = target_rate_filt.apply(tgt_rate_reading,
AP::scheduler().get_loop_period_s());
// record steady state rate and motor command
switch (axis) {
case ROLL:
if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
test_rate_filt = rotation_rate;
test_command_filt = command_out;
test_tgt_rate_filt = filt_target_rate;
}
break;
case PITCH:
if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
test_rate_filt = rotation_rate;
test_command_filt = command_out;
test_tgt_rate_filt = filt_target_rate;
}
break;
case YAW:
if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
test_rate_filt = rotation_rate;
test_command_filt = command_out;
test_tgt_rate_filt = filt_target_rate;
}
break;
}
if (now - step_start_time_ms >= step_time_limit_ms || (ff_test_phase == 2 && phase_out_time == 0)) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
rate_request_cds = 0.0f;
angle_request_cd = 0.0f;
}
}
void AC_AutoTune::dwell_test_init(float filt_freq)
{
rotation_rate_filt.reset(0);
rotation_rate_filt.set_cutoff_frequency(filt_freq);
command_filt.reset(0);
command_filt.set_cutoff_frequency(filt_freq);
target_rate_filt.reset(0);
target_rate_filt.set_cutoff_frequency(filt_freq);
test_command_filt = 0.0f;
test_rate_filt = 0.0f;
test_tgt_rate_filt = 0.0f;
filt_target_rate = 0.0f;
dwell_start_time_ms = 0.0f;
settle_time = 200;
if (!is_equal(start_freq,stop_freq)) {
sweep.ph180_freq = 0.0f;
sweep.ph180_gain = 0.0f;
sweep.ph180_phase = 0.0f;
sweep.ph270_freq = 0.0f;
sweep.ph270_gain = 0.0f;
sweep.ph270_phase = 0.0f;
sweep.maxgain_gain = 0.0f;
sweep.maxgain_freq = 0.0f;
sweep.maxgain_phase = 0.0f;
sweep.progress = 0;
curr_test_gain = 0.0f;
curr_test_phase = 0.0f;
}
// save the trim output from PID controller
float ff_term = 0.0f;
float p_term = 0.0f;
switch (axis) {
case ROLL:
trim_meas_rate = ahrs_view->get_gyro().x;
ff_term = attitude_control->get_rate_roll_pid().get_ff();
p_term = attitude_control->get_rate_roll_pid().get_p();
break;
case PITCH:
trim_meas_rate = ahrs_view->get_gyro().y;
ff_term = attitude_control->get_rate_pitch_pid().get_ff();
p_term = attitude_control->get_rate_pitch_pid().get_p();
break;
case YAW:
trim_meas_rate = ahrs_view->get_gyro().z;
ff_term = attitude_control->get_rate_yaw_pid().get_ff();
p_term = attitude_control->get_rate_yaw_pid().get_p();
break;
}
trim_pff_out = ff_term + p_term;
}
void AC_AutoTune::dwell_test_run(uint8_t freq_resp_input, float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase)
{
float gyro_reading = 0.0f;
float command_reading = 0.0f;
float tgt_rate_reading = 0.0f;
float tgt_attitude = 2.5f * 0.01745f;
const uint32_t now = AP_HAL::millis();
float target_rate_cds;
static float trim_command;
static Vector3f trim_attitude_cd;
float sweep_time_ms = 23000;
const float att_hold_gain = 4.5f;
static Vector3f filt_attitude_cd;
Vector3f attitude_cd;
static float filt_command_reading;
static float filt_gyro_reading;
static float filt_tgt_rate_reading;
const float vel_hold_gain = 0.04f;
float dwell_freq = start_frq;
float cycle_time_ms = 0;
if (!is_zero(dwell_freq)) {
cycle_time_ms = 1000.0f * 2.0f * M_PI / dwell_freq;
}
const float alpha = calc_lowpass_alpha_dt(0.0025f, 0.2f * start_frq);
attitude_cd = Vector3f((float)ahrs_view->roll_sensor, (float)ahrs_view->pitch_sensor, (float)ahrs_view->yaw_sensor);
Vector3f velocity_ned, velocity_bf;
if (ahrs_view->get_velocity_NED(velocity_ned)) {
velocity_bf.x = velocity_ned.x * ahrs_view->cos_yaw() + velocity_ned.y * ahrs_view->sin_yaw();
velocity_bf.y = velocity_ned.x * ahrs_view->sin_yaw() + velocity_ned.y * ahrs_view->cos_yaw();
}
// keep controller from requesting too high of a rate
float target_rate_mag_cds = dwell_freq * tgt_attitude * 5730.0f;
if (target_rate_mag_cds > 5000.0f) {
target_rate_mag_cds = 5000.0f;
}
if (settle_time == 0) {
// give gentler start for the dwell
if ((float)(now - dwell_start_time_ms) < 0.5f * cycle_time_ms) {
