ardupilot/ArduCopter/system.pde

661 lines
16 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// Functions called from the top-level menu
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
static int8_t planner_mode(uint8_t argc, const Menu::arg *argv); // in planner.pde
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Commands:\n"
" logs\n"
" setup\n"
" test\n"
" planner\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"help", main_menu_help},
{"planner", planner_mode}
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
// the user wants the CLI. It never exits
static void run_cli(void)
{
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void init_ardupilot()
{
#if USB_MUX_PIN > 0
2011-11-25 19:11:25 -04:00
// on the APM2 board we have a mux thet switches UART0 between
// USB and the board header. If the right ArduPPM firmware is
// installed we can detect if USB is connected using the
// USB_MUX_PIN
pinMode(USB_MUX_PIN, INPUT);
usb_connected = !digitalRead(USB_MUX_PIN);
if (!usb_connected) {
// USB is not connected, this means UART0 may be a Xbee, with
// its darned bricking problem. We can't write to it for at
// least one second after powering up. Simplest solution for
// now is to delay for 1 second. Something more elegant may be
// added later
delay(1000);
}
#endif
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the MAVLink protocol efficiently
//
Serial.begin(SERIAL0_BAUD, 128, 256);
// GPS serial port.
//
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU
Serial1.begin(38400, 128, 16);
#endif
Serial.printf_P(PSTR("\n\nInit " THISFIRMWARE
2011-10-28 07:34:10 -03:00
"\n\nFree RAM: %u\n"),
memcheck_available_memory());
//
// Initialize Wire and SPI libraries
//
#ifndef DESKTOP_BUILD
2011-12-28 05:34:59 -04:00
I2c.begin();
I2c.timeOut(5);
// initially set a fast I2c speed, and drop it on first failures
I2c.setSpeed(true);
#endif
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1MHZ SPI rate
//
// Initialize the isr_registry.
//
isr_registry.init();
//
// Check the EEPROM format version before loading any parameters from EEPROM.
//
report_version();
// setup IO pins
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
digitalWrite(A_LED_PIN, LED_OFF);
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
digitalWrite(B_LED_PIN, LED_OFF);
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
digitalWrite(C_LED_PIN, LED_OFF);
#if SLIDE_SWITCH_PIN > 0
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode
#endif
#if CONFIG_PUSHBUTTON == ENABLED
pinMode(PUSHBUTTON_PIN, INPUT); // unused
#endif
#if CONFIG_RELAY == ENABLED
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay
#endif
// XXX set Analog out 14 to output
// 76543210
//DDRK |= B01010000;
#if MOTOR_LEDS == 1
pinMode(FR_LED, OUTPUT); // GPS status LED
pinMode(RE_LED, OUTPUT); // GPS status LED
pinMode(RI_LED, OUTPUT); // GPS status LED
pinMode(LE_LED, OUTPUT); // GPS status LED
#endif
2011-09-18 21:12:28 -03:00
#if PIEZO == 1
pinMode(PIEZO_PIN,OUTPUT);
piezo_beep();
#endif
2012-02-12 07:27:51 -04:00
// load parameters from EEPROM
load_parameters();
// init the GCS
gcs0.init(&Serial);
#if USB_MUX_PIN > 0
if (!usb_connected) {
// we are not connected via USB, re-init UART0 with right
// baud rate
Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
}
#else
// we have a 2nd serial port for telemetry
Serial3.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 256);
gcs3.init(&Serial3);
#endif
// identify ourselves correctly with the ground station
mavlink_system.sysid = g.sysid_this_mav;
mavlink_system.type = 2; //MAV_QUADROTOR;
2012-02-11 02:25:24 -04:00
2011-12-28 00:53:05 -04:00
#if LOGGING_ENABLED == ENABLED
DataFlash.Init();
if (!DataFlash.CardInserted()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash inserted"));
g.log_bitmask.set(0);
} else if (DataFlash.NeedErase()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
2011-12-28 00:53:05 -04:00
do_erase_logs();
}
2011-12-28 00:53:05 -04:00
if (g.log_bitmask != 0){
DataFlash.start_new_log();
}
#endif
#ifdef RADIO_OVERRIDE_DEFAULTS
{
int16_t rc_override[8] = RADIO_OVERRIDE_DEFAULTS;
APM_RC.setHIL(rc_override);
}
#endif
#if FRAME_CONFIG == HELI_FRAME
motors.servo_manual = false;
motors.init_swash(); // heli initialisation
#endif
RC_Channel::set_apm_rc(&APM_RC);
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
init_camera();
timer_scheduler.init( &isr_registry );
2011-11-12 22:47:54 -04:00
#if HIL_MODE != HIL_MODE_ATTITUDE
#if CONFIG_ADC == ENABLED
// begin filtering the ADC Gyros
2011-11-13 01:06:40 -04:00
adc.Init(&timer_scheduler); // APM ADC library initialization
#endif // CONFIG_ADC
2011-10-04 07:55:10 -03:00
barometer.init(&timer_scheduler);
2011-11-12 22:47:54 -04:00
#endif // HIL_MODE
// Do GPS init
g_gps = &g_gps_driver;
g_gps->init(); // GPS Initialization
g_gps->callback = mavlink_delay;
if(g.compass_enabled)
init_compass();
// init the optical flow sensor
if(g.optflow_enabled) {
init_optflow();
}
2011-10-18 03:51:47 -03:00
// agmatthews USERHOOKS
#ifdef USERHOOK_INIT
USERHOOK_INIT
#endif
#if CLI_ENABLED == ENABLED && CLI_SLIDER_ENABLED == ENABLED
// If the switch is in 'menu' mode, run the main menu.
