ardupilot/libraries/AP_IOMCU/iofirmware/iofirmware.cpp

1089 lines
34 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
IOMCU main firmware
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Math/crc.h>
#include "iofirmware.h"
#include <AP_HAL_ChibiOS/RCInput.h>
#include <AP_HAL_ChibiOS/RCOutput.h>
#include "analog.h"
#include "rc.h"
#include <AP_HAL_ChibiOS/hwdef/common/watchdog.h>
2018-10-29 02:51:43 -03:00
extern const AP_HAL::HAL &hal;
// we build this file with optimisation to lower the interrupt
// latency. This helps reduce the chance of losing an RC input byte
// due to missing a UART interrupt
#pragma GCC optimize("O2")
static AP_IOMCU_FW iomcu;
void setup();
void loop();
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
/*
enable testing of IOMCU reset using safety switch
a value of 0 means normal operation
a value of 1 means test with watchdog
a value of 2 means test with reboot
*/
#define IOMCU_ENABLE_RESET_TEST 0
#ifndef IOMCU_SEND_TX_FROM_RX
#define IOMCU_SEND_TX_FROM_RX 1
#endif
// enable timing GPIO pings
#ifdef IOMCU_LOOP_TIMING_DEBUG
#undef TOGGLE_PIN_DEBUG
#define TOGGLE_PIN_DEBUG(pin) do { palToggleLine(HAL_GPIO_LINE_GPIO ## pin); } while (0)
#endif
// pending events on the main thread
enum ioevents {
IOEVENT_PWM = EVENT_MASK(1),
IOEVENT_TX_BEGIN = EVENT_MASK(2),
IOEVENT_TX_END = EVENT_MASK(3),
};
// see https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx for a discussion of how to run
// separate tx and rx streams
static void setup_rx_dma(hal_uart_driver* uart)
{
uart->usart->CR3 &= ~USART_CR3_DMAR;
dmaStreamDisable(uart->dmarx);
dmaStreamSetMemory0(uart->dmarx, &iomcu.rx_io_packet);
dmaStreamSetTransactionSize(uart->dmarx, sizeof(iomcu.rx_io_packet));
dmaStreamSetPeripheral(uart->dmarx, &(uart->usart->DR));
2021-02-19 16:48:33 -04:00
dmaStreamSetMode(uart->dmarx, uart->dmarxmode | STM32_DMA_CR_DIR_P2M |
2018-09-14 07:06:59 -03:00
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
dmaStreamEnable(uart->dmarx);
uart->usart->CR3 |= USART_CR3_DMAR;
}
static void setup_tx_dma(hal_uart_driver* uart)
{
uart->usart->CR3 &= ~USART_CR3_DMAT;
dmaStreamDisable(uart->dmatx);
dmaStreamSetMemory0(uart->dmatx, &iomcu.tx_io_packet);
dmaStreamSetTransactionSize(uart->dmatx, iomcu.tx_io_packet.get_size());
// starting the UART allocates the peripheral statically, so we need to reinstate it after swapping
dmaStreamSetPeripheral(uart->dmatx, &(uart->usart->DR));
2021-02-19 16:48:33 -04:00
dmaStreamSetMode(uart->dmatx, uart->dmatxmode | STM32_DMA_CR_DIR_M2P |
2018-09-14 07:06:59 -03:00
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
// enable transmission complete interrupt
uart->usart->SR = ~USART_SR_TC;
uart->usart->CR1 |= USART_CR1_TCIE;
dmaStreamEnable(uart->dmatx);
uart->usart->CR3 |= USART_CR3_DMAT;
}
static void dma_rx_end_cb(hal_uart_driver *uart)
{
chSysLockFromISR();
uart->usart->CR3 &= ~USART_CR3_DMAR;
(void)uart->usart->SR; // sequence to clear IDLE status
(void)uart->usart->DR;
(void)uart->usart->DR;
dmaStreamDisable(uart->dmarx);
iomcu.process_io_packet();
setup_rx_dma(uart);
#if AP_HAL_SHARED_DMA_ENABLED
#if IOMCU_SEND_TX_FROM_RX
// if we have the tx lock then setup the response
if (iomcu.tx_dma_handle->is_locked()) {
setup_tx_dma(uart);
chSysUnlockFromISR();
return;
}
#endif
// otherwise indicate that a response needs to be sent
uint32_t mask = chEvtGetAndClearEventsI(IOEVENT_TX_BEGIN);
if (mask) {
iomcu.reg_status.err_lock++;
}
