2013-05-29 20:55:51 -03:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2013-08-29 02:34:47 -03:00
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
2012-02-12 07:26:36 -04:00
/*
2012-08-21 23:19:50 -03:00
* ArduCopter parameter definitions
*
*/
#define GSCALAR(v, name, def) { g.v.vtype, name, Parameters::k_param_ ## v, &g.v, {def_value : def} }
#define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &g.v, {group_info : class::var_info} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &v, {group_info : class::var_info} }
2012-02-12 07:26:36 -04:00
2012-08-06 22:03:26 -03:00
const AP_Param::Info var_info[] PROGMEM = {
2012-12-10 08:45:57 -04:00
// @Param: SYSID_SW_MREV
// @DisplayName: Eeprom format version number
// @Description: This value is incremented when changes are made to the eeprom format
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(format_version, "SYSID_SW_MREV", 0),
2012-12-10 08:45:57 -04:00
// @Param: SYSID_SW_TYPE
// @DisplayName: Software Type
// @Description: This is used by the ground station to recognise the software type (eg ArduPlane vs ArduCopter)
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type),
2012-02-12 07:26:36 -04:00
2012-12-10 08:45:57 -04:00
// @Param: SYSID_THISMAV
// @DisplayName: Mavlink version
// @Description: Allows reconising the mavlink version
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID),
2013-01-02 05:50:25 -04:00
// @Param: SYSID_MYGCS
// @DisplayName: My ground station number
// @Description: Allows restricting radio overrides to only come from my ground station
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255),
2012-07-05 03:33:40 -03:00
// @Param: SERIAL3_BAUD
2012-08-21 23:19:50 -03:00
// @DisplayName: Telemetry Baud Rate
// @Description: The baud rate used on the telemetry port
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial3_baud, "SERIAL3_BAUD", SERIAL3_BAUD/1000),
2012-08-29 20:03:01 -03:00
// @Param: TELEM_DELAY
2012-10-21 18:32:39 -03:00
// @DisplayName: Telemetry startup delay
2012-08-29 20:03:01 -03:00
// @Description: The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up
// @User: Standard
// @Units: seconds
// @Range: 0 10
// @Increment: 1
GSCALAR(telem_delay, "TELEM_DELAY", 0),
2013-01-02 05:50:25 -04:00
// @Param: RTL_ALT
2012-08-21 23:19:50 -03:00
// @DisplayName: RTL Altitude
2012-11-29 08:08:19 -04:00
// @Description: The minimum altitude the model will move to before Returning to Launch. Set to zero to return at current altitude.
2012-12-10 08:45:57 -04:00
// @Units: Centimeters
2013-05-21 03:56:09 -03:00
// @Range: 0 8000
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
2012-11-29 08:08:19 -04:00
GSCALAR(rtl_altitude, "RTL_ALT", RTL_ALT),
2012-08-21 23:19:50 -03:00
// @Param: SONAR_ENABLE
// @DisplayName: Enable Sonar
// @Description: Setting this to Enabled(1) will enable the sonar. Setting this to Disabled(0) will disable the sonar
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(sonar_enabled, "SONAR_ENABLE", DISABLED),
2012-12-10 08:45:57 -04:00
// @Param: SONAR_TYPE
// @DisplayName: Sonar type
// @Description: Used to adjust scaling to match the sonar used (only Maxbotix sonars are supported at this time)
2013-05-22 21:46:57 -03:00
// @Values: 0:XL-EZ0 / XL-EZ4,1:LV-EZ0,2:XLL-EZ0,3:HRLV
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(sonar_type, "SONAR_TYPE", AP_RANGEFINDER_MAXSONARXL),
2012-11-13 10:43:54 -04:00
2013-04-20 03:58:36 -03:00
// @Param: SONAR_GAIN
// @DisplayName: Sonar gain
// @Description: Used to adjust the speed with which the target altitude is changed when objects are sensed below the copter
// @Range: 0.01 0.5
// @Increment: 0.01
// @User: Standard
GSCALAR(sonar_gain, "SONAR_GAIN", SONAR_GAIN_DEFAULT),
2012-12-10 10:47:14 -04:00
// @Param: FS_BATT_ENABLE
2012-11-13 10:43:54 -04:00
// @DisplayName: Battery Failsafe Enable
// @Description: Controls whether failsafe will be invoked when battery voltage or current runs low
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2012-12-10 10:47:14 -04:00
GSCALAR(failsafe_battery_enabled, "FS_BATT_ENABLE", FS_BATTERY),
2012-11-13 10:43:54 -04:00
2013-10-01 10:34:44 -03:00
// @Param: FS_BATT_VOLTAGE
// @DisplayName: Failsafe battery voltage
2013-10-09 19:31:31 -03:00
// @Description: Battery voltage to trigger failsafe. Set to 0 to disable battery voltage failsafe. If the battery voltage drops below this voltage then the copter will RTL
2013-10-01 10:34:44 -03:00
// @Units: Volts
2013-10-28 23:24:04 -03:00
// @Increment: 0.1
2013-10-01 10:34:44 -03:00
// @User: Standard
GSCALAR(fs_batt_voltage, "FS_BATT_VOLTAGE", FS_BATT_VOLTAGE_DEFAULT),
// @Param: FS_BATT_MAH
// @DisplayName: Failsafe battery milliAmpHours
2013-10-09 19:31:31 -03:00
// @Description: Battery capacity remaining to trigger failsafe. Set to 0 to disable battery remaining failsafe. If the battery remaining drops below this level then the copter will RTL
2013-10-01 10:34:44 -03:00
// @Units: mAh
2013-10-28 23:24:04 -03:00
// @Increment: 50
2013-10-01 10:34:44 -03:00
// @User: Standard
GSCALAR(fs_batt_mah, "FS_BATT_MAH", FS_BATT_MAH_DEFAULT),
2013-03-16 05:27:46 -03:00
// @Param: FS_GPS_ENABLE
// @DisplayName: GPS Failsafe Enable
// @Description: Controls whether failsafe will be invoked when gps signal is lost
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(failsafe_gps_enabled, "FS_GPS_ENABLE", FS_GPS),
2013-04-29 09:30:22 -03:00
// @Param: FS_GCS_ENABLE
// @DisplayName: Ground Station Failsafe Enable
// @Description: Controls whether failsafe will be invoked (and what action to take) when connection with Ground station is lost for at least 5 seconds
// @Values: 0:Disabled,1:Enabled always RTL,2:Enabled Continue with Mission in Auto Mode
// @User: Standard
GSCALAR(failsafe_gcs, "FS_GCS_ENABLE", FS_GCS_DISABLED),
2013-08-15 01:04:43 -03:00
// @Param: GPS_HDOP_GOOD
// @DisplayName: GPS Hdop Good
2013-10-13 01:53:26 -03:00
// @Description: GPS Hdop value at or below this value represent a good position. Used for pre-arm checks
2013-08-15 01:04:43 -03:00
// @Range: 100 900
// @User: Advanced
GSCALAR(gps_hdop_good, "GPS_HDOP_GOOD", GPS_HDOP_GOOD_DEFAULT),
2012-08-21 23:19:50 -03:00
// @Param: MAG_ENABLE
// @DisplayName: Enable Compass
// @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(compass_enabled, "MAG_ENABLE", MAGNETOMETER),
// @Param: FLOW_ENABLE
// @DisplayName: Enable Optical Flow