//
// Since we can't be sure that the setup or test mode won't leave
// the system in an odd state, we don't let the user exit the top
// menu; they must reset in order to fly.
//
if (check_startup_for_CLI()) {
digitalWrite(A_LED_PIN, LED_ON); // turn on setup-mode LED
Serial.printf_P(PSTR("\nCLI:\n\n"));
run_cli();
}
#else
Serial.printf_P(PSTR("\nPress ENTER 3 times for CLI\n\n"));
#endif // CLI_ENABLED
GPS_enabled = false;
2011-11-08 18:10:09 -04:00
#if HIL_MODE == HIL_MODE_DISABLED
// Read in the GPS
for (byte counter = 0; ; counter++) {
g_gps->update();
if (g_gps->status() != 0){
GPS_enabled = true;
break;
}
if (counter >= 2) {
GPS_enabled = false;
break;
}
}
2011-11-08 18:10:09 -04:00
#else
GPS_enabled = true;
#endif
// lengthen the idle timeout for gps Auto_detect
// ---------------------------------------------
g_gps->idleTimeout = 20000;
// print the GPS status
// --------------------
report_gps();
#if HIL_MODE != HIL_MODE_ATTITUDE
// read Baro pressure at ground
//-----------------------------
init_barometer();
#endif
2011-12-14 01:21:35 -04:00
// initialise sonar
#if CONFIG_SONAR == ENABLED
init_sonar();
#endif
// initialize commands
// -------------------
init_commands();
// set the correct flight mode
// ---------------------------
reset_control_switch();
// init the Z damopener
// --------------------
#if ACCEL_ALT_HOLD != 0
init_z_damper();
#endif
startup_ground();
#if LOGGING_ENABLED == ENABLED
Log_Write_Startup();
2012-02-17 02:08:19 -04:00
Log_Write_Data(10, (float)g.pi_stabilize_roll.kP());
Log_Write_Data(11, (float)g.pi_stabilize_roll.kI());
Log_Write_Data(12, (float)g.pid_rate_roll.kP());
Log_Write_Data(13, (float)g.pid_rate_roll.kI());
Log_Write_Data(14, (float)g.pid_rate_roll.kD());
Log_Write_Data(15, (float)g.stabilize_d.get());
Log_Write_Data(16, (float)g.pi_loiter_lon.kP());
Log_Write_Data(17, (float)g.pi_loiter_lon.kI());
Log_Write_Data(18, (float)g.pid_nav_lon.kP());
Log_Write_Data(19, (float)g.pid_nav_lon.kI());
Log_Write_Data(20, (float)g.pid_nav_lon.kD());
Log_Write_Data(21, (int32_t)g.auto_slew_rate.get());
2012-02-26 15:13:28 -04:00
Log_Write_Data(22, (float)g.pid_loiter_rate_lon.kP());
Log_Write_Data(23, (float)g.pid_loiter_rate_lon.kI());
Log_Write_Data(24, (float)g.pid_loiter_rate_lon.kD());
#endif
SendDebug("\nReady to FLY ");
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
static void startup_ground(void)
{
gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START"));
#if HIL_MODE != HIL_MODE_ATTITUDE
// Warm up and read Gyro offsets
// -----------------------------
imu.init(IMU::COLD_START, mavlink_delay, flash_leds, &timer_scheduler);
#if CLI_ENABLED == ENABLED
report_imu();
#endif
#endif
// reset the leds
// ---------------------------
clear_leds();
// when we re-calibrate the gyros,
// all previous I values are invalid
reset_I_all();
}
/*
#define YAW_HOLD 0
#define YAW_ACRO 1
#define YAW_AUTO 2
#define YAW_LOOK_AT_HOME 3
#define ROLL_PITCH_STABLE 0
#define ROLL_PITCH_ACRO 1
#define ROLL_PITCH_AUTO 2
#define THROTTLE_MANUAL 0
#define THROTTLE_HOLD 1
#define THROTTLE_AUTO 2
*/
static void set_mode(byte mode)
{
// if we don't have GPS lock
if(home_is_set == false){
