2012-04-30 04:17:14 -03:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2013-10-10 01:53:28 -03:00
#define THISFIRMWARE "ArduRover v2.43"
2013-08-26 03:52:24 -03:00
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
2012-04-30 04:17:14 -03:00
2013-02-28 21:32:48 -04:00
/*
2013-08-26 03:52:24 -03:00
This is the APMrover2 firmware. It was originally derived from
ArduPlane by Jean-Louis Naudin (JLN), and then rewritten after the
AP_HAL merge by Andrew Tridgell
Maintainer: Andrew Tridgell
2013-02-28 21:32:48 -04:00
2013-08-26 03:52:24 -03:00
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Jean-Louis Naudin
2013-02-28 21:32:48 -04:00
2013-08-26 03:52:24 -03:00
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier
2012-05-14 12:47:08 -03:00
2013-08-26 03:52:24 -03:00
APMrover alpha version tester: Franco Borasio, Daniel Chapelat...
Please contribute your ideas! See http://dev.ardupilot.com for details
*/
2013-02-28 21:32:48 -04:00
2012-04-30 04:17:14 -03:00
// Radio setup:
// APM INPUT (Rec = receiver)
2013-02-28 21:32:48 -04:00
// Rec ch1: Steering
// Rec ch2: not used
// Rec ch3: Throttle
// Rec ch4: not used
2012-04-30 04:17:14 -03:00
// Rec ch5: not used
// Rec ch6: not used
2013-02-28 21:32:48 -04:00
// Rec ch7: Option channel to 2 position switch
// Rec ch8: Mode channel to 6 position switch
2012-04-30 04:17:14 -03:00
// APM OUTPUT
// Ch1: Wheel servo (direction)
// Ch2: not used
// Ch3: to the motor ESC
// Ch4: not used
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
2012-12-18 07:44:12 -04:00
#include <stdarg.h>
#include <stdio.h>
2012-04-30 04:17:14 -03:00
// Libraries
#include <AP_Common.h>
2012-10-27 00:55:17 -03:00
#include <AP_Progmem.h>
2012-12-18 07:44:12 -04:00
#include <AP_HAL.h>
2012-10-20 15:57:48 -03:00
#include <AP_Menu.h>
2012-08-20 20:22:44 -03:00
#include <AP_Param.h>
2012-04-30 04:17:14 -03:00
#include <AP_GPS.h> // ArduPilot GPS library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
2012-12-18 07:44:12 -04:00
#include <AP_ADC_AnalogSource.h>
2012-11-17 02:45:20 -04:00
#include <AP_Baro.h>
2012-04-30 04:17:14 -03:00
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_InertialSensor.h> // Inertial Sensor (uncalibated IMU) Library
#include <AP_AHRS.h> // ArduPilot Mega DCM Library
#include <PID.h> // PID library
#include <RC_Channel.h> // RC Channel Library
#include <AP_RangeFinder.h> // Range finder library
#include <Filter.h> // Filter library
2013-02-07 19:21:30 -04:00
#include <Butter.h> // Filter library - butterworth filter
2012-11-07 03:28:20 -04:00
#include <AP_Buffer.h> // FIFO buffer library
2012-04-30 04:17:14 -03:00
#include <ModeFilter.h> // Mode Filter from Filter library
#include <AverageFilter.h> // Mode Filter from Filter library
#include <AP_Relay.h> // APM relay
#include <AP_Mount.h> // Camera/Antenna mount
2013-07-14 20:57:00 -03:00
#include <AP_Camera.h> // Camera triggering
2012-04-30 04:17:14 -03:00
#include <GCS_MAVLink.h> // MAVLink GCS definitions
2012-08-10 23:22:55 -03:00
#include <AP_Airspeed.h> // needed for AHRS build
2013-09-12 22:47:13 -03:00
#include <AP_Vehicle.h> // needed for AHRS build
2012-04-30 04:17:14 -03:00
#include <memcheck.h>
2012-12-18 07:44:12 -04:00
#include <DataFlash.h>
2013-06-03 06:33:59 -03:00
#include <AP_RCMapper.h> // RC input mapping library
2012-12-18 07:44:12 -04:00
#include <SITL.h>
2013-06-03 21:37:05 -03:00
#include <AP_Scheduler.h> // main loop scheduler
