ardupilot/APMrover2/GCS_Mavlink.pde

1330 lines
39 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// default sensors are present and healthy: gyro, accelerometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
2014-05-15 07:52:50 -03:00
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS)
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// true if we are out of time in our event timeslice
static bool gcs_out_of_time;
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (txspace < MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_## id ##_LEN) return false
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
2013-02-08 22:11:43 -04:00
if (failsafe.triggered != 0) {
2013-02-08 22:11:43 -04:00
system_status = MAV_STATE_CRITICAL;
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (control_mode) {
case MANUAL:
case LEARNING:
case STEERING:
base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case AUTO:
case RTL:
case GUIDED:
base_mode = MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
system_status = MAV_STATE_CALIBRATING;
break;
case HOLD:
system_status = 0;
break;
}
#if defined(ENABLE_STICK_MIXING) && (ENABLE_STICK_MIXING==ENABLED)
if (control_mode != INITIALISING) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
#endif
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (control_mode != INITIALISING && hal.util->get_soft_armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
mavlink_msg_heartbeat_send(
chan,
MAV_TYPE_GROUND_ROVER,
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
static NOINLINE void send_extended_status1(mavlink_channel_t chan)
{
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
2014-03-30 22:01:54 -03:00
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control and motor output which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS);
switch (control_mode) {
case MANUAL:
case HOLD:
break;
case LEARNING:
case STEERING:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case AUTO:
case RTL:
case GUIDED:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
break;
case INITIALISING:
break;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
// default to all healthy except compass and gps which we set individually
control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS);
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
2014-03-30 22:01:54 -03:00
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
if (!ins.get_gyro_health_all() || (!g.skip_gyro_cal && !ins.gyro_calibrated_ok_all())) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
if (!ins.get_accel_health_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
2013-10-29 19:02:16 -03:00
}
if (ahrs.initialised() && !ahrs.healthy()) {
2014-05-15 07:52:50 -03:00
// AHRS subsystem is unhealthy
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
2013-10-02 03:07:28 -03:00
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.has_current() && battery.healthy()) {
2013-10-02 03:07:28 -03:00
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
if (AP_Notify::flags.initialising) {
// while initialising the gyros and accels are not enabled
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
2013-07-23 04:07:35 -03:00
(uint16_t)(scheduler.load_average(20000) * 1000),
2013-10-02 03:07:28 -03:00
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
uint32_t fix_time;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
2014-03-30 22:01:54 -03:00
if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) {
fix_time = gps.last_fix_time_ms();
} else {
fix_time = millis();
}
2014-03-30 22:01:54 -03:00
const Vector3f &vel = gps.velocity();
mavlink_msg_global_position_int_send(
chan,
fix_time,
2014-03-30 22:01:54 -03:00
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
gps.location().alt * 10UL, // millimeters above sea level
(current_loc.alt - home.alt) * 10, // millimeters above ground
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor);
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
lateral_acceleration, // use nav_roll to hold demanded Y accel
2014-03-30 22:01:54 -03:00
gps.ground_speed() * ins.get_gyro().z, // use nav_pitch to hold actual Y accel
nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f,
wp_distance,
0,
groundspeed_error,
nav_controller->crosstrack_error());
}
static void NOINLINE send_servo_out(mavlink_channel_t chan)
{