// our max mode should be
if (mode > ALT_HOLD && mode != OF_LOITER)
mode = STABILIZE;
}
// nothing but OF_LOITER for OptFlow only
if (g.optflow_enabled && GPS_enabled == false){
if (mode > ALT_HOLD && mode != OF_LOITER)
mode = STABILIZE;
}
2012-02-22 01:48:07 -04:00
old_control_mode = control_mode;
control_mode = mode;
control_mode = constrain(control_mode, 0, NUM_MODES - 1);
// used to stop fly_aways
motors.auto_armed(g.rc_3.control_in > 0);
// clearing value used in interactive alt hold
manual_boost = 0;
2012-01-13 02:25:29 -04:00
// clearing value used to force the copter down in landing mode
landing_boost = 0;
2012-02-19 17:13:42 -04:00
// do we want to come to a stop or pass a WP?
slow_wp = false;
2012-01-06 01:14:23 -04:00
// do not auto_land if we are leaving RTL
auto_land_timer = 0;
// if we change modes, we must clear landed flag
land_complete = false;
// debug to Serial terminal
2012-02-22 01:48:07 -04:00
//Serial.println(flight_mode_strings[control_mode]);
// report the GPS and Motor arming status
led_mode = NORMAL_LEDS;
switch(control_mode)
{
case ACRO:
2012-02-11 02:25:24 -04:00
yaw_mode = YAW_HOLD;
roll_pitch_mode = ROLL_PITCH_ACRO;
throttle_mode = THROTTLE_MANUAL;
break;
case STABILIZE:
yaw_mode = YAW_HOLD;
roll_pitch_mode = ROLL_PITCH_STABLE;
throttle_mode = THROTTLE_MANUAL;
break;
case ALT_HOLD:
yaw_mode = ALT_HOLD_YAW;
roll_pitch_mode = ALT_HOLD_RP;
throttle_mode = ALT_HOLD_THR;
force_new_altitude(max(current_loc.alt, 100));
break;
case AUTO:
yaw_mode = AUTO_YAW;
roll_pitch_mode = AUTO_RP;
throttle_mode = AUTO_THR;
// loads the commands from where we left off
init_commands();
break;
case CIRCLE:
yaw_mode = CIRCLE_YAW;
roll_pitch_mode = CIRCLE_RP;
throttle_mode = CIRCLE_THR;
set_next_WP(&current_loc);
circle_angle = 0;
break;
case LOITER:
yaw_mode = LOITER_YAW;
roll_pitch_mode = LOITER_RP;
throttle_mode = LOITER_THR;
set_next_WP(&current_loc);
break;
case POSITION:
yaw_mode = YAW_HOLD;
roll_pitch_mode = ROLL_PITCH_AUTO;
throttle_mode = THROTTLE_MANUAL;
set_next_WP(&current_loc);
break;
case GUIDED:
yaw_mode = YAW_AUTO;
roll_pitch_mode = ROLL_PITCH_AUTO;
throttle_mode = THROTTLE_AUTO;
next_WP = current_loc;
set_next_WP(&guided_WP);
break;
2011-12-09 19:33:47 -04:00
case LAND:
yaw_mode = LOITER_YAW;
roll_pitch_mode = LOITER_RP;
2011-12-09 19:33:47 -04:00
throttle_mode = THROTTLE_AUTO;
do_land();
2011-12-09 19:33:47 -04:00
break;
case RTL:
yaw_mode = RTL_YAW;
roll_pitch_mode = RTL_RP;
throttle_mode = RTL_THR;
do_RTL();
break;
case OF_LOITER:
yaw_mode = OF_LOITER_YAW;
roll_pitch_mode = OF_LOITER_RP;
throttle_mode = OF_LOITER_THR;
set_next_WP(&current_loc);
break;
default:
break;
}
if(failsafe){
// this is to allow us to fly home without interactive throttle control
throttle_mode = THROTTLE_AUTO;
// does not wait for us to be in high throttle, since the
// Receiver will be outputting low throttle
motors.auto_armed(true);
}
// called to calculate gain for alt hold
update_throttle_cruise();
2011-11-13 01:46:57 -04:00
if(roll_pitch_mode <= ROLL_PITCH_ACRO){
// We are under manual attitude control
// remove the navigation from roll and pitch command
reset_nav_params();
// remove the wind compenstaion