// @Description: Setting this to Enabled(1) will enable optical flow. Setting this to Disabled(0) will disable optical flow
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2012-12-10 11:09:45 -04:00
GSCALAR(optflow_enabled, "FLOW_ENABLE", DISABLED),
2012-08-21 23:19:50 -03:00
// @Param: SUPER_SIMPLE
// @DisplayName: Enable Super Simple Mode
2013-10-05 19:56:30 -03:00
// @Description: Enabling this turn on one of the Super Simple Mode variants. Setting this to Disabled(0) will disable Super Simple Mode
// @Values: 0:Disabled,1:Mode1,2:Mode2,3:Mode1+2,4:Mode3,5:Mode1+3,6:Mode2+3,7:Mode1+2+3,8:Mode4,9:Mode1+4,10:Mode2+4,11:Mode1+2+4,12:Mode3+4,13:Mode1+3+4,14:Mode2+3+4,15:Mode1+2+3+4,16:Mode5,17:Mode1+5,18:Mode2+5,19:Mode1+2+5,20:Mode3+5,21:Mode1+3+5,22:Mode2+3+5,23:Mode1+2+3+5,24:Mode4+5,25:Mode1+4+5,26:Mode2+4+5,27:Mode1+2+4+5,28:Mode3+4+5,29:Mode1+3+4+5,30:Mode2+3+4+5,31:Mode1+2+3+4+5,32:Mode6,33:Mode1+6,34:Mode2+6,35:Mode1+2+6,36:Mode3+6,37:Mode1+3+6,38:Mode2+3+6,39:Mode1+2+3+6,40:Mode4+6,41:Mode1+4+6,42:Mode2+4+6,43:Mode1+2+4+6,44:Mode3+4+6,45:Mode1+3+4+6,46:Mode2+3+4+6,47:Mode1+2+3+4+6,48:Mode5+6,49:Mode1+5+6,50:Mode2+5+6,51:Mode1+2+5+6,52:Mode3+5+6,53:Mode1+3+5+6,54:Mode2+3+5+6,55:Mode1+2+3+5+6,56:Mode4+5+6,57:Mode1+4+5+6,58:Mode2+4+5+6,59:Mode1+2+4+5+6,60:Mode3+4+5+6,61:Mode1+3+4+5+6,62:Mode2+3+4+5+6,63:Mode1+2+3+4+5+6
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(super_simple, "SUPER_SIMPLE", SUPER_SIMPLE),
2012-11-29 08:08:19 -04:00
// @Param: RTL_ALT_FINAL
// @DisplayName: RTL Final Altitude
2013-01-14 02:20:33 -04:00
// @Description: This is the altitude the vehicle will move to as the final stage of Returning to Launch or after completing a mission. Set to zero to land.
2012-12-10 08:45:57 -04:00
// @Units: Centimeters
2012-11-29 08:08:19 -04:00
// @Range: -1 1000
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
2012-11-29 08:08:19 -04:00
GSCALAR(rtl_alt_final, "RTL_ALT_FINAL", RTL_ALT_FINAL),
2012-08-21 23:19:50 -03:00
2012-11-22 05:59:33 -04:00
// @Param: RSSI_PIN
// @DisplayName: Receiver RSSI sensing pin
// @Description: This selects an analog pin for the receiver RSSI voltage. It assumes the voltage is 5V for max rssi, 0V for minimum
// @Values: -1:Disabled, 0:A0, 1:A1, 2:A2, 13:A13
// @User: Standard
GSCALAR(rssi_pin, "RSSI_PIN", -1),
2013-04-18 03:30:18 -03:00
// @Param: WP_YAW_BEHAVIOR
// @DisplayName: Yaw behaviour during missions
// @Description: Determines how the autopilot controls the yaw during missions and RTL
2013-07-20 03:46:19 -03:00
// @Values: 0:Never change yaw, 1:Face next waypoint, 2:Face next waypoint except RTL, 3:Face along GPS course
2012-12-09 05:04:31 -04:00
// @User: Advanced
2013-04-20 03:36:24 -03:00
GSCALAR(wp_yaw_behavior, "WP_YAW_BEHAVIOR", WP_YAW_BEHAVIOR_DEFAULT),
2012-12-09 05:04:31 -04:00
2012-12-10 08:45:57 -04:00
// @Param: WP_TOTAL
// @DisplayName: Waypoint Total
// @Description: Total number of commands in the mission stored in the eeprom. Do not update this parameter directly!
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(command_total, "WP_TOTAL", 0),
2012-12-10 08:45:57 -04:00
// @Param: WP_INDEX
// @DisplayName: Waypoint Index
// @Description: The index number of the command that is currently being executed. Do not update this parameter directly!
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(command_index, "WP_INDEX", 0),
2012-07-05 03:33:40 -03:00
2012-12-10 08:45:57 -04:00
// @Param: CIRCLE_RADIUS
// @DisplayName: Circle radius
// @Description: Defines the radius of the circle the vehicle will fly when in Circle flight mode
2012-08-21 23:19:50 -03:00
// @Units: Meters
// @Range: 1 127
// @Increment: 1
// @User: Standard
2012-12-10 08:45:57 -04:00
GSCALAR(circle_radius, "CIRCLE_RADIUS", CIRCLE_RADIUS),
2012-10-21 18:32:39 -03:00
2013-04-20 00:03:55 -03:00
// @Param: CIRCLE_RATE
// @DisplayName: Circle rate
// @Description: Circle mode's turn rate in degrees / second. Positive to turn clockwise, negative for counter clockwise
2013-06-23 03:52:46 -03:00
// @Units: deg/s
2013-04-20 00:03:55 -03:00
// @Range: -90 90
// @Increment: 1
// @User: Standard
GSCALAR(circle_rate, "CIRCLE_RATE", CIRCLE_RATE),
2013-01-02 05:50:25 -04:00
// @Param: RTL_LOIT_TIME
2012-11-29 08:08:19 -04:00
// @DisplayName: RTL loiter time
// @Description: Time (in milliseconds) to loiter above home before begining final descent
// @Units: ms
// @Range: 0 60000
// @Increment: 1000
// @User: Standard
GSCALAR(rtl_loiter_time, "RTL_LOIT_TIME", RTL_LOITER_TIME),
2012-02-12 07:26:36 -04:00
2012-11-24 09:50:09 -04:00
// @Param: LAND_SPEED
// @DisplayName: Land speed
// @Description: The descent speed for the final stage of landing in cm/s
2013-06-23 03:52:46 -03:00
// @Units: cm/s
2013-05-21 03:56:09 -03:00
// @Range: 20 200
2012-11-24 09:50:09 -04:00
// @Increment: 10
// @User: Standard
GSCALAR(land_speed, "LAND_SPEED", LAND_SPEED),
2012-12-21 23:52:49 -04:00
// @Param: PILOT_VELZ_MAX
// @DisplayName: Pilot maximum vertical speed
// @Description: The maximum vertical velocity the pilot may request in cm/s
// @Units: Centimeters/Second
// @Range: 10 500
// @Increment: 10
// @User: Standard
GSCALAR(pilot_velocity_z_max, "PILOT_VELZ_MAX", PILOT_VELZ_MAX),
2012-07-05 03:33:40 -03:00
// @Param: THR_MIN
2012-08-21 23:19:50 -03:00
// @DisplayName: Minimum Throttle
2012-12-10 08:45:57 -04:00
// @Description: The minimum throttle that will be sent to the motors to keep them spinning
2013-10-21 08:33:56 -03:00
// @Units: pwm
2013-09-12 10:45:18 -03:00
// @Range: 0 300
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
2013-10-13 08:41:11 -03:00
GSCALAR(throttle_min, "THR_MIN", THR_MIN_DEFAULT),
2012-07-05 03:33:40 -03:00
// @Param: THR_MAX
2012-08-21 23:19:50 -03:00
// @DisplayName: Maximum Throttle
2012-12-10 08:45:57 -04:00
// @Description: The maximum throttle that will be sent to the motors
2013-10-21 08:33:56 -03:00
// @Units: pwm
2012-11-20 19:42:53 -04:00
// @Range: 0 1000
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
2013-10-13 08:41:11 -03:00
GSCALAR(throttle_max, "THR_MAX", THR_MAX_DEFAULT),
2012-07-05 03:33:40 -03:00
2012-12-10 10:38:43 -04:00
// @Param: FS_THR_ENABLE
2012-08-21 23:19:50 -03:00
// @DisplayName: Throttle Failsafe Enable
// @Description: The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel
2013-05-01 21:39:44 -03:00
// @Values: 0:Disabled,1:Enabled always RTL,2:Enabled Continue with Mission in Auto Mode,3:Enabled always LAND