target_rate_cds = -0.5f * target_rate_mag_cds * sinf(dwell_freq * (now - dwell_start_time_ms) * 0.001);
} else {
if (is_equal(start_frq,stop_frq)) {
target_rate_cds = - target_rate_mag_cds * cosf(dwell_freq * (now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001);
} else {
target_rate_cds = waveform((now - dwell_start_time_ms - 0.5f * cycle_time_ms) * 0.001, (sweep_time_ms - 0.5f * cycle_time_ms) * 0.001f, target_rate_mag_cds, start_frq, stop_frq);
dwell_freq = waveform_freq_rads;
}
}
filt_attitude_cd.x += alpha * (attitude_cd.x - filt_attitude_cd.x);
filt_attitude_cd.y += alpha * (attitude_cd.y - filt_attitude_cd.y);
filt_attitude_cd.z += alpha * wrap_180_cd(attitude_cd.z - filt_attitude_cd.z);
} else {
target_rate_cds = 0.0f;
settle_time--;
dwell_start_time_ms = now;
trim_command = command_out;
filt_attitude_cd = attitude_cd;
trim_attitude_cd = attitude_cd;
}
switch (axis) {
case ROLL:
gyro_reading = ahrs_view->get_gyro().x;
command_reading = motors->get_roll();
tgt_rate_reading = attitude_control->rate_bf_targets().x;
if (settle_time == 0) {
float ff_rate_contr = 0.0f;
if (tune_roll_rff > 0.0f) {
ff_rate_contr = 5730.0f * trim_command / tune_roll_rff;
}
float trim_rate_cds = ff_rate_contr + att_hold_gain * (trim_attitude_cd.x - filt_attitude_cd.x) - 5730.0f * vel_hold_gain * velocity_bf.y;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, att_hold_gain * (trim_attitude_cd.y - filt_attitude_cd.y), 0.0f);
attitude_control->rate_bf_roll_target(target_rate_cds + trim_rate_cds);
} else {
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
if (!is_zero(attitude_control->get_rate_roll_pid().ff() + attitude_control->get_rate_roll_pid().kP())) {
float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_roll_pid().kP()) / (attitude_control->get_rate_roll_pid().ff() + attitude_control->get_rate_roll_pid().kP());
attitude_control->rate_bf_roll_target(trim_tgt_rate_cds);
}
}
break;
case PITCH:
gyro_reading = ahrs_view->get_gyro().y;
command_reading = motors->get_pitch();
tgt_rate_reading = attitude_control->rate_bf_targets().y;
if (settle_time == 0) {
float ff_rate_contr = 0.0f;
if (tune_pitch_rff > 0.0f) {
ff_rate_contr = 5730.0f * trim_command / tune_pitch_rff;
}
float trim_rate_cds = ff_rate_contr + att_hold_gain * (trim_attitude_cd.y - filt_attitude_cd.y) + 5730.0f * vel_hold_gain * velocity_bf.x;
attitude_control->input_rate_bf_roll_pitch_yaw(att_hold_gain * (trim_attitude_cd.x - filt_attitude_cd.x), 0.0f, 0.0f);
attitude_control->rate_bf_pitch_target(target_rate_cds + trim_rate_cds);
} else {
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
if (!is_zero(attitude_control->get_rate_pitch_pid().ff() + attitude_control->get_rate_pitch_pid().kP())) {
float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_pitch_pid().kP()) / (attitude_control->get_rate_pitch_pid().ff() + attitude_control->get_rate_pitch_pid().kP());
attitude_control->rate_bf_pitch_target(trim_tgt_rate_cds);
}
}
break;
case YAW:
gyro_reading = ahrs_view->get_gyro().z;
command_reading = motors->get_yaw();
tgt_rate_reading = attitude_control->rate_bf_targets().z;
if (settle_time == 0) {
float rp_rate_contr = 0.0f;
if (tune_yaw_rp > 0.0f) {
rp_rate_contr = 5730.0f * trim_command / tune_yaw_rp;
}
float trim_rate_cds = rp_rate_contr + att_hold_gain * wrap_180_cd(trim_attitude_cd.z - filt_attitude_cd.z);
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
attitude_control->rate_bf_yaw_target(target_rate_cds + trim_rate_cds);
} else {
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
if (!is_zero(attitude_control->get_rate_yaw_pid().ff() + attitude_control->get_rate_yaw_pid().kP())) {
float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_yaw_pid().kP()) / (attitude_control->get_rate_yaw_pid().ff() + attitude_control->get_rate_yaw_pid().kP());
attitude_control->rate_bf_yaw_target(trim_tgt_rate_cds);
}
}
break;
}
if (settle_time == 0) {