reset_wind_I();
// Clears the alt hold compensation
reset_throttle_I();
2011-11-13 01:46:57 -04:00
}
Log_Write_Mode(control_mode);
}
static void set_failsafe(boolean mode)
{
// only act on changes
// -------------------
if(failsafe != mode){
// store the value so we don't trip the gate twice
// -----------------------------------------------
failsafe = mode;
if (failsafe == false){
// We've regained radio contact
// ----------------------------
failsafe_off_event();
}else{
// We've lost radio contact
// ------------------------
failsafe_on_event();
}
}
}
static void
init_simple_bearing()
{
initial_simple_bearing = ahrs.yaw_sensor;
}
2012-01-13 20:48:05 -04:00
static void update_throttle_cruise()
{
int16_t tmp = g.pi_alt_hold.get_integrator();
if(tmp != 0){
g.throttle_cruise += tmp;
reset_throttle_I();
2012-01-13 20:48:05 -04:00
}
// recalc kp
//g.pid_throttle.kP((float)g.throttle_cruise.get() / 981.0);
//Serial.printf("kp:%1.4f\n",kp);
}
#if CLI_SLIDER_ENABLED == ENABLED && CLI_ENABLED == ENABLED
static boolean
check_startup_for_CLI()
{
return (digitalRead(SLIDE_SWITCH_PIN) == 0);
}
#endif // CLI_ENABLED
/*
map from a 8 bit EEPROM baud rate to a real baud rate
*/
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
{
switch (rate) {
case 1: return 1200;
case 2: return 2400;
case 4: return 4800;
case 9: return 9600;
case 19: return 19200;
case 38: return 38400;
case 57: return 57600;
case 111: return 111100;
case 115: return 115200;
}
//Serial.println_P(PSTR("Invalid SERIAL3_BAUD"));
return default_baud;
}
#if USB_MUX_PIN > 0
static void check_usb_mux(void)
{
bool usb_check = !digitalRead(USB_MUX_PIN);
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
if (usb_connected) {
Serial.begin(SERIAL0_BAUD);
} else {
Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
}
}
#endif
/*
called by gyro/accel init to flash LEDs so user
has some mesmerising lights to watch while waiting
*/
void flash_leds(bool on)
{
digitalWrite(A_LED_PIN, on?LED_OFF:LED_ON);
digitalWrite(C_LED_PIN, on?LED_ON:LED_OFF);
}
2012-03-01 08:36:51 -04:00
#ifndef DESKTOP_BUILD
/*
* Read Vcc vs 1.1v internal reference
*
* This call takes about 150us total. ADC conversion is 13 cycles of
* 125khz default changes the mux if it isn't set, and return last
* reading (allows necessary settle time) otherwise trigger the
* conversion
*/
uint16_t board_voltage(void)
{
const uint8_t mux = (_BV(REFS0)|_BV(MUX4)|_BV(MUX3)|_BV(MUX2)|_BV(MUX1));
if (ADMUX == mux) {
ADCSRA |= _BV(ADSC); // Convert
uint16_t counter=4000; // normally takes about 1700 loops
while (bit_is_set(ADCSRA, ADSC) && counter) // Wait
counter--;
if (counter == 0) {
// we don't actually expect this timeout to happen,
// but we don't want any more code that could hang. We
// report 0V so it is clear in the logs that we don't know
// the value
return 0;
2012-03-01 08:36:51 -04:00
}
uint32_t result = ADCL | ADCH<<8;
return 1126400UL / result; // Read and back-calculate Vcc in mV
}
// switch mux, settle time is needed. We don't want to delay
// waiting for the settle, so report 0 as a "don't know" value
ADMUX = mux;
return 0; // we don't know the current voltage
2012-03-01 08:36:51 -04:00
}
#endif