2012-08-21 23:19:50 -03:00
// @User: Standard
2012-12-10 10:38:43 -04:00
GSCALAR(failsafe_throttle, "FS_THR_ENABLE", FS_THR_DISABLED),
2012-07-05 03:33:40 -03:00
2012-12-10 10:38:43 -04:00
// @Param: FS_THR_VALUE
2012-08-21 23:19:50 -03:00
// @DisplayName: Throttle Failsafe Value
// @Description: The PWM level on channel 3 below which throttle sailsafe triggers
2013-06-18 03:56:39 -03:00
// @Range: 925 1100
2013-10-21 08:33:56 -03:00
// @Units: pwm
2013-06-18 03:56:39 -03:00
// @Increment: 1
2012-08-21 23:19:50 -03:00
// @User: Standard
2012-12-10 10:38:43 -04:00
GSCALAR(failsafe_throttle_value, "FS_THR_VALUE", FS_THR_VALUE_DEFAULT),
2012-07-05 03:33:40 -03:00
2012-12-10 08:45:57 -04:00
// @Param: TRIM_THROTTLE
// @DisplayName: Throttle Trim
2013-01-02 11:39:18 -04:00
// @Description: The autopilot's estimate of the throttle required to maintain a level hover. Calculated automatically from the pilot's throttle input while in stabilize mode
// @Range: 0 1000
2013-10-21 08:33:56 -03:00
// @Units: pwm
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(throttle_cruise, "TRIM_THROTTLE", THROTTLE_CRUISE),
2012-02-12 07:26:36 -04:00
2013-01-30 11:25:41 -04:00
// @Param: THR_MID
// @DisplayName: Throttle Mid Position
// @Description: The throttle output (0 ~ 1000) when throttle stick is in mid position. Used to scale the manual throttle so that the mid throttle stick position is close to the throttle required to hover
// @User: Standard
// @Range: 300 700
2013-10-21 08:33:56 -03:00
// @Units: pwm
2013-01-30 11:25:41 -04:00
// @Increment: 1
2013-10-13 08:41:11 -03:00
GSCALAR(throttle_mid, "THR_MID", THR_MID_DEFAULT),
2013-01-30 11:25:41 -04:00
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE1
// @DisplayName: Flight Mode 1
// @Description: Flight mode when Channel 5 pwm is <= 1230
2013-08-04 03:56:35 -03:00
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode1, "FLTMODE1", FLIGHT_MODE_1),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE2
// @DisplayName: Flight Mode 2
// @Description: Flight mode when Channel 5 pwm is >1230, <= 1360
2013-08-04 03:56:35 -03:00
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode2, "FLTMODE2", FLIGHT_MODE_2),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE3
// @DisplayName: Flight Mode 3
// @Description: Flight mode when Channel 5 pwm is >1360, <= 1490
2013-08-04 03:56:35 -03:00
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode3, "FLTMODE3", FLIGHT_MODE_3),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE4
// @DisplayName: Flight Mode 4
// @Description: Flight mode when Channel 5 pwm is >1490, <= 1620
2013-08-04 03:56:35 -03:00
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode4, "FLTMODE4", FLIGHT_MODE_4),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE5
// @DisplayName: Flight Mode 5
// @Description: Flight mode when Channel 5 pwm is >1620, <= 1749
2013-08-04 03:56:35 -03:00
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode5, "FLTMODE5", FLIGHT_MODE_5),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE6
// @DisplayName: Flight Mode 6
// @Description: Flight mode when Channel 5 pwm is >=1750
2013-08-04 03:56:35 -03:00
// @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode6, "FLTMODE6", FLIGHT_MODE_6),
2012-12-10 08:45:57 -04:00
// @Param: SIMPLE
// @DisplayName: Simple mode bitmask
// @Description: Bitmask which holds which flight modes use simple heading mode (eg bit 0 = 1 means Flight Mode 0 uses simple mode)
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(simple_modes, "SIMPLE", 0),
2012-02-12 07:26:36 -04:00
2012-07-05 03:33:40 -03:00
// @Param: LOG_BITMASK
2012-08-21 23:19:50 -03:00
// @DisplayName: Log bitmask
2012-12-10 08:45:57 -04:00
// @Description: 2 byte bitmap of log types to enable
2013-05-20 22:30:59 -03:00
// @Values: 0:Disabled,830:Default,958:Default+IMU,1854:Default+Motors,17214:Default+INav
2012-08-21 23:19:50 -03:00
// @User: Advanced
GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK),
2012-12-10 08:45:57 -04:00
// @Param: TOY_RATE
// @DisplayName: Toy Yaw Rate
// @Description: Controls yaw rate in Toy mode. Higher values will cause a slower yaw rate. Do not set to zero!
// @User: Advanced
// @Range: 1 10
2012-08-21 23:19:50 -03:00
GSCALAR(toy_yaw_rate, "TOY_RATE", 1),
2012-12-10 08:45:57 -04:00
// @Param: ESC
// @DisplayName: ESC Calibration
// @Description: Controls whether ArduCopter will enter ESC calibration on the next restart. Do not adjust this parameter manually.
// @User: Advanced
// @Values: 0:Normal Start-up,1:Start-up in ESC Calibration mode
2012-08-21 23:19:50 -03:00
GSCALAR(esc_calibrate, "ESC", 0),
2012-12-10 08:45:57 -04:00
// @Param: TUNE
// @DisplayName: Channel 6 Tuning
// @Description: Controls which parameters (normally PID gains) are being tuned with transmitter's channel 6 knob
// @User: Standard
2013-08-18 03:44:54 -03:00
// @Values: 0:None,1:Stab Roll/Pitch kP,4:Rate Roll/Pitch kP,5:Rate Roll/Pitch kI,21:Rate Roll/Pitch kD,3:Stab Yaw kP,6:Rate Yaw kP,26:Rate Yaw kD,14:Altitude Hold kP,7:Throttle Rate kP,37:Throttle Rate kD,34:Throttle Accel kP,35:Throttle Accel kI,36:Throttle Accel kD,12:Loiter Pos kP,22:Loiter Rate kP,28:Loiter Rate kI,23:Loiter Rate kD,10:WP Speed,25:Acro RollPitch kP,40:Acro Yaw kP,9:Relay On/Off,13:Heli Ext Gyro,17:OF Loiter kP,18:OF Loiter kI,19:OF Loiter kD,30:AHRS Yaw kP,31:AHRS kP,32:INAV_TC,38:Declination,39:Circle Rate,41:Sonar Gain
2012-08-21 23:19:50 -03:00
GSCALAR(radio_tuning, "TUNE", 0),
2012-12-10 08:45:57 -04:00
// @Param: TUNE_LOW
// @DisplayName: Tuning minimum
// @Description: The minimum value that will be applied to the parameter currently being tuned with the transmitter's channel 6 knob
// @User: Standard
// @Range: 0 32767
2012-08-21 23:19:50 -03:00
GSCALAR(radio_tuning_low, "TUNE_LOW", 0),
2012-12-10 08:45:57 -04:00
// @Param: TUNE_HIGH
// @DisplayName: Tuning maximum
// @Description: The maximum value that will be applied to the parameter currently being tuned with the transmitter's channel 6 knob
// @User: Standard
// @Range: 0 32767
2012-08-21 23:19:50 -03:00
GSCALAR(radio_tuning_high, "TUNE_HIGH", 1000),
2012-12-10 08:45:57 -04:00
// @Param: FRAME
2013-01-14 02:49:26 -04:00
// @DisplayName: Frame Orientation (+, X or V)
// @Description: Controls motor mixing for multicopters. Not used for Tri or Traditional Helicopters.
