ardupilot/ArduCopterMega/system.pde

490 lines
12 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
// Functions called from the top-level menu
extern int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
extern int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
extern int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Commands:\n"
" logs log readback/setup mode\n"
" setup setup mode\n"
" test test mode\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"help", main_menu_help}
};
// Create the top-level menu object.
MENU(main_menu, "ACM", main_menu_commands);
void init_ardupilot()
{
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the console's use as a logging device, optionally as the GPS port when
// GPS_PROTOCOL_IMU is selected, and as the telemetry port.
//
// XXX This could be optimised to reduce the buffer sizes in the cases
// where they are not otherwise required.
//
Serial.begin(SERIAL0_BAUD, 128, 128);
// GPS serial port.
//
// Not used if the IMU/X-Plane GPS is in use.
//
// XXX currently the EM406 (SiRF receiver) is nominally configured
// at 57600, however it's not been supported to date. We should
// probably standardise on 38400.
//
// XXX the 128 byte receive buffer may be too small for NMEA, depending
// on the message set configured.
//
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU
Serial1.begin(38400, 128, 16);
#endif
// Telemetry port.
//
// Not used if telemetry is going to the console.
//
// XXX for unidirectional protocols, we could (should) minimize
// the receive buffer, and the transmit buffer could also be
// shrunk for protocols that don't send large messages.
//
Serial3.begin(SERIAL3_BAUD, 128, 128);
Serial.printf_P(PSTR("\n\nInit ACM"
"\n\nRAM: %lu\n"),
freeRAM());
//
// Check the EEPROM format version before loading any parameters from EEPROM.
//
report_version();
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
//Serial.printf_P(PSTR("\n\nForcing complete parameter reset..."));
/*Serial.printf_P(PSTR("\n\nEEPROM format version %d not compatible with this firmware (requires %d)"
"\n\nForcing complete parameter reset..."),
g.format_version.get(),
Parameters::k_format_version);
*/
// erase all parameters
AP_Var::erase_all();
// save the new format version
g.format_version.set_and_save(Parameters::k_format_version);
Serial.printf_P(PSTR("Please Run Setup...\n"));
while (true) {
delay(1000);
if(motor_light){
digitalWrite(A_LED_PIN, HIGH);
digitalWrite(B_LED_PIN, HIGH);
digitalWrite(C_LED_PIN, HIGH);
}else{
digitalWrite(A_LED_PIN, LOW);
digitalWrite(B_LED_PIN, LOW);
digitalWrite(C_LED_PIN, LOW);
}
motor_light = !motor_light;
}
}else{
unsigned long before = micros();
// Load all auto-loaded EEPROM variables
AP_Var::load_all();
// Serial.printf_P(PSTR("load_all took %luus\n"), micros() - before);
// Serial.printf_P(PSTR("using %u bytes of memory\n"), AP_Var::get_memory_use());
}
#ifdef RADIO_OVERRIDE_DEFAULTS
{
int16_t rc_override[8] = RADIO_OVERRIDE_DEFAULTS;
APM_RC.setHIL(rc_override);
}
#endif
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
init_camera();
#if HIL_MODE != HIL_MODE_ATTITUDE
adc.Init(); // APM ADC library initialization
barometer.Init(); // APM Abs Pressure sensor initialization
#endif
// Do GPS init
//g_gps = &GPS;
g_gps = &g_gps_driver;
g_gps->init(); // GPS Initialization
// init the GCS
#if GCS_PORT == 3
gcs.init(&Serial3);
#else
gcs.init(&Serial);
#endif
if(g.compass_enabled)
init_compass();
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.sonar_enabled){
sonar.init(SONAR_PIN, &adc);
}
#endif
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode
pinMode(PUSHBUTTON_PIN, INPUT); // unused
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay
// Logging:
// --------
DataFlash.Init(); // DataFlash log initialization
// setup the log bitmask
if (g.log_bitmask & MASK_LOG_SET_DEFAULTS)
default_log_bitmask();
// If the switch is in 'menu' mode, run the main menu.
//
// Since we can't be sure that the setup or test mode won't leave
// the system in an odd state, we don't let the user exit the top
// menu; they must reset in order to fly.