filt_command_reading += alpha * (command_reading - filt_command_reading);
filt_gyro_reading += alpha * (gyro_reading - filt_gyro_reading);
filt_tgt_rate_reading += alpha * (tgt_rate_reading - filt_tgt_rate_reading);
} else {
filt_command_reading = command_reading;
filt_gyro_reading = gyro_reading;
filt_tgt_rate_reading = tgt_rate_reading;
}
// looks at gain and phase of input rate to output rate
rotation_rate = rotation_rate_filt.apply((gyro_reading - filt_gyro_reading),
AP::scheduler().get_loop_period_s());
filt_target_rate = target_rate_filt.apply((tgt_rate_reading - filt_tgt_rate_reading),
AP::scheduler().get_loop_period_s());
command_out = command_filt.apply((command_reading - filt_command_reading),
AP::scheduler().get_loop_period_s());
// wait for dwell to start before determining gain and phase or just start if sweep
if ((float)(now - dwell_start_time_ms) > 6.25f * cycle_time_ms || (!is_equal(start_frq,stop_frq) && settle_time == 0)) {
if (freq_resp_input == 1) {
freqresp_rate.update_rate(filt_target_rate,rotation_rate, dwell_freq);
} else {
freqresp_rate.update_rate(command_out,rotation_rate, dwell_freq);
}
if (freqresp_rate.is_cycle_complete()) {
if (!is_equal(start_frq,stop_frq)) {
curr_test_freq = freqresp_rate.get_freq();
curr_test_gain = freqresp_rate.get_gain();
curr_test_phase = freqresp_rate.get_phase();
// reset cycle_complete to allow indication of next cycle
freqresp_rate.reset_cycle_complete();
// log sweep data
Log_AutoTuneSweep();
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f phase=%f", (double)(curr_test_freq), (double)(curr_test_gain), (double)(curr_test_phase));
} else {
dwell_gain = freqresp_rate.get_gain();
dwell_phase = freqresp_rate.get_phase();
}
}
}
// set sweep data if a frequency sweep is being conducted
if (!is_equal(start_frq,stop_frq) && (float)(now - dwell_start_time_ms) > 2.5f * cycle_time_ms) {
// track sweep phase to prevent capturing 180 deg and 270 deg data after phase has wrapped.
if (curr_test_phase > 180.0f && sweep.progress == 0) {
sweep.progress = 1;
} else if (curr_test_phase > 270.0f && sweep.progress == 1) {
sweep.progress = 2;
}
if (curr_test_phase <= 160.0f && curr_test_phase >= 150.0f && sweep.progress == 0) {
sweep.ph180_freq = curr_test_freq;
sweep.ph180_gain = curr_test_gain;
sweep.ph180_phase = curr_test_phase;
}
if (curr_test_phase <= 250.0f && curr_test_phase >= 240.0f && sweep.progress == 1) {
sweep.ph270_freq = curr_test_freq;
sweep.ph270_gain = curr_test_gain;
sweep.ph270_phase = curr_test_phase;
}
if (curr_test_gain > sweep.maxgain_gain) {
sweep.maxgain_gain = curr_test_gain;
sweep.maxgain_freq = curr_test_freq;
sweep.maxgain_phase = curr_test_phase;
}
if (now - step_start_time_ms >= sweep_time_ms + 200) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: max_freq=%f max_gain=%f", (double)(sweep.maxgain_freq), (double)(sweep.maxgain_gain));
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ph180_freq=%f ph180_gain=%f", (double)(sweep.ph180_freq), (double)(sweep.ph180_gain));
}
} else {
if (now - step_start_time_ms >= step_time_limit_ms || freqresp_rate.is_cycle_complete()) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
}
void AC_AutoTune::angle_dwell_test_init(float filt_freq)
{
rotation_rate_filt.set_cutoff_frequency(filt_freq);
command_filt.set_cutoff_frequency(filt_freq);
target_rate_filt.set_cutoff_frequency(filt_freq);
dwell_start_time_ms = 0.0f;
settle_time = 200;
switch (axis) {
case ROLL:
rotation_rate_filt.reset(((float)ahrs_view->roll_sensor) / 5730.0f);
command_filt.reset(motors->get_roll());
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f);
rotation_rate = ((float)ahrs_view->roll_sensor) / 5730.0f;
command_out = motors->get_roll();
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f;
break;
case PITCH:
rotation_rate_filt.reset(((float)ahrs_view->pitch_sensor) / 5730.0f);
command_filt.reset(motors->get_pitch());