2013-05-03 11:13:40 -03:00
// @Values: 0:Plus, 1:X, 2:V, 3:H
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(frame_orientation, "FRAME", FRAME_ORIENTATION),
2012-12-06 04:40:36 -04:00
// @Param: CH7_OPT
// @DisplayName: Channel 7 option
2012-12-10 08:45:57 -04:00
// @Description: Select which function if performed when CH7 is above 1800 pwm
2013-10-22 01:13:36 -03:00
// @Values: 0:Do Nothing, 2:Flip, 3:Simple Mode, 4:RTL, 5:Save Trim, 7:Save WP, 8:Multi Mode, 9:Camera Trigger, 10:Sonar, 11:Fence, 12:ResetToArmedYaw, 13:Super Simple Mode, 14:Acro Trainer, 16:Auto, 17:AutoTune, 18:Land
2012-12-06 04:40:36 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(ch7_option, "CH7_OPT", CH7_OPTION),
2012-10-21 18:32:39 -03:00
2013-05-17 02:42:28 -03:00
// @Param: CH8_OPT
// @DisplayName: Channel 8 option
// @Description: Select which function if performed when CH8 is above 1800 pwm
2013-10-22 01:13:36 -03:00
// @Values: 0:Do Nothing, 2:Flip, 3:Simple Mode, 4:RTL, 5:Save Trim, 7:Save WP, 8:Multi Mode, 9:Camera Trigger, 10:Sonar, 11:Fence, 12:ResetToArmedYaw, 13:Super Simple Mode, 14:Acro Trainer, 16:Auto, 17:AutoTune, 18:Land
2013-05-17 02:42:28 -03:00
// @User: Standard
GSCALAR(ch8_option, "CH8_OPT", CH8_OPTION),
2013-05-20 02:48:04 -03:00
// @Param: ARMING_CHECK
// @DisplayName: Arming check
// @Description: Allows enabling or disabling of pre-arming checks of receiver, accelerometer, barometer and compass
// @Values: 0:Disabled, 1:Enabled
// @User: Standard
GSCALAR(arming_check_enabled, "ARMING_CHECK", 1),
2013-08-11 00:51:08 -03:00
// @Param: ANGLE_MAX
// @DisplayName: Angle Max
// @Description: Maximum lean angle in all flight modes
// @Range 1000 8000
// @User: Advanced
GSCALAR(angle_max, "ANGLE_MAX", DEFAULT_ANGLE_MAX),
2013-10-27 10:34:42 -03:00
// @Param: ANGLE_RATE_MAX
// @DisplayName: Angle Rate max
// @Description: maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes
// @Range 90000 250000
// @User: Advanced
GSCALAR(angle_rate_max, "ANGLE_RATE_MAX", ANGLE_RATE_MAX),
2012-08-21 23:19:50 -03:00
#if FRAME_CONFIG == HELI_FRAME
2013-05-21 03:33:41 -03:00
// @Group: HS1_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
2012-08-21 23:19:50 -03:00
GGROUP(heli_servo_1, "HS1_", RC_Channel),
2013-05-21 03:33:41 -03:00
// @Group: HS2_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
2012-08-21 23:19:50 -03:00
GGROUP(heli_servo_2, "HS2_", RC_Channel),
2013-05-21 03:33:41 -03:00
// @Group: HS3_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
2012-08-21 23:19:50 -03:00
GGROUP(heli_servo_3, "HS3_", RC_Channel),
2013-05-21 03:33:41 -03:00
// @Group: HS4_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
2012-08-21 23:19:50 -03:00
GGROUP(heli_servo_4, "HS4_", RC_Channel),
2013-05-21 03:33:41 -03:00
// @Param: RATE_PIT_FF
// @DisplayName: Rate Pitch Feed Forward
2013-05-21 04:31:16 -03:00
// @Description: Rate Pitch Feed Forward (for TradHeli Only)
2013-05-21 03:33:41 -03:00
// @Range: 0 10
// @User: Standard
2012-12-10 22:02:16 -04:00
GSCALAR(heli_pitch_ff, "RATE_PIT_FF", HELI_PITCH_FF),
2013-05-21 03:33:41 -03:00
// @Param: RATE_RLL_FF
// @DisplayName: Rate Roll Feed Forward
2013-05-21 04:31:16 -03:00
// @Description: Rate Roll Feed Forward (for TradHeli Only)
2013-05-21 03:33:41 -03:00
// @Range: 0 10
// @User: Standard
2012-12-10 22:02:16 -04:00
GSCALAR(heli_roll_ff, "RATE_RLL_FF", HELI_ROLL_FF),
2013-05-21 03:33:41 -03:00
// @Param: RATE_YAW_FF
// @DisplayName: Rate Yaw Feed Forward
2013-05-21 04:31:16 -03:00
// @Description: Rate Yaw Feed Forward (for TradHeli Only)
2013-05-21 03:33:41 -03:00
// @Range: 0 10
// @User: Standard
2012-12-10 22:02:16 -04:00
GSCALAR(heli_yaw_ff, "RATE_YAW_FF", HELI_YAW_FF),
2012-08-21 23:19:50 -03:00
#endif
2012-02-12 07:26:36 -04:00
2012-08-21 23:19:50 -03:00
// RC channel
//-----------
// @Group: RC1_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_1, "RC1_", RC_Channel),
// @Group: RC2_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_2, "RC2_", RC_Channel),
// @Group: RC3_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_3, "RC3_", RC_Channel),
// @Group: RC4_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_4, "RC4_", RC_Channel),
// @Group: RC5_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-09-02 00:51:23 -03:00
GGROUP(rc_5, "RC5_", RC_Channel_aux),
2012-08-21 23:19:50 -03:00
// @Group: RC6_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-09-02 00:51:23 -03:00
GGROUP(rc_6, "RC6_", RC_Channel_aux),
2012-08-21 23:19:50 -03:00
// @Group: RC7_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-09-02 00:51:23 -03:00
GGROUP(rc_7, "RC7_", RC_Channel_aux),
2012-08-21 23:19:50 -03:00
// @Group: RC8_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-09-02 00:51:23 -03:00
GGROUP(rc_8, "RC8_", RC_Channel_aux),
2012-07-10 19:39:13 -03:00
2013-10-31 10:52:13 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
// @Group: RC9_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
GGROUP(rc_9, "RC9_", RC_Channel_aux),
#endif
2012-08-21 23:19:50 -03:00
// @Group: RC10_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_10, "RC10_", RC_Channel_aux),
// @Group: RC11_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_11, "RC11_", RC_Channel_aux),
2012-06-29 18:34:40 -03:00
2013-04-25 07:01:34 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
// @Group: RC12_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
GGROUP(rc_12, "RC12_", RC_Channel_aux),
#endif
2012-08-21 23:19:50 -03:00
// @Param: RC_SPEED
// @DisplayName: ESC Update Speed
// @Description: This is the speed in Hertz that your ESCs will receive updates
2013-05-21 04:31:16 -03:00
// @Units: Hz
// @Range: 50 490
// @Increment: 1
2012-08-21 23:19:50 -03:00
// @User: Advanced
GSCALAR(rc_speed, "RC_SPEED", RC_FAST_SPEED),
2013-08-04 08:22:12 -03:00
// @Param: ACRO_RP_P
// @DisplayName: Acro Roll and Pitch P gain
// @Description: Converts pilot roll and pitch into a desired rate of rotation in ACRO and SPORT mode. Higher values mean faster rate of rotation.