#if HIL_MODE != HIL_MODE_DISABLED
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with
// HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
10000 * channel_steer->norm_output(),
0,
10000 * channel_throttle->norm_output(),
0,
0,
0,
0,
0,
receiver_rssi);
#endif
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
#else
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
2013-06-03 02:12:11 -03:00
RC_Channel::rc_channel(0)->radio_out,
RC_Channel::rc_channel(1)->radio_out,
RC_Channel::rc_channel(2)->radio_out,
RC_Channel::rc_channel(3)->radio_out,
RC_Channel::rc_channel(4)->radio_out,
RC_Channel::rc_channel(5)->radio_out,
RC_Channel::rc_channel(6)->radio_out,
RC_Channel::rc_channel(7)->radio_out);
#endif
}
static void NOINLINE send_vfr_hud(mavlink_channel_t chan)
{
mavlink_msg_vfr_hud_send(
chan,
2014-03-30 22:01:54 -03:00
gps.ground_speed(),
gps.ground_speed(),
(ahrs.yaw_sensor / 100) % 360,
(uint16_t)(100 * fabsf(channel_throttle->norm_output())),
current_loc.alt / 100.0,
0);
}
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
2013-04-19 18:29:57 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
sitl.simstate_send(chan);
#endif
2013-04-19 18:29:57 -03:00
}
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
hal.analogin->board_voltage()*1000,
hal.i2c->lockup_count());
}
static void NOINLINE send_rangefinder(mavlink_channel_t chan)
{
if (!sonar.healthy()) {
// no sonar to report
return;
}
/*
report smaller distance of two sonars if more than one enabled
*/
float distance_cm, voltage;
if (!sonar.healthy(1)) {
distance_cm = sonar.distance_cm(0);
voltage = sonar.voltage_mv(0) * 0.001f;
} else {
float dist1 = sonar.distance_cm(0);
float dist2 = sonar.distance_cm(1);
if (dist1 <= dist2) {
distance_cm = dist1;
voltage = sonar.voltage_mv(0) * 0.001f;
} else {
distance_cm = dist2;
voltage = sonar.voltage_mv(1) * 0.001f;
}
}
mavlink_msg_rangefinder_send(
chan,
distance_cm * 0.01f,
voltage);
}
static void NOINLINE send_current_waypoint(mavlink_channel_t chan)
{
2014-04-21 22:38:10 -03:00
mavlink_msg_mission_current_send(chan, mission.get_current_nav_index());
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
2013-11-23 06:57:26 -04:00
mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status;
mavlink_msg_statustext_send(
chan,
s->severity,
s->text);
}
2012-08-29 20:36:18 -03:00
// are we still delaying telemetry to try to avoid Xbee bricking?
static bool telemetry_delayed(mavlink_channel_t chan)
{
uint32_t tnow = millis() >> 10;
2013-01-13 05:05:14 -04:00
if (tnow > (uint32_t)g.telem_delay) {
2012-08-29 20:36:18 -03:00
return false;
}
if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
// this is USB telemetry, so won't be an Xbee
2012-08-29 20:36:18 -03:00
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry by the TELEM_DELAY time
2012-08-29 20:36:18 -03:00
return true;
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK::try_send_message(enum ap_message id)
{
uint16_t txspace = comm_get_txspace(chan);
2012-08-29 20:36:18 -03:00
if (telemetry_delayed(chan)) {
return false;
}
// if we don't have at least 1ms remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
if (!in_mavlink_delay && scheduler.time_available_usec() < 1200) {
gcs_out_of_time = true;
return false;
}
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
gcs[chan-MAVLINK_COMM_0].last_heartbeat_time = hal.scheduler->millis();
send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_extended_status1(chan);
2014-02-13 07:10:11 -04:00
CHECK_PAYLOAD_SIZE(POWER_STATUS);
gcs[chan-MAVLINK_COMM_0].send_power_status();
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
2013-12-28 01:02:45 -04:00
gcs[chan-MAVLINK_COMM_0].send_meminfo();
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_LOCAL_POSITION:
CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED);
send_local_position(ahrs);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
if (control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
}
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
gcs[chan-MAVLINK_COMM_0].send_gps_raw(gps);
break;
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
gcs[chan-MAVLINK_COMM_0].send_system_time(gps);
break;
case MSG_SERVO_OUT:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out(chan);
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