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f);
rotation_rate = ((float)ahrs_view->pitch_sensor) / 5730.0f;
command_out = motors->get_pitch();
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f;
break;
case YAW:
// yaw angle will be centered on zero by removing trim heading
rotation_rate_filt.reset(0.0f);
command_filt.reset(motors->get_yaw());
target_rate_filt.reset(0.0f);
rotation_rate = 0.0f;
command_out = motors->get_yaw();
filt_target_rate = 0.0f;
break;
}
if (!is_equal(start_freq,stop_freq)) {
sweep.ph180_freq = 0.0f;
sweep.ph180_gain = 0.0f;
sweep.ph180_phase = 0.0f;
sweep.ph270_freq = 0.0f;
sweep.ph270_gain = 0.0f;
sweep.ph270_phase = 0.0f;
sweep.maxgain_gain = 0.0f;
sweep.maxgain_freq = 0.0f;
sweep.maxgain_phase = 0.0f;
curr_test_gain = 0.0f;
curr_test_phase = 0.0f;
}
}
void AC_AutoTune::angle_dwell_test_run(float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase)
{
float gyro_reading = 0.0f;
float command_reading = 0.0f;
float tgt_rate_reading = 0.0f;
float tgt_attitude = 5.0f * 0.01745f;
const uint32_t now = AP_HAL::millis();
float target_angle_cd;
static float trim_yaw_tgt_reading = 0.0f;
static float trim_yaw_heading_reading = 0.0f;
float sweep_time_ms = 23000;
float dwell_freq = start_frq;
static float filt_command_reading;
static float filt_gyro_reading;
static float filt_tgt_rate_reading;
const float alpha = calc_lowpass_alpha_dt(0.0025f, 0.2f * start_frq);
// adjust target attitude based on input_tc so amplitude decrease with increased frequency is minimized
const float freq_co = 1.0f / attitude_control->get_input_tc();
const float added_ampl = (safe_sqrt(powf(dwell_freq,2.0) + powf(freq_co,2.0)) / freq_co) - 1.0f;
tgt_attitude = constrain_float(0.08725f * (1.0f + 0.2f * added_ampl), 0.08725f, 0.5235f);
float cycle_time_ms = 0;
if (!is_zero(dwell_freq)) {
cycle_time_ms = 1000.0f * 6.28f / dwell_freq;
}
if (settle_time == 0) {
// give gentler start for the dwell
if ((float)(now - dwell_start_time_ms) < 0.5f * cycle_time_ms) {
target_angle_cd = 0.5f * tgt_attitude * 5730.0f * (cosf(dwell_freq * (now - dwell_start_time_ms) * 0.001) - 1.0f);
} else {
if (is_equal(start_frq,stop_frq)) {
target_angle_cd = -tgt_attitude * 5730.0f * sinf(dwell_freq * (now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001);
} else {
target_angle_cd = -waveform((now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001, (sweep_time_ms - 0.25f * cycle_time_ms) * 0.001f, tgt_attitude * 5730.0f, start_frq, stop_frq);
dwell_freq = waveform_freq_rads;
}
}
} else {
target_angle_cd = 0.0f;
trim_yaw_tgt_reading = (float)attitude_control->get_att_target_euler_cd().z;
trim_yaw_heading_reading = (float)ahrs_view->yaw_sensor;
settle_time--;
dwell_start_time_ms = now;
}
float target_roll_cd, target_pitch_cd, target_yaw_rate_cds;
get_pilot_desired_rp_yrate_cd(target_roll_cd, target_pitch_cd, target_yaw_rate_cds);
switch (axis) {
case ROLL:
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll_cd + target_angle_cd, target_pitch_cd, 0.0f);
command_reading = motors->get_roll();
tgt_rate_reading = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f;
gyro_reading = ((float)ahrs_view->roll_sensor) / 5730.0f;
break;
case PITCH:
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll_cd, target_pitch_cd + target_angle_cd, 0.0f);
command_reading = motors->get_pitch();
tgt_rate_reading = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f;
gyro_reading = ((float)ahrs_view->pitch_sensor) / 5730.0f;
break;
case YAW:
command_reading = motors->get_yaw();
tgt_rate_reading = (wrap_180_cd((float)attitude_control->get_att_target_euler_cd().z - trim_yaw_tgt_reading)) / 5730.0f;
gyro_reading = (wrap_180_cd((float)ahrs_view->yaw_sensor - trim_yaw_heading_reading)) / 5730.0f;
attitude_control->input_euler_angle_roll_pitch_yaw(target_roll_cd, target_pitch_cd, wrap_180_cd(trim_yaw_tgt_reading + target_angle_cd), false);