// the FMU code waits 10ms for a reply so this should be easily fast enough
chEvtSignalI(iomcu.thread_ctx, IOEVENT_TX_BEGIN);
#else
setup_tx_dma(uart);
#endif
chSysUnlockFromISR();
}
static void dma_tx_end_cb(hal_uart_driver *uart)
{
// DMA stream has already been disabled at this point
uart->usart->CR3 &= ~USART_CR3_DMAT;
(void)uart->usart->SR;
(void)uart->usart->DR;
(void)uart->usart->DR;
TOGGLE_PIN_DEBUG(108);
TOGGLE_PIN_DEBUG(108);
chEvtSignalI(iomcu.thread_ctx, iomcu.fmu_events | IOEVENT_TX_END);
iomcu.fmu_events = 0;
}
/* replacement for ChibiOS uart_lld_serve_interrupt() */
static void idle_rx_handler(hal_uart_driver *uart)
{
volatile uint16_t sr;
sr = uart->usart->SR; /* SR reset step 1.*/
uint32_t cr1 = uart->usart->CR1;
if (sr & (USART_SR_LBD | USART_SR_ORE | /* overrun error - packet was too big for DMA or DMA was too slow */
2018-09-14 07:06:59 -03:00
USART_SR_NE | /* noise error - we have lost a byte due to noise */
USART_SR_FE |
USART_SR_PE)) { /* framing error - start/stop bit lost or line break */
/* send a line break - this will abort transmission/reception on the other end */
chSysLockFromISR();
uart->usart->SR = ~USART_SR_LBD;
uart->usart->CR1 = cr1 | USART_CR1_SBK;
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_uart++;
uart->usart->CR3 &= ~USART_CR3_DMAR;
(void)uart->usart->SR; // clears ORE | FE
(void)uart->usart->DR;
(void)uart->usart->DR;
setup_rx_dma(uart);
chSysUnlockFromISR();
return;
}
if ((sr & USART_SR_TC) && (cr1 & USART_CR1_TCIE)) {
chSysLockFromISR();
/* TC interrupt cleared and disabled.*/
uart->usart->SR &= ~USART_SR_TC;
uart->usart->CR1 = cr1 & ~USART_CR1_TCIE;
/* End of transmission, a callback is generated.*/
_uart_tx2_isr_code(uart);
chSysUnlockFromISR();
}
2018-09-14 07:06:59 -03:00
if (sr & USART_SR_IDLE) {
/* the DMA size is the maximum packet size, but smaller packets are perfectly possible leading to
an IDLE ISR. The data still must be processed. */
dma_rx_end_cb(uart);
}
}
using namespace ChibiOS;
#if AP_HAL_SHARED_DMA_ENABLED
/*
copy of uart_lld_serve_tx_end_irq() from ChibiOS hal_uart_lld
that is re-instated upon switching the DMA channel
*/
static void uart_lld_serve_tx_end_irq(hal_uart_driver *uart, uint32_t flags) {
/* DMA errors handling.*/
if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) {
}
dmaStreamDisable(uart->dmatx);
/* A callback is generated, if enabled, after a completed transfer.*/
_uart_tx1_isr_code(uart);
}
void AP_IOMCU_FW::dma_setup_transaction(hal_uart_driver *uart, eventmask_t mask)
{
chSysLock();
mask = chEvtGetAndClearEventsI(IOEVENT_TX_BEGIN) | mask;
if (mask & IOEVENT_TX_BEGIN) {
reg_status.deferred_locks++;
setup_tx_dma(uart);
}
chSysUnlock();
}
void AP_IOMCU_FW::tx_dma_allocate(Shared_DMA *ctx)
{
hal_uart_driver *uart = &UARTD2;
chSysLock();
if (uart->dmatx == nullptr) {
uart->dmatx = dmaStreamAllocI(STM32_UART_USART2_TX_DMA_STREAM,
STM32_UART_USART2_IRQ_PRIORITY,
(stm32_dmaisr_t)uart_lld_serve_tx_end_irq,
(void *)uart);
}
chSysUnlock();
}
/*
deallocate DMA channel
*/
void AP_IOMCU_FW::tx_dma_deallocate(Shared_DMA *ctx)
{
hal_uart_driver *uart = &UARTD2;
chSysLock();
if (uart->dmatx != nullptr) {
// defensively make sure the DMA is fully shutdown before swapping
uart->usart->CR3 &= ~USART_CR3_DMAT;
dmaStreamDisable(uart->dmatx);
dmaStreamSetPeripheral(uart->dmatx, nullptr);
dmaStreamFreeI(uart->dmatx);
uart->dmatx = nullptr;
}
chSysUnlock();
}
#endif // AP_HAL_SHARED_DMA_ENABLED
/*
* UART driver configuration structure.