2012-12-10 08:45:57 -04:00
// @Range: 1 10
// @User: Standard
2013-08-04 08:22:12 -03:00
GSCALAR(acro_rp_p, "ACRO_RP_P", ACRO_RP_P),
// @Param: ACRO_YAW_P
// @DisplayName: Acro Yaw P gain
// @Description: Converts pilot yaw input into a desired rate of rotation in ACRO, Stabilize and SPORT modes. Higher values mean faster rate of rotation.
// @Range: 1 10
// @User: Standard
GSCALAR(acro_yaw_p, "ACRO_YAW_P", ACRO_YAW_P),
2012-12-10 08:45:57 -04:00
2012-10-23 09:30:50 -03:00
// @Param: ACRO_BAL_ROLL
// @DisplayName: Acro Balance Roll
// @Description: rate at which roll angle returns to level in acro mode
2013-08-04 06:14:07 -03:00
// @Range: 0 3
// @Increment: 0.1
2012-10-23 09:30:50 -03:00
// @User: Advanced
GSCALAR(acro_balance_roll, "ACRO_BAL_ROLL", ACRO_BALANCE_ROLL),
// @Param: ACRO_BAL_PITCH
// @DisplayName: Acro Balance Pitch
// @Description: rate at which pitch angle returns to level in acro mode
2013-08-04 06:14:07 -03:00
// @Range: 0 3
// @Increment: 0.1
2012-10-23 09:30:50 -03:00
// @User: Advanced
GSCALAR(acro_balance_pitch, "ACRO_BAL_PITCH", ACRO_BALANCE_PITCH),
2012-12-10 09:27:46 -04:00
// @Param: ACRO_TRAINER
2013-08-04 06:14:07 -03:00
// @DisplayName: Acro Trainer
// @Description: Type of trainer used in acro mode
// @Values: 0:Disabled,1:Leveling,2:Leveling and Limited
2012-12-10 09:27:46 -04:00
// @User: Advanced
2013-08-04 06:14:07 -03:00
GSCALAR(acro_trainer, "ACRO_TRAINER", ACRO_TRAINER_LIMITED),
2012-12-10 09:27:46 -04:00
2012-12-10 08:45:57 -04:00
// @Param: LED_MODE
// @DisplayName: Copter LED Mode
// @Description: bitmap to control the copter led mode
2013-09-14 23:38:47 -03:00
// @Values: 0:Disabled,1:Enable,3:GPS On,4:Aux,9:Buzzer,17:Oscillate,33:Nav Blink,65:GPS Nav Blink
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-10-23 09:30:50 -03:00
GSCALAR(copter_leds_mode, "LED_MODE", 9),
2012-08-21 23:19:50 -03:00
// PID controller
//---------------
2013-01-02 04:05:57 -04:00
// @Param: RATE_RLL_P
// @DisplayName: Roll axis rate controller P gain
// @Description: Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output
2013-01-02 04:20:58 -04:00
// @Range: 0.08 0.20
2013-06-16 09:53:50 -03:00
// @Increment: 0.005
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_RLL_I
// @DisplayName: Roll axis rate controller I gain
// @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate
2013-01-02 04:20:58 -04:00
// @Range: 0.01 0.5
2013-06-16 09:53:50 -03:00
// @Increment: 0.01
2013-01-02 04:20:58 -04:00
// @User: Standard
// @Param: RATE_RLL_IMAX
// @DisplayName: Roll axis rate controller I gain maximum
// @Description: Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 500
2013-06-16 09:53:50 -03:00
// @Increment: 10
2013-10-21 08:33:56 -03:00
// @Units: pwm
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_RLL_D
// @DisplayName: Roll axis rate controller D gain
// @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate
2013-01-02 04:20:58 -04:00
// @Range: 0.001 0.008
2013-06-16 09:53:50 -03:00
// @Increment: 0.001
2013-01-02 04:05:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_rate_roll, "RATE_RLL_", AC_PID),
2013-01-02 04:05:57 -04:00
// @Param: RATE_PIT_P
// @DisplayName: Pitch axis rate controller P gain
// @Description: Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output
2013-01-02 04:20:58 -04:00
// @Range: 0.08 0.20
2013-06-16 09:53:50 -03:00
// @Increment: 0.005
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_PIT_I
// @DisplayName: Pitch axis rate controller I gain
// @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate
2013-01-02 04:20:58 -04:00
// @Range: 0.01 0.5
2013-06-16 09:53:50 -03:00
// @Increment: 0.01
2013-01-02 04:20:58 -04:00
// @User: Standard
// @Param: RATE_PIT_IMAX
// @DisplayName: Pitch axis rate controller I gain maximum
// @Description: Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 500
2013-06-16 09:53:50 -03:00
// @Increment: 10
2013-10-21 08:33:56 -03:00
// @Units: pwm
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_PIT_D
// @DisplayName: Pitch axis rate controller D gain
// @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate
2013-01-02 04:20:58 -04:00
// @Range: 0.001 0.008
2013-06-16 09:53:50 -03:00
// @Increment: 0.001
2013-01-02 04:05:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_rate_pitch, "RATE_PIT_", AC_PID),
2013-01-02 04:05:57 -04:00
// @Param: RATE_YAW_P
// @DisplayName: Yaw axis rate controller P gain
// @Description: Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output
2013-01-02 04:20:58 -04:00
// @Range: 0.150 0.250
2013-06-16 09:53:50 -03:00
// @Increment: 0.005
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_YAW_I
// @DisplayName: Yaw axis rate controller I gain
// @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate
2013-01-02 04:20:58 -04:00
// @Range: 0.010 0.020
2013-06-16 09:53:50 -03:00
// @Increment: 0.01
2013-01-02 04:20:58 -04:00
// @User: Standard
// @Param: RATE_YAW_IMAX
// @DisplayName: Yaw axis rate controller I gain maximum
// @Description: Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 500
2013-06-16 09:53:50 -03:00
// @Increment: 10
2013-10-21 08:33:56 -03:00
// @Units: pwm
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_YAW_D
// @DisplayName: Yaw axis rate controller D gain
// @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate
2013-01-02 04:20:58 -04:00
// @Range: 0.000 0.001
2013-06-16 09:53:50 -03:00
// @Increment: 0.001
2013-01-02 04:05:57 -04:00
// @User: Standard
GGROUP(pid_rate_yaw, "RATE_YAW_", AC_PID),
2012-08-21 23:19:50 -03:00
2013-01-02 04:20:58 -04:00
// @Param: LOITER_LAT_P
// @DisplayName: Loiter latitude rate controller P gain
// @Description: Loiter latitude rate controller P gain. Converts the difference between desired speed and actual speed into a lean angle in the latitude direction
2013-06-16 09:53:50 -03:00
// @Range: 0.1 6.0
// @Increment: 0.1
2013-01-02 04:20:58 -04:00
// @User: Standard
// @Param: LOITER_LAT_I
// @DisplayName: Loiter latitude rate controller I gain
// @Description: Loiter latitude rate controller I gain. Corrects long-term difference in desired speed and actual speed in the latitude direction
2013-06-16 09:53:50 -03:00
// @Range: 0.02 1.00
// @Increment: 0.01
2013-01-02 04:20:58 -04:00
// @User: Standard
// @Param: LOITER_LAT_IMAX
// @DisplayName: Loiter rate controller I gain maximum
// @Description: Loiter rate controller I gain maximum. Constrains the lean angle that the I gain will output