gcs[chan-MAVLINK_COMM_0].send_radio_in(receiver_rssi);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
gcs[chan-MAVLINK_COMM_0].send_raw_imu(ins, compass);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
gcs[chan-MAVLINK_COMM_0].send_sensor_offsets(ins, compass, barometer);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
2013-11-23 06:57:26 -04:00
gcs[chan-MAVLINK_COMM_0].queued_param_send();
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
2013-11-23 06:57:26 -04:00
gcs[chan-MAVLINK_COMM_0].queued_waypoint_send();
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
gcs[chan-MAVLINK_COMM_0].send_ahrs(ahrs);
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
break;
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
send_rangefinder(chan);
break;
case MSG_MOUNT_STATUS:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(MOUNT_STATUS);
camera_mount.status_msg(chan);
#endif // MOUNT == ENABLED
break;
case MSG_RAW_IMU2:
case MSG_LIMITS_STATUS:
case MSG_FENCE_STATUS:
case MSG_WIND:
// unused
break;
2015-01-06 00:17:56 -04:00
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
gcs[chan-MAVLINK_COMM_0].send_battery2(battery);
break;
2015-01-06 00:28:38 -04:00
case MSG_CAMERA_FEEDBACK:
#if CAMERA == ENABLED
CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK);
camera.send_feedback(chan, gps, ahrs, current_loc);
#endif
break;
case MSG_EKF_STATUS_REPORT:
#if AP_AHRS_NAVEKF_AVAILABLE
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
ahrs.get_NavEKF().send_status_report(chan);
#endif
break;
2015-01-06 00:28:38 -04:00
case MSG_RETRY_DEFERRED:
case MSG_TERRAIN:
case MSG_OPTICAL_FLOW:
2015-01-29 06:50:03 -04:00
case MSG_GIMBAL_REPORT:
2015-01-06 00:28:38 -04:00
break; // just here to prevent a warning
}
return true;
}
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10),
AP_GROUPEND
};
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
if (stream_num >= NUM_STREAMS) {
return false;
}
float rate = (uint8_t)streamRates[stream_num].get();
// send at a much lower rate while handling waypoints and
// parameter sends
if ((stream_num != STREAM_PARAMS) &&
(waypoint_receiving || _queued_parameter != NULL)) {
rate *= 0.25;
}
if (rate <= 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) - 1 + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
gcs_out_of_time = false;
if (!in_mavlink_delay) {
handle_log_send(DataFlash);
}
if (_queued_parameter != NULL) {
if (streamRates[STREAM_PARAMS].get() <= 0) {
streamRates[STREAM_PARAMS].set(10);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
}
if (gcs_out_of_time) return;
if (in_mavlink_delay) {
#if HIL_MODE != HIL_MODE_DISABLED
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
2012-12-18 16:17:06 -04:00
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
}
#endif
2012-12-18 16:17:06 -04:00
// don't send any other stream types while in the delay callback
return;
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU3);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW); // TODO - remove this message after location message is working
send_message(MSG_NAV_CONTROLLER_OUTPUT);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_POSITION)) {
// sent with GPS read
send_message(MSG_LOCATION);
send_message(MSG_LOCAL_POSITION);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_RANGEFINDER);
send_message(MSG_SYSTEM_TIME);
2015-01-06 00:17:56 -04:00
send_message(MSG_BATTERY2);
send_message(MSG_MOUNT_STATUS);
send_message(MSG_EKF_STATUS_REPORT);
}
}
void GCS_MAVLINK::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
guided_WP = cmd.content.location;
set_mode(GUIDED);
// make any new wp uploaded instant (in case we are already in Guided mode)
set_guided_WP();
}
void GCS_MAVLINK::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
// nothing to do
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
{
handle_request_data_stream(msg, true);
break;
}
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
uint8_t result = MAV_RESULT_UNSUPPORTED;
// do command
send_text_P(SEVERITY_LOW,PSTR("command received: "));
switch(packet.command) {
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
set_mode(RTL);
result = MAV_RESULT_ACCEPTED;
break;
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for the camera
case MAV_CMD_DO_SET_ROI:
Location roi_loc;
roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
roi_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) {