*/
static UARTConfig uart_cfg = {
2018-09-14 07:06:59 -03:00
nullptr,
dma_tx_end_cb,
2018-09-14 07:06:59 -03:00
dma_rx_end_cb,
nullptr,
nullptr,
idle_rx_handler,
2021-02-19 16:48:33 -04:00
nullptr,
2018-09-14 07:06:59 -03:00
1500000, //1.5MBit
USART_CR1_IDLEIE,
0,
0
};
void setup(void)
{
hal.rcin->init();
hal.rcout->init();
iomcu.init();
2018-09-14 07:06:59 -03:00
iomcu.calculate_fw_crc();
uartStart(&UARTD2, &uart_cfg);
uartStartReceive(&UARTD2, sizeof(iomcu.rx_io_packet), &iomcu.rx_io_packet);
// disable the pieces from the UART which will get enabled later
chSysLock();
UARTD2.usart->CR3 &= ~USART_CR3_DMAT;
chSysUnlock();
}
void loop(void)
{
iomcu.update();
}
void AP_IOMCU_FW::init()
{
// the first protocol version must be 4 to allow downgrade to
// old NuttX based firmwares
config.protocol_version = IOMCU_PROTOCOL_VERSION;
config.protocol_version2 = IOMCU_PROTOCOL_VERSION2;
thread_ctx = chThdGetSelfX();
#if AP_HAL_SHARED_DMA_ENABLED
tx_dma_handle = new ChibiOS::Shared_DMA(STM32_UART_USART2_TX_DMA_STREAM, SHARED_DMA_NONE,
FUNCTOR_BIND_MEMBER(&AP_IOMCU_FW::tx_dma_allocate, void, Shared_DMA *),
FUNCTOR_BIND_MEMBER(&AP_IOMCU_FW::tx_dma_deallocate, void, Shared_DMA *));
tx_dma_handle->lock();
// deallocate so that the uart initializes correctly
tx_dma_deallocate(tx_dma_handle);
#endif
if (palReadLine(HAL_GPIO_PIN_IO_HW_DETECT1) == 1 && palReadLine(HAL_GPIO_PIN_IO_HW_DETECT2) == 0) {
has_heater = true;
}
//Set Heater pin mode
if (heater_pwm_polarity) {
palSetLineMode(HAL_GPIO_PIN_HEATER, PAL_MODE_OUTPUT_PUSHPULL);
} else {
palSetLineMode(HAL_GPIO_PIN_HEATER, PAL_MODE_OUTPUT_OPENDRAIN);
}
adc_init();
rcin_serial_init();
2018-10-31 19:24:18 -03:00
// power on spektrum port
palSetLineMode(HAL_GPIO_PIN_SPEKTRUM_PWR_EN, PAL_MODE_OUTPUT_PUSHPULL);
SPEKTRUM_POWER(1);
2018-10-31 19:24:18 -03:00
// we generally do no allocations after setup completes
reg_status.freemem = hal.util->available_memory();
if (hal.util->was_watchdog_safety_off()) {
hal.rcout->force_safety_off();
reg_status.flag_safety_off = true;
}
}
2018-09-14 07:06:59 -03:00
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
static void stackCheck(uint16_t& mstack, uint16_t& pstack) {
extern uint32_t __main_stack_base__[];
extern uint32_t __main_stack_end__[];
uint32_t stklimit = (uint32_t)__main_stack_end__;
uint32_t stkbase = (uint32_t)__main_stack_base__;
uint32_t *crawl = (uint32_t *)stkbase;
while (*crawl == 0x55555555 && crawl < (uint32_t *)stklimit) {
crawl++;
}
uint32_t free = (uint32_t)crawl - stkbase;
chDbgAssert(free > 0, "mstack exhausted");
mstack = (uint16_t)free;
extern uint32_t __main_thread_stack_base__[];
extern uint32_t __main_thread_stack_end__[];
stklimit = (uint32_t)__main_thread_stack_end__;
stkbase = (uint32_t)__main_thread_stack_base__;
crawl = (uint32_t *)stkbase;
while (*crawl == 0x55555555 && crawl < (uint32_t *)stklimit) {
crawl++;
}
free = (uint32_t)crawl - stkbase;
chDbgAssert(free > 0, "pstack exhausted");
pstack = (uint16_t)free;
}
#endif /* CH_DBG_ENABLE_STACK_CHECK == TRUE */
void AP_IOMCU_FW::update()
{
#if CH_CFG_ST_FREQUENCY == 1000000
// run the main loop at 2Khz, the allows dshot timing to be much more precise due to increased lock availability
// however the increased CPU load needs to be achievable
eventmask_t mask = chEvtWaitAnyTimeout(IOEVENT_PWM | IOEVENT_TX_END | IOEVENT_TX_BEGIN, TIME_US2I(500));
#else
// we are not running any other threads, so we can use an
// immediate timeout here for lowest latency
eventmask_t mask = chEvtWaitAnyTimeout(IOEVENT_PWM | IOEVENT_TX_END, TIME_IMMEDIATE);
#endif
TOGGLE_PIN_DEBUG(107);
iomcu.reg_status.total_ticks++;
if (mask) {
iomcu.reg_status.total_events++;
}
#if AP_HAL_SHARED_DMA_ENABLED