2012-12-18 07:44:12 -04:00
#include <stdarg.h>
2013-06-16 20:50:53 -03:00
#include <AP_Navigation.h>
2013-09-08 21:18:31 -03:00
#include <APM_Control.h>
2013-06-16 20:50:53 -03:00
#include <AP_L1_Control.h>
2012-12-18 07:44:12 -04:00
#include <AP_HAL_AVR.h>
#include <AP_HAL_AVR_SITL.h>
2013-01-02 07:14:35 -04:00
#include <AP_HAL_PX4.h>
2013-09-23 04:07:37 -03:00
#include <AP_HAL_FLYMAPLE.h>
2013-09-28 08:48:00 -03:00
#include <AP_HAL_Linux.h>
2012-12-18 07:44:12 -04:00
#include <AP_HAL_Empty.h>
#include "compat.h"
2012-04-30 04:17:14 -03:00
2013-08-24 06:05:18 -03:00
#include <AP_Notify.h> // Notify library
2013-10-02 03:07:28 -03:00
#include <AP_BattMonitor.h> // Battery monitor library
2013-08-24 06:05:18 -03:00
2012-04-30 04:17:14 -03:00
// Configuration
#include "config.h"
// Local modules
#include "defines.h"
#include "Parameters.h"
#include "GCS.h"
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
2012-12-18 07:44:12 -04:00
AP_HAL::BetterStream* cliSerial;
2012-04-30 04:17:14 -03:00
2012-12-18 07:44:12 -04:00
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
2012-11-21 02:25:11 -04:00
2012-08-06 22:24:20 -03:00
// this sets up the parameter table, and sets the default values. This
// must be the first AP_Param variable declared to ensure its
// constructor runs before the constructors of the other AP_Param
// variables
AP_Param param_loader(var_info, WP_START_BYTE);
2012-11-29 07:57:10 -04:00
////////////////////////////////////////////////////////////////////////////////
// the rate we run the main loop at
////////////////////////////////////////////////////////////////////////////////
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_50HZ;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
2013-06-03 21:37:05 -03:00
// main loop scheduler
static AP_Scheduler scheduler;
2013-06-03 06:33:59 -03:00
// mapping between input channels
static RCMapper rcmap;
// primary control channels
static RC_Channel *channel_steer;
static RC_Channel *channel_throttle;
2013-06-30 21:10:38 -03:00
static RC_Channel *channel_learn;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
2013-03-21 21:54:04 -03:00
void gcs_send_text_fmt(const prog_char_t *fmt, ...);
2013-04-20 02:18:42 -03:00
static void print_mode(AP_HAL::BetterStream *port, uint8_t mode);
2012-04-30 04:17:14 -03:00
2012-12-18 07:44:12 -04:00
////////////////////////////////////////////////////////////////////////////////
// DataFlash
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
2013-04-19 04:53:07 -03:00
static DataFlash_APM1 DataFlash;
2012-12-18 07:44:12 -04:00
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM2
2013-04-19 04:53:07 -03:00
static DataFlash_APM2 DataFlash;
2012-12-18 07:44:12 -04:00
#elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
2013-04-19 04:53:07 -03:00
//static DataFlash_File DataFlash("/tmp/APMlogs");
static DataFlash_SITL DataFlash;
2013-01-02 07:14:35 -04:00
#elif CONFIG_HAL_BOARD == HAL_BOARD_PX4
2013-04-17 08:35:40 -03:00
static DataFlash_File DataFlash("/fs/microsd/APM/logs");
2013-10-08 05:19:31 -03:00
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX
static DataFlash_File DataFlash("logs");
2013-04-17 08:35:40 -03:00
#else
2013-01-02 07:14:35 -04:00
DataFlash_Empty DataFlash;
2012-12-18 07:44:12 -04:00
#endif
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
2013-02-21 16:48:52 -04:00
// - Normal driving mode. Real sensors are used.