break;
}
if (settle_time == 0) {
filt_command_reading += alpha * (command_reading - filt_command_reading);
filt_gyro_reading += alpha * (gyro_reading - filt_gyro_reading);
filt_tgt_rate_reading += alpha * (tgt_rate_reading - filt_tgt_rate_reading);
} else {
filt_command_reading = command_reading;
filt_gyro_reading = gyro_reading;
filt_tgt_rate_reading = tgt_rate_reading;
}
// looks at gain and phase of input rate to output rate
rotation_rate = rotation_rate_filt.apply((gyro_reading - filt_gyro_reading),
AP::scheduler().get_loop_period_s());
filt_target_rate = target_rate_filt.apply((tgt_rate_reading - filt_tgt_rate_reading),
AP::scheduler().get_loop_period_s());
command_out = command_filt.apply((command_reading - filt_command_reading),
AP::scheduler().get_loop_period_s());
// wait for dwell to start before determining gain and phase
if ((float)(now - dwell_start_time_ms) > 6.25f * cycle_time_ms || (!is_equal(start_frq,stop_frq) && settle_time == 0)) {
freqresp_angle.update_angle(command_out, filt_target_rate, rotation_rate, dwell_freq);
if (freqresp_angle.is_cycle_complete()) {
if (!is_equal(start_frq,stop_frq)) {
curr_test_freq = freqresp_angle.get_freq();
curr_test_gain = freqresp_angle.get_gain();
curr_test_phase = freqresp_angle.get_phase();
test_accel_max = freqresp_angle.get_accel_max();
// reset cycle_complete to allow indication of next cycle
freqresp_angle.reset_cycle_complete();
// log sweep data
Log_AutoTuneSweep();
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f phase=%f", (double)(curr_test_freq), (double)(curr_test_gain), (double)(curr_test_phase));
} else {
dwell_gain = freqresp_angle.get_gain();
dwell_phase = freqresp_angle.get_phase();
}
}
}
// set sweep data if a frequency sweep is being conducted
if (!is_equal(start_frq,stop_frq)) {
if (curr_test_phase <= 160.0f && curr_test_phase >= 150.0f) {
sweep.ph180_freq = curr_test_freq;
sweep.ph180_gain = curr_test_gain;
sweep.ph180_phase = curr_test_phase;
}
if (curr_test_phase <= 250.0f && curr_test_phase >= 240.0f) {
sweep.ph270_freq = curr_test_freq;
sweep.ph270_gain = curr_test_gain;
sweep.ph270_phase = curr_test_phase;
}
if (curr_test_gain > sweep.maxgain_gain) {
sweep.maxgain_gain = curr_test_gain;
sweep.maxgain_freq = curr_test_freq;
sweep.maxgain_phase = curr_test_phase;
}
if (now - step_start_time_ms >= sweep_time_ms + 200) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
} else {
if (now - step_start_time_ms >= step_time_limit_ms || freqresp_angle.is_cycle_complete()) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
}
// init_test - initialises the test
float AC_AutoTune::waveform(float time, float time_record, float waveform_magnitude, float wMin, float wMax)
{
float time_fade_in = 0.0f; // Time to reach maximum amplitude of chirp
float time_fade_out = 0.1 * time_record; // Time to reach zero amplitude after chirp finishes
float time_const_freq = 0.0f;
float window;
float output;
float B = logf(wMax / wMin);
if (time <= 0.0f) {
window = 0.0f;
} else if (time <= time_fade_in) {
window = 0.5 - 0.5 * cosf(M_PI * time / time_fade_in);
} else if (time <= time_record - time_fade_out) {
window = 1.0;
} else if (time <= time_record) {
window = 0.5 - 0.5 * cosf(M_PI * (time - (time_record - time_fade_out)) / time_fade_out + M_PI);
} else {
window = 0.0;
}
if (time <= 0.0f) {
waveform_freq_rads = wMin;
output = 0.0f;
} else if (time <= time_const_freq) {
waveform_freq_rads = wMin;
output = window * waveform_magnitude * sinf(wMin * time - wMin * time_const_freq);
} else if (time <= time_record) {
waveform_freq_rads = wMin * expf(B * (time - time_const_freq) / (time_record - time_const_freq));
output = window * waveform_magnitude * sinf((wMin * (time_record - time_const_freq) / B) * (expf(B * (time - time_const_freq) / (time_record - time_const_freq)) - 1));
} else {
waveform_freq_rads = wMax;
output = 0.0f;
}
return output;
}