// make sure we are not about to clobber a tx already in progress
chSysLock();
if (UARTD2.usart->CR3 & USART_CR3_DMAT) {
chEvtSignal(thread_ctx, mask & ~IOEVENT_TX_END);
chSysUnlock();
return;
}
chSysUnlock();
tx_dma_handle->unlock();
#endif
// we get the timestamp once here, and avoid fetching it
// within the DMA callbacks
last_ms = AP_HAL::millis();
loop_counter++;
if (do_reboot && (last_ms > reboot_time)) {
hal.scheduler->reboot(true);
2018-09-14 07:06:59 -03:00
while (true) {}
}
if ((mask & IOEVENT_PWM) ||
(last_safety_off != reg_status.flag_safety_off)) {
last_safety_off = reg_status.flag_safety_off;
pwm_out_update();
}
uint32_t now = last_ms;
uint32_t now_us = AP_HAL::micros();
2018-10-29 02:51:43 -03:00
reg_status.timestamp_ms = last_ms;
2018-10-29 02:51:43 -03:00
// output SBUS if enabled
if ((reg_setup.features & P_SETUP_FEATURES_SBUS1_OUT) &&
reg_status.flag_safety_off &&
now - sbus_last_ms >= sbus_interval_ms) {
// output a new SBUS frame
sbus_last_ms = now;
sbus_out_write(reg_servo.pwm, IOMCU_MAX_CHANNELS);
}
// handle FMU failsafe
if (now - fmu_data_received_time > 200) {
// we are not getting input from the FMU. Fill in failsafe values at 100Hz
if (now - last_failsafe_ms > 10) {
fill_failsafe_pwm();
chEvtSignal(thread_ctx, IOEVENT_PWM);
last_failsafe_ms = now;
}
// turn amber on
AMBER_SET(1);
} else {
last_failsafe_ms = now;
// turn amber off
AMBER_SET(0);
}
// update status page at 20Hz
if (now - last_status_ms > 50) {
last_status_ms = now;
page_status_update();
}
// run fast loop functions at 1Khz
if (now_us - last_fast_loop_us > 1000) {
last_fast_loop_us = now_us;
rcin_update();
rcin_serial_update();
}
// run remaining functions at 100Hz
// these are all relatively expensive and take ~10ms to complete
// so there is no way they can effectively be run faster than 100Hz
if (now - last_slow_loop_ms > 10) {
last_slow_loop_ms = now;
heater_update();
safety_update();
rcout_config_update();
hal.rcout->timer_tick();
2018-10-31 19:24:18 -03:00
if (dsm_bind_state) {
dsm_bind_step();
}
GPIO_write();
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
stackCheck(reg_status.freemstack, reg_status.freepstack);
#endif
}
// the main firmware sends a packet always expecting a reply. As soon as the reply comes it
// it will send another. Since most of the time the IOMCU has what it needs as soon as it
// has received a request we can delay the response until the end of the tick to prevent
// data being sent while we are not ready to receive it. The processing can be done without the
// tx lock being held, giving dshot a chance to run on shared channels
#if AP_HAL_SHARED_DMA_ENABLED
tx_dma_handle->lock();
dma_setup_transaction(&UARTD2, mask);
#endif
TOGGLE_PIN_DEBUG(107);
}
void AP_IOMCU_FW::pwm_out_update()
{
memcpy(reg_servo.pwm, reg_direct_pwm.pwm, sizeof(reg_direct_pwm));
hal.rcout->cork();
2018-09-14 07:06:59 -03:00
for (uint8_t i = 0; i < SERVO_COUNT; i++) {
if (reg_status.flag_safety_off || (reg_setup.ignore_safety & (1U<<i))) {
hal.rcout->write(i, reg_servo.pwm[i]);
} else {
hal.rcout->write(i, 0);
}
}
hal.rcout->push();
}
void AP_IOMCU_FW::heater_update()
{
uint32_t now = last_ms;
if (!has_heater) {
// use blue LED as heartbeat, run it 4x faster when override active
if (now - last_blue_led_ms > (override_active?125:500)) {
BLUE_TOGGLE();
last_blue_led_ms = now;
}
} else if (reg_setup.heater_duty_cycle == 0 || (now - last_heater_ms > 3000UL)) {
// turn off the heater
HEATER_SET(!heater_pwm_polarity);
2018-09-14 07:06:59 -03:00
} else {
// we use a pseudo random sequence to dither the cycling as
// the heater has a significant effect on the internal
// magnetometers. The random generator dithers this so we don't get a 1Hz cycly in the magnetometer.