2012-04-30 04:17:14 -03:00
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
2013-02-07 18:21:22 -04:00
static AP_Int8 *modes = &g.mode1;
2012-04-30 04:17:14 -03:00
2013-06-03 22:57:59 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
2013-03-16 05:45:46 -03:00
static AP_ADC_ADS7844 adc;
2012-04-30 04:17:14 -03:00
#endif
2013-03-16 05:45:46 -03:00
#if CONFIG_COMPASS == AP_COMPASS_PX4
static AP_Compass_PX4 compass;
#elif CONFIG_COMPASS == AP_COMPASS_HMC5843
static AP_Compass_HMC5843 compass;
#elif CONFIG_COMPASS == AP_COMPASS_HIL
2012-12-18 07:44:12 -04:00
static AP_Compass_HIL compass;
2012-04-30 04:17:14 -03:00
#else
2013-03-16 05:45:46 -03:00
#error Unrecognized CONFIG_COMPASS setting
2012-04-30 04:17:14 -03:00
#endif
2013-03-16 05:45:46 -03:00
// GPS selection
2012-04-30 04:17:14 -03:00
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
2012-12-18 07:44:12 -04:00
AP_GPS_Auto g_gps_driver(&g_gps);
2012-04-30 04:17:14 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
2013-03-16 05:45:46 -03:00
AP_GPS_NMEA g_gps_driver;
2012-04-30 04:17:14 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
2013-03-16 05:45:46 -03:00
AP_GPS_SIRF g_gps_driver;
2012-04-30 04:17:14 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
2013-03-16 05:45:46 -03:00
AP_GPS_UBLOX g_gps_driver;
2012-04-30 04:17:14 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
2013-03-16 05:45:46 -03:00
AP_GPS_MTK g_gps_driver;
2012-04-30 04:17:14 -03:00
2012-12-21 15:19:32 -04:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19
2013-03-16 05:45:46 -03:00
AP_GPS_MTK19 g_gps_driver;
2012-04-30 04:17:14 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
2013-03-16 05:45:46 -03:00
AP_GPS_None g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_HIL
AP_GPS_HIL g_gps_driver;
2012-04-30 04:17:14 -03:00
#else
2013-03-16 05:45:46 -03:00
#error Unrecognised GPS_PROTOCOL setting.
2012-04-30 04:17:14 -03:00
#endif // GPS PROTOCOL
2013-03-16 05:45:46 -03:00
#if CONFIG_INS_TYPE == CONFIG_INS_MPU6000
AP_InertialSensor_MPU6000 ins;
#elif CONFIG_INS_TYPE == CONFIG_INS_PX4
AP_InertialSensor_PX4 ins;
2013-09-28 06:34:47 -03:00
#elif CONFIG_INS_TYPE == CONFIG_INS_HIL
AP_InertialSensor_HIL ins;
2013-09-23 04:07:37 -03:00
#elif CONFIG_INS_TYPE == CONFIG_INS_FLYMAPLE
AP_InertialSensor_Flymaple ins;
2013-10-07 21:25:52 -03:00
#elif CONFIG_INS_TYPE == CONFIG_INS_L3G4200D
AP_InertialSensor_L3G4200D ins;
2013-03-16 05:45:46 -03:00
#elif CONFIG_INS_TYPE == CONFIG_INS_OILPAN
AP_InertialSensor_Oilpan ins( &adc );
2012-12-18 07:44:12 -04:00
#else
2013-03-16 05:45:46 -03:00
#error Unrecognised CONFIG_INS_TYPE setting.
2012-11-07 03:28:20 -04:00
#endif // CONFIG_INS_TYPE
2012-04-30 04:17:14 -03:00
2013-11-03 23:37:54 -04:00
AP_AHRS_DCM ahrs(ins, g_gps);
2013-03-16 05:45:46 -03:00
2013-06-16 20:50:53 -03:00
static AP_L1_Control L1_controller(ahrs);
// selected navigation controller
static AP_Navigation *nav_controller = &L1_controller;
2013-09-08 21:18:31 -03:00
// steering controller
static AP_SteerController steerController(ahrs);
2013-03-16 05:45:46 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
SITL sitl;
#endif
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
//
2013-11-23 06:57:26 -04:00
static const uint8_t num_gcs = MAVLINK_COMM_NUM_BUFFERS;
static GCS_MAVLINK gcs[MAVLINK_COMM_NUM_BUFFERS];
2012-04-30 04:17:14 -03:00
2012-12-18 07:44:12 -04:00
// a pin for reading the receiver RSSI voltage. The scaling by 0.25
// is to take the 0 to 1024 range down to an 8 bit range for MAVLink
AP_HAL::AnalogSource *rssi_analog_source;
AP_HAL::AnalogSource *vcc_pin;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
2012-05-14 12:47:08 -03:00
// SONAR selection
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
//
2013-02-28 21:00:48 -04:00
static AP_RangeFinder_analog sonar;
2013-03-21 18:49:51 -03:00
static AP_RangeFinder_analog sonar2;
2012-05-14 12:47:08 -03:00
2012-11-27 06:47:30 -04:00
// relay support
2012-04-30 04:17:14 -03:00
AP_Relay relay;
2013-07-14 20:57:00 -03:00
// Camera
#if CAMERA == ENABLED
static AP_Camera camera(&relay);
#endif
// The rover's current location
static struct Location current_loc;
2012-04-30 04:17:14 -03:00
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