// switch off the camera tracking if enabled
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
camera_mount.set_mode_to_default();
}
} else {
// send the command to the camera mount
camera_mount.set_roi_target(roi_loc);
}
result = MAV_RESULT_ACCEPTED;
break;
#endif
case MAV_CMD_MISSION_START:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
2015-03-10 20:17:33 -03:00
if (packet.param1 == 1) {
ins.init_gyro();
if (ins.gyro_calibrated_ok_all()) {
ahrs.reset_gyro_drift();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (packet.param3 == 1) {
init_barometer();
result = MAV_RESULT_ACCEPTED;
} else if (packet.param4 == 1) {
trim_radio();
result = MAV_RESULT_ACCEPTED;
2015-03-10 20:17:33 -03:00
} else if (packet.param5 == 1) {
float trim_roll, trim_pitch;
AP_InertialSensor_UserInteract_MAVLink interact(this);
if (g.skip_gyro_cal) {
// start with gyro calibration, otherwise if the user
// has SKIP_GYRO_CAL=1 they don't get to do it
ins.init_gyro();
}
if(ins.calibrate_accel(&interact, trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
}
else {
send_text_P(SEVERITY_LOW, PSTR("Unsupported preflight calibration"));
}
break;
case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS:
if (packet.param1 == 2) {
// save first compass's offsets
compass.set_and_save_offsets(0, packet.param2, packet.param3, packet.param4);
result = MAV_RESULT_ACCEPTED;
}
if (packet.param1 == 5) {
// save secondary compass's offsets
compass.set_and_save_offsets(1, packet.param2, packet.param3, packet.param4);
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_MODE:
switch ((uint16_t)packet.param1) {
case MAV_MODE_MANUAL_ARMED:
case MAV_MODE_MANUAL_DISARMED:
set_mode(MANUAL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_AUTO_ARMED:
case MAV_MODE_AUTO_DISARMED:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_STABILIZE_DISARMED:
case MAV_MODE_STABILIZE_ARMED:
set_mode(LEARNING);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_SERVO:
if (ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_SERVO:
if (ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_RELAY:
if (ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_RELAY:
if (ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
2013-09-03 22:58:41 -03:00
if (packet.param1 == 1 || packet.param1 == 3) {
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(packet.param1 == 3);
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: {
if (packet.param1 == 1) {
gcs[chan-MAVLINK_COMM_0].send_autopilot_version();
result = MAV_RESULT_ACCEPTED;
}
break;
}
default:
break;
}
mavlink_msg_command_ack_send_buf(
msg,
chan,
packet.command,
result);
break;
}
case MAVLINK_MSG_ID_SET_MODE:
{
2014-10-01 01:19:42 -03:00
handle_set_mode(msg, mavlink_set_mode);
break;
2014-10-01 01:19:42 -03:00
}
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
{
handle_mission_request_list(mission, msg);
break;
}
// XXX read a WP from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST:
{
handle_mission_request(mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_ACK:
{
// not used
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
{
// mark the firmware version in the tlog
send_text_P(SEVERITY_LOW, PSTR(FIRMWARE_STRING));
#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION)
send_text_P(SEVERITY_LOW, PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION));
#endif
handle_param_request_list(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
handle_param_request_read(msg);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
{
handle_mission_clear_all(mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
{
handle_mission_set_current(mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_COUNT:
{
handle_mission_count(mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
{
handle_mission_write_partial_list(mission, msg);
break;
}
// XXX receive a WP from GCS and store in EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM:
{
handle_mission_item(msg, mission);
break;
}
case MAVLINK_MSG_ID_PARAM_SET:
{
handle_param_set(msg, &DataFlash);
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
hal.rcin->set_overrides(v, 8);
failsafe.rc_override_timer = millis();
failsafe_trigger(FAILSAFE_EVENT_RC, false);
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
{
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if(msg->sysid != g.sysid_my_gcs) break;