// The impact on the mags is about 25 mGauss.
bool heater_on = (get_random16() < uint32_t(reg_setup.heater_duty_cycle) * 0xFFFFU / 100U);
HEATER_SET(heater_on? heater_pwm_polarity : !heater_pwm_polarity);
2018-09-14 07:06:59 -03:00
}
}
void AP_IOMCU_FW::rcin_update()
{
((ChibiOS::RCInput *)hal.rcin)->_timer_tick();
if (hal.rcin->new_input()) {
const auto &rc = AP::RC();
rc_input.count = hal.rcin->num_channels();
rc_input.flags_rc_ok = true;
hal.rcin->read(rc_input.pwm, IOMCU_MAX_CHANNELS);
rc_last_input_ms = last_ms;
rc_input.rc_protocol = (uint16_t)rc.protocol_detected();
rc_input.rssi = rc.get_RSSI();
rc_input.flags_failsafe = rc.failsafe_active();
} else if (last_ms - rc_last_input_ms > 200U) {
2018-10-05 22:04:13 -03:00
rc_input.flags_rc_ok = false;
}
if (update_rcout_freq) {
hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate);
update_rcout_freq = false;
}
if (update_default_rate) {
hal.rcout->set_default_rate(reg_setup.pwm_defaultrate);
update_default_rate = false;
}
bool old_override = override_active;
// check for active override channel
if (mixing.enabled &&
mixing.rc_chan_override > 0 &&
rc_input.flags_rc_ok &&
mixing.rc_chan_override <= IOMCU_MAX_CHANNELS) {
override_active = (rc_input.pwm[mixing.rc_chan_override-1] >= 1750);
} else {
override_active = false;
}
if (old_override != override_active) {
if (override_active) {
fill_failsafe_pwm();
}
chEvtSignal(thread_ctx, IOEVENT_PWM);
}
}
void AP_IOMCU_FW::process_io_packet()
{
iomcu.reg_status.total_pkts++;
uint8_t rx_crc = rx_io_packet.crc;
uint8_t calc_crc;
rx_io_packet.crc = 0;
uint8_t pkt_size = rx_io_packet.get_size();
if (rx_io_packet.code == CODE_READ) {
// allow for more bandwidth efficient read packets
calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, 4);
if (calc_crc != rx_crc) {
calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, pkt_size);
}
} else {
calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, pkt_size);
}
if (rx_crc != calc_crc || rx_io_packet.count > PKT_MAX_REGS) {
tx_io_packet.count = 0;
tx_io_packet.code = CODE_CORRUPT;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_crc++;
return;
}
2018-09-14 07:06:59 -03:00
switch (rx_io_packet.code) {
case CODE_READ: {
if (!handle_code_read()) {
tx_io_packet.count = 0;
tx_io_packet.code = CODE_ERROR;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
2018-09-14 07:06:59 -03:00
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_read++;
}
2018-09-14 07:06:59 -03:00
}
break;
case CODE_WRITE: {
if (!handle_code_write()) {
tx_io_packet.count = 0;
tx_io_packet.code = CODE_ERROR;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
2018-09-14 07:06:59 -03:00
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_write++;
}
2018-09-14 07:06:59 -03:00
}
break;
default: {
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_bad_opcode++;
2018-09-14 07:06:59 -03:00
}
break;
}
}
/*
update dynamic elements of status page
*/
void AP_IOMCU_FW::page_status_update(void)
{
2018-10-29 02:51:43 -03:00
if ((reg_setup.features & P_SETUP_FEATURES_SBUS1_OUT) == 0) {
// we can only get VRSSI when sbus is disabled
reg_status.vrssi = adc_sample_vrssi();
} else {
reg_status.vrssi = 0;
}
reg_status.vservo = adc_sample_vservo();
}
bool AP_IOMCU_FW::handle_code_read()
{
2018-09-14 07:06:59 -03:00
uint16_t *values = nullptr;
#define COPY_PAGE(_page_name) \
do { \
values = (uint16_t *)&_page_name; \
tx_io_packet.count = sizeof(_page_name) / sizeof(uint16_t); \
} while(0);
2018-09-14 07:06:59 -03:00
switch (rx_io_packet.page) {
case PAGE_CONFIG:
COPY_PAGE(config);
break;
2018-09-14 07:06:59 -03:00
case PAGE_SETUP:
COPY_PAGE(reg_setup);
break;
case PAGE_RAW_RCIN:
COPY_PAGE(rc_input);
break;
case PAGE_STATUS:
COPY_PAGE(reg_status);
break;
case PAGE_SERVOS:
COPY_PAGE(reg_servo);
break;
default:
return false;
}
2018-09-14 07:06:59 -03:00
/* if the offset is at or beyond the end of the page, we have no data */
if (rx_io_packet.offset + rx_io_packet.count > tx_io_packet.count) {
2018-09-14 07:06:59 -03:00
return false;
}
2018-09-14 07:06:59 -03:00
/* correct the data pointer and count for the offset */
values += rx_io_packet.offset;
tx_io_packet.page = rx_io_packet.page;
tx_io_packet.offset = rx_io_packet.offset;
2018-09-14 07:06:59 -03:00
tx_io_packet.count -= rx_io_packet.offset;
2018-10-29 18:54:43 -03:00
tx_io_packet.count = MIN(tx_io_packet.count, rx_io_packet.count);
tx_io_packet.count = MIN(tx_io_packet.count, PKT_MAX_REGS);
tx_io_packet.code = CODE_SUCCESS;
memcpy(tx_io_packet.regs, values, sizeof(uint16_t)*tx_io_packet.count);
tx_io_packet.crc = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
return true;
}
bool AP_IOMCU_FW::handle_code_write()
{
2018-09-14 07:06:59 -03:00
switch (rx_io_packet.page) {
case PAGE_SETUP:
switch (rx_io_packet.offset) {
case PAGE_REG_SETUP_ARMING:
reg_setup.arming = rx_io_packet.regs[0];
break;
case PAGE_REG_SETUP_FORCE_SAFETY_OFF:
if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) {
hal.rcout->force_safety_off();
reg_status.flag_safety_off = true;
} else {
return false;
}
2018-09-14 07:06:59 -03:00
break;
case PAGE_REG_SETUP_FORCE_SAFETY_ON:
if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) {
hal.rcout->force_safety_on();
reg_status.flag_safety_off = false;
} else {
return false;
}
2018-09-14 07:06:59 -03:00
break;
case PAGE_REG_SETUP_ALTRATE:
reg_setup.pwm_altrate = rx_io_packet.regs[0];
update_rcout_freq = true;
break;
case PAGE_REG_SETUP_PWM_RATE_MASK:
reg_setup.pwm_rates = rx_io_packet.regs[0];
update_rcout_freq = true;
break;
case PAGE_REG_SETUP_DEFAULTRATE:
if (rx_io_packet.regs[0] < 25 && reg_setup.pwm_altclock == 1) {
rx_io_packet.regs[0] = 25;
}
if (rx_io_packet.regs[0] > 400 && reg_setup.pwm_altclock == 1) {
rx_io_packet.regs[0] = 400;
}
reg_setup.pwm_defaultrate = rx_io_packet.regs[0];
update_default_rate = true;
break;
case PAGE_REG_SETUP_DSHOT_PERIOD:
reg_setup.dshot_period_us = rx_io_packet.regs[0];
reg_setup.dshot_rate = rx_io_packet.regs[1];
hal.rcout->set_dshot_period(reg_setup.dshot_period_us, reg_setup.dshot_rate);
break;
case PAGE_REG_SETUP_CHANNEL_MASK:
reg_setup.channel_mask = rx_io_packet.regs[0];
break;
2018-09-14 07:06:59 -03:00
case PAGE_REG_SETUP_SBUS_RATE:
2018-10-29 02:51:43 -03:00
reg_setup.sbus_rate = rx_io_packet.regs[0];
sbus_interval_ms = MAX(1000U / reg_setup.sbus_rate,3);
2018-09-14 07:06:59 -03:00
break;
case PAGE_REG_SETUP_FEATURES:
reg_setup.features = rx_io_packet.regs[0];
/* disable the conflicting options with SBUS 1 */
if (reg_setup.features & (P_SETUP_FEATURES_SBUS1_OUT)) {
reg_setup.features &= ~(P_SETUP_FEATURES_PWM_RSSI |
P_SETUP_FEATURES_ADC_RSSI |
P_SETUP_FEATURES_SBUS2_OUT);
2018-10-29 02:51:43 -03:00
// enable SBUS output at specified rate
sbus_interval_ms = MAX(1000U / reg_setup.sbus_rate,3);
// we need to release the JTAG reset pin to be used as a GPIO, otherwise we can't enable
// or disable SBUS out
AFIO->MAPR = AFIO_MAPR_SWJ_CFG_NOJNTRST;
2018-10-29 02:51:43 -03:00
palClearLine(HAL_GPIO_PIN_SBUS_OUT_EN);
} else {
palSetLine(HAL_GPIO_PIN_SBUS_OUT_EN);
2018-09-14 07:06:59 -03:00
}
if (reg_setup.features & P_SETUP_FEATURES_HEATER) {
has_heater = true;
}
2018-09-14 07:06:59 -03:00
break;
2018-10-31 19:24:18 -03:00
case PAGE_REG_SETUP_OUTPUT_MODE:
mode_out.mask = rx_io_packet.regs[0];
mode_out.mode = rx_io_packet.regs[1];
break;
2018-09-14 07:06:59 -03:00
case PAGE_REG_SETUP_HEATER_DUTY_CYCLE:
reg_setup.heater_duty_cycle = rx_io_packet.regs[0];
last_heater_ms = last_ms;
2018-09-14 07:06:59 -03:00
break;
case PAGE_REG_SETUP_REBOOT_BL:
if (reg_status.flag_safety_off) {
// don't allow reboot while armed
return false;
}
// check the magic value
if (rx_io_packet.regs[0] != REBOOT_BL_MAGIC) {
return false;
}
schedule_reboot(100);
break;
case PAGE_REG_SETUP_IGNORE_SAFETY:
reg_setup.ignore_safety = rx_io_packet.regs[0];
((ChibiOS::RCOutput *)hal.rcout)->set_safety_mask(reg_setup.ignore_safety);
break;
2018-10-31 19:24:18 -03:00
case PAGE_REG_SETUP_DSM_BIND:
2018-10-31 19:54:18 -03:00
if (dsm_bind_state == 0) {
dsm_bind_state = 1;
}
2018-10-31 19:24:18 -03:00
break;
case PAGE_REG_SETUP_RC_PROTOCOLS: {
if (rx_io_packet.count == 2) {
uint32_t v;
memcpy(&v, &rx_io_packet.regs[0], 4);
AP::RC().set_rc_protocols(v);
}
break;
}
default:
break;
2018-09-14 07:06:59 -03:00
}
break;
2018-09-14 07:06:59 -03:00
case PAGE_DIRECT_PWM: {
if (override_active) {
// no input when override is active
break;
}
2018-09-14 07:06:59 -03:00
/* copy channel data */
uint16_t i = 0, offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(reg_direct_pwm.pwm)/2) {
return false;
}
2018-09-14 07:06:59 -03:00
while ((offset < IOMCU_MAX_CHANNELS) && (num_values > 0)) {
/* XXX range-check value? */
if (rx_io_packet.regs[i] != PWM_IGNORE_THIS_CHANNEL) {
reg_direct_pwm.pwm[offset] = rx_io_packet.regs[i];
}
offset++;
num_values--;
i++;
}
fmu_data_received_time = last_ms;
fmu_events |= IOEVENT_PWM;
2018-09-14 07:06:59 -03:00
break;
}
case PAGE_MIXING: {
uint16_t offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(mixing)/2) {
return false;
}
memcpy(((uint16_t *)&mixing)+offset, &rx_io_packet.regs[0], num_values*2);
break;
}
2018-09-14 07:06:59 -03:00
case PAGE_FAILSAFE_PWM: {
uint16_t offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(reg_failsafe_pwm.pwm)/2) {
return false;
}
memcpy((&reg_failsafe_pwm.pwm[0])+offset, &rx_io_packet.regs[0], num_values*2);
break;
}
case PAGE_GPIO:
if (rx_io_packet.count != 1) {
return false;
}
memcpy(&GPIO, &rx_io_packet.regs[0] + rx_io_packet.offset, sizeof(GPIO));
break;
case PAGE_DSHOT: {
uint16_t offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(dshot)/2) {
return false;
}
memcpy(((uint16_t *)&dshot)+offset, &rx_io_packet.regs[0], num_values*2);
if(dshot.telem_mask) {
hal.rcout->set_telem_request_mask(dshot.telem_mask);
}
if (dshot.command) {
hal.rcout->send_dshot_command(dshot.command, dshot.chan, dshot.command_timeout_ms, dshot.repeat_count, dshot.priority);
}
break;
}
2018-09-14 07:06:59 -03:00
default:
break;
}
tx_io_packet.count = 0;
tx_io_packet.code = CODE_SUCCESS;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
return true;
}
void AP_IOMCU_FW::schedule_reboot(uint32_t time_ms)
{
do_reboot = true;
reboot_time = last_ms + time_ms;
}
void AP_IOMCU_FW::calculate_fw_crc(void)
{
#define APP_SIZE_MAX 0xf000
#define APP_LOAD_ADDRESS 0x08001000
2018-09-14 07:06:59 -03:00
// compute CRC of the current firmware
uint32_t sum = 0;
2018-09-14 07:06:59 -03:00
for (unsigned p = 0; p < APP_SIZE_MAX; p += 4) {
uint32_t bytes = *(uint32_t *)(p + APP_LOAD_ADDRESS);
sum = crc32_small(sum, (const uint8_t *)&bytes, sizeof(bytes));
2018-09-14 07:06:59 -03:00
}
2018-09-14 07:06:59 -03:00
reg_setup.crc[0] = sum & 0xFFFF;
reg_setup.crc[1] = sum >> 16;
}
/*
update safety state
*/
void AP_IOMCU_FW::safety_update(void)
{
uint32_t now = last_ms;
if (now - safety_update_ms < 100) {
// update safety at 10Hz
return;
}
safety_update_ms = now;
bool safety_pressed = palReadLine(HAL_GPIO_PIN_SAFETY_INPUT);
if (safety_pressed) {
if (reg_status.flag_safety_off && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_ON)) {
safety_pressed = false;
} else if ((!reg_status.flag_safety_off) && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_OFF)) {
safety_pressed = false;
}
}
if (safety_pressed) {
safety_button_counter++;
} else {