// @Range: 0 4500
2013-06-16 09:53:50 -03:00
// @Increment: 10
2013-05-21 03:59:39 -03:00
// @Units: Centi-Degrees
2013-01-02 04:20:58 -04:00
// @User: Standard
// @Param: LOITER_LAT_D
// @DisplayName: Loiter latitude rate controller D gain
// @Description: Loiter latitude rate controller D gain. Compensates for short-term change in desired speed vs actual speed
2013-06-16 09:53:50 -03:00
// @Range: 0.0 0.6
// @Increment: 0.01
2013-01-02 04:20:58 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_loiter_rate_lat, "LOITER_LAT_", AC_PID),
2013-01-02 04:20:58 -04:00
// @Param: LOITER_LON_P
// @DisplayName: Loiter longitude rate controller P gain
// @Description: Loiter longitude rate controller P gain. Converts the difference between desired speed and actual speed into a lean angle in the longitude direction
2013-06-16 09:53:50 -03:00
// @Range: 0.1 6.0
// @Increment: 0.1
2013-01-02 04:20:58 -04:00
// @User: Standard
// @Param: LOITER_LON_I
// @DisplayName: Loiter longitude rate controller I gain
// @Description: Loiter longitude rate controller I gain. Corrects long-term difference in desired speed and actual speed in the longitude direction
2013-06-16 09:53:50 -03:00
// @Range: 0.02 1.00
// @Increment: 0.01
2013-01-02 04:20:58 -04:00
// @User: Standard
// @Param: LOITER_LON_IMAX
// @DisplayName: Loiter longitude rate controller I gain maximum
// @Description: Loiter longitude rate controller I gain maximum. Constrains the lean angle that the I gain will output
// @Range: 0 4500
2013-06-16 09:53:50 -03:00
// @Increment: 10
2013-05-21 03:59:39 -03:00
// @Units: Centi-Degrees
2013-01-02 04:20:58 -04:00
// @User: Standard
// @Param: LOITER_LON_D
// @DisplayName: Loiter longituderate controller D gain
// @Description: Loiter longitude rate controller D gain. Compensates for short-term change in desired speed vs actual speed
2013-06-16 09:53:50 -03:00
// @Range: 0.0 0.6
// @Increment: 0.01
2013-01-02 04:20:58 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_loiter_rate_lon, "LOITER_LON_", AC_PID),
2013-01-02 04:44:21 -04:00
// @Param: THR_RATE_P
// @DisplayName: Throttle rate controller P gain
// @Description: Throttle rate controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller
// @Range: 1.000 8.000
// @User: Standard
// @Param: THR_RATE_I
// @DisplayName: Throttle rate controller I gain
// @Description: Throttle rate controller I gain. Corrects long-term difference in desired vertical speed and actual speed
// @Range: 0.000 0.100
// @User: Standard
// @Param: THR_RATE_IMAX
// @DisplayName: Throttle rate controller I gain maximum
// @Description: Throttle rate controller I gain maximum. Constrains the desired acceleration that the I gain will generate
// @Range: 0 500
2013-05-21 03:59:39 -03:00
// @Units: cm/s/s
2013-01-02 04:44:21 -04:00
// @User: Standard
// @Param: THR_RATE_D
// @DisplayName: Throttle rate controller D gain
// @Description: Throttle rate controller D gain. Compensates for short-term change in desired vertical speed vs actual speed
// @Range: 0.000 0.400
// @User: Standard
2013-06-30 07:04:21 -03:00
GGROUP(pid_throttle_rate, "THR_RATE_", AC_PID),
2013-01-02 04:44:21 -04:00
// @Param: THR_ACCEL_P
// @DisplayName: Throttle acceleration controller P gain
// @Description: Throttle acceleration controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output
// @Range: 0.500 1.500
// @User: Standard
// @Param: THR_ACCEL_I
// @DisplayName: Throttle acceleration controller I gain
// @Description: Throttle acceleration controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration
// @Range: 0.000 3.000
// @User: Standard
// @Param: THR_ACCEL_IMAX
// @DisplayName: Throttle acceleration controller I gain maximum
// @Description: Throttle acceleration controller I gain maximum. Constrains the maximum pwm that the I term will generate
// @Range: 0 500
2013-10-21 08:33:56 -03:00
// @Units: pwm
2013-01-02 04:44:21 -04:00
// @User: Standard
// @Param: THR_ACCEL_D
// @DisplayName: Throttle acceleration controller D gain
// @Description: Throttle acceleration controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration
// @Range: 0.000 0.400
// @User: Standard
2012-11-23 02:57:49 -04:00
GGROUP(pid_throttle_accel,"THR_ACCEL_", AC_PID),
2013-01-02 05:32:11 -04:00
// @Param: OF_RLL_P
// @DisplayName: Optical Flow based loiter controller roll axis P gain
// @Description: Optical Flow based loiter controller roll axis P gain. Converts the position error from the target point to a roll angle
// @Range: 2.000 3.000
// @User: Standard
// @Param: OF_RLL_I
// @DisplayName: Optical Flow based loiter controller roll axis I gain
// @Description: Optical Flow based loiter controller roll axis I gain. Corrects long-term position error by more persistently rolling left or right
// @Range: 0.250 0.750
// @User: Standard
// @Param: OF_RLL_IMAX
// @DisplayName: Optical Flow based loiter controller roll axis I gain maximum
// @Description: Optical Flow based loiter controller roll axis I gain maximum. Constrains the maximum roll angle that the I term will generate
// @Range: 0 4500
2013-05-21 03:59:39 -03:00
// @Units: Centi-Degrees
2013-01-02 05:32:11 -04:00
// @User: Standard
// @Param: OF_RLL_D
// @DisplayName: Optical Flow based loiter controller roll axis D gain
// @Description: Optical Flow based loiter controller roll axis D gain. Compensates for short-term change in speed in the roll direction
// @Range: 0.100 0.140
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_optflow_roll, "OF_RLL_", AC_PID),
2013-01-02 05:32:11 -04:00
// @Param: OF_PIT_P
// @DisplayName: Optical Flow based loiter controller pitch axis P gain
// @Description: Optical Flow based loiter controller pitch axis P gain. Converts the position error from the target point to a pitch angle
// @Range: 2.000 3.000
// @User: Standard
// @Param: OF_PIT_I
// @DisplayName: Optical Flow based loiter controller pitch axis I gain
// @Description: Optical Flow based loiter controller pitch axis I gain. Corrects long-term position error by more persistently pitching left or right
// @Range: 0.250 0.750
// @User: Standard
// @Param: OF_PIT_IMAX
// @DisplayName: Optical Flow based loiter controller pitch axis I gain maximum
// @Description: Optical Flow based loiter controller pitch axis I gain maximum. Constrains the maximum pitch angle that the I term will generate