//
if (digitalRead(SLIDE_SWITCH_PIN) == 0) {
digitalWrite(A_LED_PIN,HIGH); // turn on setup-mode LED
Serial.printf_P(PSTR("\n"
"Entering interactive setup mode...\n"
"\n"
"Type 'help' to list commands, 'exit' to leave a submenu.\n"
"Visit the 'setup' menu for first-time configuration.\n\n"));
for (;;) {
//Serial.println_P(PSTR("\nMove the slide switch and reset to FLY.\n"));
main_menu.run();
}
}
// All of the Gyro calibrations
// ----------------------------
startup_ground();
// set the correct flight mode
// ---------------------------
reset_control_switch();
// Logging:
// --------
if(g.log_bitmask != 0){
// TODO - Here we will check on the length of the last log
// We don't want to create a bunch of little logs due to powering on and off
byte last_log_num = get_num_logs();
start_new_log(last_log_num);
}
if (g.log_bitmask & MASK_LOG_MODE)
Log_Write_Mode(control_mode);
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
void startup_ground(void)
{
gcs.send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START"));
#if(GROUND_START_DELAY > 0)
//gcs.send_text_P(SEVERITY_LOW, PSTR(" With Delay"));
delay(GROUND_START_DELAY * 1000);
#endif
setup_show(NULL,NULL);
// setup up PID value max
init_pids();
// Output waypoints for confirmation
// --------------------------------
for(int i = 1; i < g.waypoint_total + 1; i++) {
gcs.send_message(MSG_COMMAND_LIST, i);
}
#if HIL_MODE != HIL_MODE_ATTITUDE
// Warm up and read Gyro offsets
// -----------------------------
imu.init_gyro();
report_imu();
#endif
#if HIL_MODE != HIL_MODE_ATTITUDE
// read Baro pressure at ground
//-----------------------------
init_barometer();
#endif
// initialize commands
// -------------------
init_commands();
byte counter = 4;
GPS_enabled = false;
// Read in the GPS
for (byte counter = 0; ; counter++) {
g_gps->update();
if (g_gps->status() != 0){
GPS_enabled = true;
break;
}
if (counter >= 2) {
GPS_enabled = false;
break;
}
}
report_gps();
SendDebug("\nReady to FLY ");
gcs.send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY."));
}
void set_mode(byte mode)
{
if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
control_mode = mode;
control_mode = constrain(control_mode, 0, NUM_MODES - 1);
// XXX temporary
//if (g.log_bitmask & MASK_LOG_MODE)
Log_Write_Mode(control_mode);
// used to stop fly_aways
if(g.rc_1.control_in == 0){
// we are on the ground is this is true
// disarm motors temp
motor_auto_safe = false;
}
// clear our tracking behaviors
yaw_tracking = TRACK_NONE;
//send_text_P(SEVERITY_LOW,PSTR("control mode"));
//Serial.printf("set mode: %d old: %d\n", (int)mode, (int)control_mode);
switch(control_mode)
{
case ACRO:
break;
case STABILIZE:
do_loiter_at_location();
break;
case ALT_HOLD:
init_throttle_cruise();
do_loiter_at_location();
break;
case AUTO:
init_throttle_cruise();
init_auto();
break;
case SIMPLE:
break;
case LOITER:
init_throttle_cruise();
do_loiter_at_location();
break;
case RTL:
init_throttle_cruise();
do_RTL();
break;
default:
break;
}
// output control mode to the ground station
gcs.send_message(MSG_MODE_CHANGE);
}
void set_failsafe(boolean mode)
{
// only act on changes
// -------------------
if(failsafe != mode){
// store the value so we don't trip the gate twice
// -----------------------------------------------
failsafe = mode;
if (failsafe == false){
// We've regained radio contact
// ----------------------------
failsafe_off_event();
}else{
// We've lost radio contact
// ------------------------
failsafe_on_event();
}
}
}
void update_GPS_light(void)
{
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
// ---------------------------------------------------------------------
switch (g_gps->status()){
case(2):
digitalWrite(C_LED_PIN, HIGH); //Turn LED C on when gps has valid fix.
break;
case(1):
if (g_gps->valid_read == true){
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock
if (GPS_light){
digitalWrite(C_LED_PIN, LOW);
}else{
digitalWrite(C_LED_PIN, HIGH);
}
g_gps->valid_read = false;
}
break;
default:
digitalWrite(C_LED_PIN, LOW);
break;
}
}
void update_motor_light(void)
{
if(motor_armed == true){
motor_light = !motor_light;
// blink
if(motor_light){
digitalWrite(A_LED_PIN, HIGH);
}else{
digitalWrite(A_LED_PIN, LOW);
}
}else{
if(!motor_light){
motor_light = true;
digitalWrite(A_LED_PIN, HIGH);
}
}
}
void update_timer_light(bool light)
{
if(light == true){
digitalWrite(B_LED_PIN, HIGH);
}else{
digitalWrite(B_LED_PIN, LOW);
}
}
void resetPerfData(void) {
mainLoop_count = 0;
G_Dt_max = 0;
gyro_sat_count = 0;
adc_constraints = 0;
renorm_sqrt_count = 0;
renorm_blowup_count = 0;
gps_fix_count = 0;
perf_mon_timer = millis();
}
void
init_compass()
{
dcm.set_compass(&compass);
bool junkbool = compass.init();
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft
Vector3f junkvector = compass.get_offsets(); // load offsets to account for airframe magnetic interference
}
/* This function gets the current value of the heap and stack pointers.
* The stack pointer starts at the top of RAM and grows downwards. The heap pointer
* starts just above the static variables etc. and grows upwards. SP should always
* be larger than HP or you'll be in big trouble! The smaller the gap, the more
* careful you need to be. Julian Gall 6 - Feb - 2009.
*/
unsigned long freeRAM() {
uint8_t * heapptr, * stackptr;
stackptr = (uint8_t *)malloc(4); // use stackptr temporarily
heapptr = stackptr; // save value of heap pointer
free(stackptr); // free up the memory again (sets stackptr to 0)
stackptr = (uint8_t *)(SP); // save value of stack pointer
return stackptr - heapptr;
}
void
init_simple_bearing()
{
initial_simple_bearing = dcm.yaw_sensor;
//if(simple_bearing_is_set == false){
//if(g.rc_3.control_in == 0){
// we are on the ground
// initial_simple_bearing = dcm.yaw_sensor;
// simple_bearing_is_set = true;
//}
//}
}
void
init_throttle_cruise()
{
if(set_throttle_cruise_flag == false){
if(g.rc_3.control_in > 200){
//set_throttle_cruise_flag = true;
g.throttle_cruise.set_and_save(g.rc_3.control_in);
//Serial.printf("throttle_cruise: %d\n", g.throttle_cruise.get());
}
}
}