safety_button_counter = 0;
}
if (safety_button_counter == 10) {
// safety has been pressed for 1 second, change state
reg_status.flag_safety_off = !reg_status.flag_safety_off;
if (reg_status.flag_safety_off) {
hal.rcout->force_safety_off();
} else {
hal.rcout->force_safety_on();
}
}
#if IOMCU_ENABLE_RESET_TEST
{
// deliberate lockup of IOMCU on 5s button press, for testing
// watchdog
static uint32_t safety_test_counter;
static bool should_lockup;
if (palReadLine(HAL_GPIO_PIN_SAFETY_INPUT)) {
safety_test_counter++;
} else {
safety_test_counter = 0;
}
if (safety_test_counter == 50) {
should_lockup = true;
}
// wait for lockup for safety to be released so we don't end
// up in the bootloader
if (should_lockup && palReadLine(HAL_GPIO_PIN_SAFETY_INPUT) == 0) {
#if IOMCU_ENABLE_RESET_TEST == 1
// lockup with watchdog
while (true) {
hal.scheduler->delay(50);
palToggleLine(HAL_GPIO_PIN_SAFETY_LED);
}
#else
// hard fault to simulate power reset or software fault
void *foo = (void*)0xE000ED38;
typedef void (*fptr)();
fptr gptr = (fptr) (void *) foo;
gptr();
while (true) {}
#endif
}
}
#endif // IOMCU_ENABLE_RESET_TEST
led_counter = (led_counter+1) % 16;
const uint16_t led_pattern = reg_status.flag_safety_off?0xFFFF:0x5500;
palWriteLine(HAL_GPIO_PIN_SAFETY_LED, (led_pattern & (1U << led_counter))?0:1);
}
/*
update hal.rcout mode if needed
*/
void AP_IOMCU_FW::rcout_config_update(void)
{
// channels cannot be changed from within a lock zone
// so needs to be done here
if (GPIO.channel_mask != last_GPIO_channel_mask) {
for (uint8_t i=0; i<8; i++) {
if ((GPIO.channel_mask & (1U << i)) != 0) {
hal.rcout->disable_ch(i);
hal.gpio->pinMode(101+i, HAL_GPIO_OUTPUT);
} else {
hal.rcout->enable_ch(i);
}
}
last_GPIO_channel_mask = GPIO.channel_mask;
}
if (last_channel_mask != reg_setup.channel_mask) {
for (uint8_t i=0; i<IOMCU_MAX_CHANNELS; i++) {
if (reg_setup.channel_mask & 1U << i) {
hal.rcout->enable_ch(i);
} else {
hal.rcout->disable_ch(i);
}
}
last_channel_mask = reg_setup.channel_mask;
}
bool use_dshot = mode_out.mode >= AP_HAL::RCOutput::MODE_PWM_DSHOT150
&& mode_out.mode <= AP_HAL::RCOutput::MODE_PWM_DSHOT300;
if (use_dshot && !dshot_enabled) {
dshot_enabled = true;
hal.rcout->set_output_mode(mode_out.mask, (AP_HAL::RCOutput::output_mode)mode_out.mode);
// enabling dshot changes the memory allocation
reg_status.freemem = hal.util->available_memory();
}
bool use_oneshot = (mode_out.mode == AP_HAL::RCOutput::MODE_PWM_ONESHOT
|| mode_out.mode == AP_HAL::RCOutput::MODE_PWM_ONESHOT125);
if (use_oneshot && !oneshot_enabled) {
oneshot_enabled = true;
// setup to use a 1Hz frequency, so we only get output when we trigger
hal.rcout->set_freq(mode_out.mask, 1);
hal.rcout->set_output_mode(mode_out.mask, (AP_HAL::RCOutput::output_mode)mode_out.mode);
}
bool use_brushed = mode_out.mode == AP_HAL::RCOutput::MODE_PWM_BRUSHED;
2018-07-13 01:44:16 -03:00
if (use_brushed && !brushed_enabled) {
brushed_enabled = true;
// default to 2kHz for all channels for brushed output
hal.rcout->set_freq(mode_out.mask, 2000);
2018-07-13 01:44:16 -03:00
hal.rcout->set_esc_scaling(1000, 2000);
hal.rcout->set_output_mode(mode_out.mask, AP_HAL::RCOutput::MODE_PWM_BRUSHED);
hal.rcout->set_freq(mode_out.mask, reg_setup.pwm_altrate);
2018-07-13 01:44:16 -03:00
}
}
/*
fill in failsafe PWM values
*/
void AP_IOMCU_FW::fill_failsafe_pwm(void)
{
for (uint8_t i=0; i<IOMCU_MAX_CHANNELS; i++) {
if (reg_status.flag_safety_off) {
reg_direct_pwm.pwm[i] = reg_failsafe_pwm.pwm[i];
} else {
reg_direct_pwm.pwm[i] = 0;
}
}
if (mixing.enabled) {
run_mixer();
}
}
void AP_IOMCU_FW::GPIO_write()
{
for (uint8_t i=0; i<8; i++) {
if ((GPIO.channel_mask & (1U << i)) != 0) {
hal.gpio->write(101+i, (GPIO.output_mask & (1U << i)) != 0);
}
}
}
AP_HAL_MAIN();