// @Range: 0 4500
2013-05-21 03:59:39 -03:00
// @Units: Centi-Degrees
2013-01-02 05:32:11 -04:00
// @User: Standard
// @Param: OF_PIT_D
// @DisplayName: Optical Flow based loiter controller pitch axis D gain
// @Description: Optical Flow based loiter controller pitch axis D gain. Compensates for short-term change in speed in the pitch direction
// @Range: 0.100 0.140
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_optflow_pitch, "OF_PIT_", AC_PID),
// PI controller
//--------------
2013-01-02 05:32:11 -04:00
// @Param: STB_RLL_P
// @DisplayName: Roll axis stabilize controller P gain
// @Description: Roll axis stabilize (i.e. angle) controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate
// @Range: 3.000 6.000
// @User: Standard
// @Param: STB_RLL_I
// @DisplayName: Roll axis stabilize controller I gain
// @Description: Roll axis stabilize (i.e. angle) controller I gain. Corrects for longer-term difference in desired roll angle and actual angle
// @Range: 0.000 0.100
// @User: Standard
// @Param: STB_RLL_IMAX
// @DisplayName: Roll axis stabilize controller I gain maximum
// @Description: Roll axis stabilize (i.e. angle) controller I gain maximum. Constrains the maximum roll rate that the I term will generate
// @Range: 0 4500
2013-05-21 03:59:39 -03:00
// @Units: Centi-Degrees/Sec
2013-01-02 05:32:11 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_stabilize_roll, "STB_RLL_", APM_PI),
2013-01-02 05:32:11 -04:00
// @Param: STB_PIT_P
// @DisplayName: Pitch axis stabilize controller P gain
// @Description: Pitch axis stabilize (i.e. angle) controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate
// @Range: 3.000 6.000
// @User: Standard
// @Param: STB_PIT_I
// @DisplayName: Pitch axis stabilize controller I gain
// @Description: Pitch axis stabilize (i.e. angle) controller I gain. Corrects for longer-term difference in desired pitch angle and actual angle
// @Range: 0.000 0.100
// @User: Standard
// @Param: STB_PIT_IMAX
// @DisplayName: Pitch axis stabilize controller I gain maximum
// @Description: Pitch axis stabilize (i.e. angle) controller I gain maximum. Constrains the maximum pitch rate that the I term will generate
// @Range: 0 4500
2013-05-21 03:59:39 -03:00
// @Units: Centi-Degrees/Sec
2013-01-02 05:32:11 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_stabilize_pitch, "STB_PIT_", APM_PI),
2013-01-02 05:32:11 -04:00
// @Param: STB_YAW_P
// @DisplayName: Yaw axis stabilize controller P gain
// @Description: Yaw axis stabilize (i.e. angle) controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate
// @Range: 3.000 6.000
// @User: Standard
// @Param: STB_YAW_I
// @DisplayName: Yaw axis stabilize controller I gain
// @Description: Yaw axis stabilize (i.e. angle) controller I gain. Corrects for longer-term difference in desired yaw angle and actual angle
// @Range: 0.000 0.100
// @User: Standard
// @Param: STB_YAW_IMAX
// @DisplayName: Yaw axis stabilize controller I gain maximum
// @Description: Yaw axis stabilize (i.e. angle) controller I gain maximum. Constrains the maximum yaw rate that the I term will generate
// @Range: 0 4500
2013-05-21 03:59:39 -03:00
// @Units: Centi-Degrees/Sec
2013-01-02 05:32:11 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_stabilize_yaw, "STB_YAW_", APM_PI),
2013-01-02 05:32:11 -04:00
// @Param: THR_ALT_P
// @DisplayName: Altitude controller P gain
// @Description: Altitude controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller
2013-04-03 10:38:34 -03:00
// @Range: 1.000 3.000
2013-01-02 05:32:11 -04:00
// @User: Standard
// @Param: THR_ALT_I
// @DisplayName: Altitude controller I gain
// @Description: Altitude controller I gain. Corrects for longer-term difference in desired altitude and actual altitude
// @Range: 0.000 0.100
// @User: Standard
// @Param: THR_ALT_IMAX
// @DisplayName: Altitude controller I gain maximum
// @Description: Altitude controller I gain maximum. Constrains the maximum climb rate rate that the I term will generate
// @Range: 0 500
2013-05-21 03:59:39 -03:00
// @Units: cm/s
2013-01-02 05:32:11 -04:00
// @User: Standard
GGROUP(pi_alt_hold, "THR_ALT_", APM_PI),
// @Param: HLD_LAT_P
// @DisplayName: Loiter latitude position controller P gain
// @Description: Loiter latitude position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller
2013-10-07 02:45:39 -03:00
// @Range: 0.500 2.000
2013-01-02 05:32:11 -04:00
// @User: Standard
// @Param: HLD_LAT_I
// @DisplayName: Loiter latitude position controller I gain
// @Description: Loiter latitude position controller I gain. Corrects for longer-term distance (in latitude) to the target location
// @Range: 0.000 0.100
// @User: Standard
// @Param: HLD_LAT_IMAX
// @DisplayName: Loiter latitude position controller I gain maximum
// @Description: Loiter latitude position controller I gain maximum. Constrains the maximum desired speed that the I term will generate
// @Range: 0 3000
2013-05-21 03:59:39 -03:00
// @Units: cm/s
2013-01-02 05:32:11 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_loiter_lat, "HLD_LAT_", APM_PI),
2013-01-02 05:32:11 -04:00
// @Param: HLD_LON_P
// @DisplayName: Loiter longitude position controller P gain
// @Description: Loiter longitude position controller P gain. Converts the distance (in the longitude direction) to the target location into a desired speed which is then passed to the loiter longitude rate controller
2013-10-07 02:45:39 -03:00
// @Range: 0.500 2.000
2013-01-02 05:32:11 -04:00
// @User: Standard
// @Param: HLD_LON_I
// @DisplayName: Loiter longitude position controller I gain
// @Description: Loiter longitude position controller I gain. Corrects for longer-term distance (in longitude direction) to the target location
// @Range: 0.000 0.100
// @User: Standard
// @Param: HLD_LON_IMAX
// @DisplayName: Loiter longitudeposition controller I gain maximum
// @Description: Loiter longitudeposition controller I gain maximum. Constrains the maximum desired speed that the I term will generate
// @Range: 0 3000
2013-05-21 03:59:39 -03:00
// @Units: cm/s
2013-01-02 05:32:11 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_loiter_lon, "HLD_LON_", APM_PI),
// variables not in the g class which contain EEPROM saved variables
2012-12-22 04:26:27 -04:00
// variables not in the g class which contain EEPROM saved variables
#if CAMERA == ENABLED
// @Group: CAM_
// @Path: ../libraries/AP_Camera/AP_Camera.cpp
