This param seems to have been un-implemented. This is putting it back in. Adds a meter offset to the calculated altitude form the baro sensors.
Also changes it from int8 to float
This commit changes the way libraries headers are included in source files:
- If the header is in the same directory the source belongs to, so the
notation '#include ""' is used with the path relative to the directory
containing the source.
- If the header is outside the directory containing the source, then we use
the notation '#include <>' with the path relative to libraries folder.
Some of the advantages of such approach:
- Only one search path for libraries headers.
- OSs like Windows may have a better lookup time.
this allows the use of an external temperature sensor for calibration
purposes, such as the sensor built in to the digital airspeed sensor.
The main affect this has is on the EAS2TAS calculation
The get_calibration_temperature() is used to choose either an external
temperature or an internal one. If an internal one is used then it is
clamped at no higher than 25 degrees C, to prevent hot electronics
on startup affecting altitude scaling and EAS2TAS
- Define float versions of math functions to the double versions
on AVR (eg. #define sinf sin).
- These macros appear to be missing in older versions of avr-libs.
- Include AP_Math.h rather than math.h to get these definitions.
- Allows use of hardware floating point on the Cortex-M4.
- Added "f" suffix to floating point literals.
- Call floating point versions of stdlib math functions.
this changes the barometer calculations to floating point. On a MS5611
this is actually about twice as fast as the previous 64 bit
calculations, but gains us more accuracy as we are able to take
advantage of sub-bit precision when we average over 8 samples.
this allows the barometer driver to calibrate and return altitude and
climb rate values. This will be used by the AHRS drift correction code
for vertical velocity
The climb rate uses a 5 point average filter