last_heartbeat_ms = failsafe.rc_override_timer = millis();
failsafe_trigger(FAILSAFE_EVENT_GCS, false);
break;
}
2012-12-18 16:17:06 -04:00
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE:
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
// set gps hil sensor
2014-03-30 22:01:54 -03:00
Location loc;
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt/10;
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
2014-04-01 17:51:15 -03:00
gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
2014-03-30 22:01:54 -03:00
packet.time_usec/1000,
2014-04-01 17:51:15 -03:00
loc, vel, 10, 0, true);
// rad/sec
Vector3f gyros;
2012-12-18 16:17:06 -04:00
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * (GRAVITY_MSS/1000.0f);
accels.y = packet.yacc * (GRAVITY_MSS/1000.0f);
accels.z = packet.zacc * (GRAVITY_MSS/1000.0f);
2012-12-18 16:17:06 -04:00
2014-02-22 17:18:15 -04:00
ins.set_gyro(0, gyros);
2014-02-22 17:18:15 -04:00
ins.set_accel(0, accels);
2013-05-02 01:59:48 -03:00
compass.setHIL(packet.roll, packet.pitch, packet.yaw);
break;
}
#endif // HIL_MODE
#if CAMERA == ENABLED
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE:
{
camera.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
{
camera.control_msg(msg);
break;
}
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
{
camera_mount.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_CONTROL:
{
camera_mount.control_msg(msg);
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
2013-08-24 04:58:37 -03:00
case MAVLINK_MSG_ID_RADIO_STATUS:
{
2014-03-19 19:55:40 -03:00
handle_radio_status(msg, DataFlash, should_log(MASK_LOG_PM));
break;
}
2014-01-14 00:10:13 -04:00
case MAVLINK_MSG_ID_LOG_REQUEST_DATA:
case MAVLINK_MSG_ID_LOG_ERASE:
in_log_download = true;
// fallthru
case MAVLINK_MSG_ID_LOG_REQUEST_LIST:
if (!in_mavlink_delay) {
handle_log_message(msg, DataFlash);
}
break;
case MAVLINK_MSG_ID_LOG_REQUEST_END:
in_log_download = false;
if (!in_mavlink_delay) {
handle_log_message(msg, DataFlash);
}
break;
2014-04-03 23:55:32 -03:00
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16
case MAVLINK_MSG_ID_SERIAL_CONTROL:
handle_serial_control(msg, gps);
break;
#endif
case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST:
gcs[chan-MAVLINK_COMM_0].send_autopilot_version();
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs[0].initialised || in_mavlink_delay) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
2013-08-29 00:14:16 -03:00
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
check_usb_mux();
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
2013-11-23 06:57:26 -04:00
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_message(id);
}
}
}
/*
* send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
2013-11-23 06:57:26 -04:00
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].data_stream_send();
}
}
}
/*
* look for incoming commands on the GCS links
*/
static void gcs_update(void)
{
2013-11-23 06:57:26 -04:00
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
2014-05-20 23:43:26 -03:00
#if CLI_ENABLED == ENABLED
2015-03-09 00:20:37 -03:00
gcs[i].update(g.cli_enabled==1?run_cli:NULL);
2014-05-20 23:43:26 -03:00
#else
gcs[i].update(NULL);
#endif
2013-11-23 06:57:26 -04:00
}
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
2013-11-23 06:57:26 -04:00
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_text_P(severity, str);
}
}
2013-11-23 06:57:26 -04:00
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message_P(str);
2013-11-23 06:57:26 -04:00
#endif
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
va_list arg_list;
2013-11-23 06:57:26 -04:00
gcs[0].pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(arg_list, fmt);
2013-11-23 06:57:26 -04:00
hal.util->vsnprintf_P((char *)gcs[0].pending_status.text,
sizeof(gcs[0].pending_status.text), fmt, arg_list);
va_end(arg_list);
2013-11-23 06:57:26 -04:00
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message(gcs[0].pending_status.text);
#endif
gcs[0].send_message(MSG_STATUSTEXT);
2013-11-23 06:57:26 -04:00
for (uint8_t i=1; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].pending_status = gcs[0].pending_status;
gcs[i].send_message(MSG_STATUSTEXT);
2013-11-23 06:57:26 -04:00
}
}
}
/**
retry any deferred messages
*/
static void gcs_retry_deferred(void)
{
gcs_send_message(MSG_RETRY_DEFERRED);
}