GOBJECT(camera, "CAM_", AP_Camera),
#endif
2013-06-24 23:46:53 -03:00
// @Group: RELAY_
// @Path: ../libraries/AP_Relay/AP_Relay.cpp
GOBJECT(relay, "RELAY_", AP_Relay),
2012-08-21 23:19:50 -03:00
// @Group: COMPASS_
// @Path: ../libraries/AP_Compass/Compass.cpp
GOBJECT(compass, "COMPASS_", Compass),
// @Group: INS_
2012-11-05 00:32:38 -04:00
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
2013-06-04 05:08:55 -03:00
#if HIL_MODE != HIL_MODE_ATTITUDE
2012-11-05 00:32:38 -04:00
GOBJECT(ins, "INS_", AP_InertialSensor),
2012-08-11 04:12:09 -03:00
#endif
2012-07-19 02:56:13 -03:00
2012-11-07 06:03:30 -04:00
// @Group: INAV_
// @Path: ../libraries/AP_InertialNav/AP_InertialNav.cpp
2012-11-07 09:24:00 -04:00
GOBJECT(inertial_nav, "INAV_", AP_InertialNav),
2012-11-07 06:03:30 -04:00
2013-07-18 01:58:24 -03:00
// @Group: WPNAV_
// @Path: ../libraries/AC_WPNav/AC_WPNav.cpp
2013-04-05 06:32:36 -03:00
GOBJECT(wp_nav, "WPNAV_", AC_WPNav),
2013-01-02 10:36:48 -04:00
// @Group: SR0_
2013-09-11 20:53:13 -03:00
// @Path: GCS_Mavlink.pde
2012-08-21 23:19:50 -03:00
GOBJECT(gcs0, "SR0_", GCS_MAVLINK),
2013-01-02 10:36:48 -04:00
// @Group: SR3_
2013-09-11 20:53:13 -03:00
// @Path: GCS_Mavlink.pde
2012-08-21 23:19:50 -03:00
GOBJECT(gcs3, "SR3_", GCS_MAVLINK),
2012-04-25 13:23:46 -03:00
2012-08-21 23:19:50 -03:00
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
2012-04-04 10:55:07 -03:00
2012-07-15 04:36:05 -03:00
#if MOUNT == ENABLED
2012-08-21 23:19:50 -03:00
// @Group: MNT_
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount, "MNT_", AP_Mount),
2012-07-15 04:36:05 -03:00
#endif
2012-08-08 17:16:48 -03:00
#if MOUNT2 == ENABLED
2012-08-21 23:19:50 -03:00
// @Group: MNT2_
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount2, "MNT2_", AP_Mount),
2012-08-08 17:16:48 -03:00
#endif
2013-10-01 10:34:44 -03:00
// @Group: BATT_
// @Path: ../libraries/AP_BattMonitor/AP_BattMonitor.cpp
GOBJECT(battery, "BATT_", AP_BattMonitor),
2013-08-04 11:20:21 -03:00
#if SPRAYER == ENABLED
// @Group: SPRAYER_
// @Path: ../libraries/AC_Sprayer/AC_Sprayer.cpp
GOBJECT(sprayer, "SPRAY_", AC_Sprayer),
#endif
2012-12-18 06:15:11 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
2012-08-21 23:19:50 -03:00
GOBJECT(sitl, "SIM_", SITL),
#endif
2013-05-21 02:22:11 -03:00
// @Group: GND_
// @Path: ../libraries/AP_Baro/AP_Baro.cpp
2012-12-18 06:15:11 -04:00
GOBJECT(barometer, "GND_", AP_Baro),
2013-05-21 02:22:11 -03:00
// @Group: SCHED_
// @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp
2013-01-11 21:01:10 -04:00
GOBJECT(scheduler, "SCHED_", AP_Scheduler),
2012-12-18 06:15:11 -04:00
2013-04-26 06:51:07 -03:00
#if AC_FENCE == ENABLED
2013-07-18 01:58:24 -03:00
// @Group: FENCE_
// @Path: ../libraries/AC_Fence/AC_Fence.cpp
2013-04-26 06:51:07 -03:00
GOBJECT(fence, "FENCE_", AC_Fence),
2012-12-13 03:07:34 -04:00
#endif
2012-08-21 23:19:50 -03:00
2013-09-23 00:04:28 -03:00
// @Group: GPSGLITCH_
// @Path: ../libraries/AP_GPS/AP_GPS_Glitch.cpp
GOBJECT(gps_glitch, "GPSGLITCH_", GPS_Glitch),
2012-08-21 23:19:50 -03:00
#if FRAME_CONFIG == HELI_FRAME
// @Group: H_
// @Path: ../libraries/AP_Motors/AP_MotorsHeli.cpp
GOBJECT(motors, "H_", AP_MotorsHeli),
#else
2013-01-02 04:05:57 -04:00
// @Group: MOT_
// @Path: ../libraries/AP_Motors/AP_Motors_Class.cpp
2012-08-21 23:19:50 -03:00
GOBJECT(motors, "MOT_", AP_Motors),
2012-06-29 02:10:35 -03:00
#endif
2013-03-24 23:48:06 -03:00
// @Group: RCMAP_
// @Path: ../libraries/AP_RCMapper/AP_RCMapper.cpp
GOBJECT(rcmap, "RCMAP_", RCMapper),
2012-08-21 23:19:50 -03:00
AP_VAREND
2012-02-12 07:26:36 -04:00
};
2013-10-01 10:34:44 -03:00
/*
This is a conversion table from old parameter values to new
parameter names. The startup code looks for saved values of the old
parameters and will copy them across to the new parameters if the
new parameter does not yet have a saved value. It then saves the new
value.
Note that this works even if the old parameter has been removed. It
relies on the old k_param index not being removed
The second column below is the index in the var_info[] table for the
old object. This should be zero for top level parameters.
*/
const AP_Param::ConversionInfo conversion_table[] PROGMEM = {
{ Parameters::k_param_battery_monitoring, 0, AP_PARAM_INT8, "BATT_MONITOR" },
{ Parameters::k_param_battery_volt_pin, 0, AP_PARAM_INT8, "BATT_VOLT_PIN" },
{ Parameters::k_param_battery_curr_pin, 0, AP_PARAM_INT8, "BATT_CURR_PIN" },
{ Parameters::k_param_volt_div_ratio, 0, AP_PARAM_FLOAT, "BATT_VOLT_MULT" },
{ Parameters::k_param_curr_amp_per_volt, 0, AP_PARAM_FLOAT, "BATT_AMP_PERVOLT" },
{ Parameters::k_param_pack_capacity, 0, AP_PARAM_INT32, "BATT_CAPACITY" },
};
2012-02-12 07:26:36 -04:00
static void load_parameters(void)
{
2012-08-21 23:19:50 -03:00
// change the default for the AHRS_GPS_GAIN for ArduCopter
// if it hasn't been set by the user
if (!ahrs.gps_gain.load()) {
2012-10-21 18:32:39 -03:00
ahrs.gps_gain.set_and_save(1.0);
2012-08-21 23:19:50 -03:00
}
2013-05-06 01:32:11 -03:00
// disable centrifugal force correction, it will be enabled as part of the arming process
ahrs.set_correct_centrifugal(false);
2012-08-21 23:19:50 -03:00
// setup different AHRS gains for ArduCopter than the default
// but allow users to override in their config
if (!ahrs._kp.load()) {
ahrs._kp.set_and_save(0.1);
}
if (!ahrs._kp_yaw.load()) {
ahrs._kp_yaw.set_and_save(0.1);
}
2013-04-16 06:47:39 -03:00
// setup different Compass learn setting for ArduCopter than the default
// but allow users to override in their config
if (!compass._learn.load()) {
compass._learn.set_and_save(0);
}
2012-08-21 23:19:50 -03:00
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
// erase all parameters
2012-11-21 02:08:03 -04:00
cliSerial->printf_P(PSTR("Firmware change: erasing EEPROM...\n"));
2012-08-21 23:19:50 -03:00
AP_Param::erase_all();
// save the current format version
g.format_version.set_and_save(Parameters::k_format_version);
2012-11-21 02:08:03 -04:00
cliSerial->println_P(PSTR("done."));
2012-08-21 23:19:50 -03:00
} else {
uint32_t before = micros();
// Load all auto-loaded EEPROM variables
AP_Param::load_all();
2013-10-19 10:55:47 -03:00
AP_Param::convert_old_parameters(&conversion_table[0], sizeof(conversion_table)/sizeof(conversion_table[0]));
2012-11-21 02:08:03 -04:00
cliSerial->printf_P(PSTR("load_all took %luus\n"), micros() - before);
2012-08-21 23:19:50 -03:00
}
2012-02-12 07:26:36 -04:00
}