2013-07-14 20:57:00 -03:00
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
2013-10-12 03:58:43 -03:00
AP_Mount camera_mount(¤t_loc, g_gps, ahrs, 0);
2012-04-30 04:17:14 -03:00
#endif
2013-07-14 20:57:00 -03:00
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
2013-09-19 03:24:59 -03:00
// if USB is connected
2012-04-30 04:17:14 -03:00
static bool usb_connected;
/* Radio values
Channel assignments
2012-11-28 07:44:03 -04:00
1 Steering
2 ---
2012-04-30 04:17:14 -03:00
3 Throttle
2012-11-28 07:44:03 -04:00
4 ---
2012-04-30 04:17:14 -03:00
5 Aux5
6 Aux6
2013-07-14 20:57:00 -03:00
7 Aux7/learn
2012-04-30 04:17:14 -03:00
8 Aux8/Mode
Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
See libraries/RC_Channel/RC_Channel_aux.h for more information
*/
////////////////////////////////////////////////////////////////////////////////
// Radio
////////////////////////////////////////////////////////////////////////////////
// This is the state of the flight control system
// There are multiple states defined such as MANUAL, FBW-A, AUTO
2013-02-07 18:21:22 -04:00
enum mode control_mode = INITIALISING;
2012-04-30 04:17:14 -03:00
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
2012-12-18 07:44:12 -04:00
uint8_t oldSwitchPosition;
2012-04-30 04:17:14 -03:00
// These are values received from the GCS if the user is using GCS joystick
// control and are substituted for the values coming from the RC radio
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
// A flag if GCS joystick control is in use
static bool rc_override_active = false;
////////////////////////////////////////////////////////////////////////////////
// Failsafe
////////////////////////////////////////////////////////////////////////////////
// A tracking variable for type of failsafe active
2013-03-28 20:25:53 -03:00
// Used for failsafe based on loss of RC signal or GCS signal. See
// FAILSAFE_EVENT_*
static struct {
uint8_t bits;
uint32_t rc_override_timer;
uint32_t start_time;
uint8_t triggered;
} failsafe;
2012-04-30 04:17:14 -03:00
2013-08-29 00:14:16 -03:00
// notify object
static AP_Notify notify;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// GPS variables
////////////////////////////////////////////////////////////////////////////////
// This is used to scale GPS values for EEPROM storage
// 10^7 times Decimal GPS means 1 == 1cm
// This approximation makes calculations integer and it's easy to read
static const float t7 = 10000000.0;
// We use atan2 and other trig techniques to calaculate angles
2012-11-18 01:07:50 -04:00
2012-04-30 04:17:14 -03:00
// A counter used to count down valid gps fixes to allow the gps estimate to settle
// before recording our home position (and executing a ground start if we booted with an air start)
2012-12-18 07:44:12 -04:00
static uint8_t ground_start_count = 5;
2012-04-30 04:17:14 -03:00
// Used to compute a speed estimate from the first valid gps fixes to decide if we are
// on the ground or in the air. Used to decide if a ground start is appropriate if we
// booted with an air start.
2012-11-27 18:20:20 -04:00
static int16_t ground_start_avg;
2012-04-30 04:17:14 -03:00
static int32_t gps_base_alt;
////////////////////////////////////////////////////////////////////////////////
// Location & Navigation
////////////////////////////////////////////////////////////////////////////////
// Constants
const float radius_of_earth = 6378100; // meters
2012-11-28 07:44:03 -04:00
// true if we have a position estimate from AHRS
static bool have_position;
2012-05-14 12:47:08 -03:00
static bool rtl_complete = false;
2012-04-30 04:17:14 -03:00
// There may be two active commands in Auto mode.
// This indicates the active navigation command by index number
2012-12-18 07:44:12 -04:00
static uint8_t nav_command_index;
2012-04-30 04:17:14 -03:00
// This indicates the active non-navigation command by index number
2012-12-18 07:44:12 -04:00
static uint8_t non_nav_command_index;
2012-04-30 04:17:14 -03:00
// This is the command type (eg navigate to waypoint) of the active navigation command
2012-12-18 07:44:12 -04:00
static uint8_t nav_command_ID = NO_COMMAND;
static uint8_t non_nav_command_ID = NO_COMMAND;
2012-04-30 04:17:14 -03:00
2013-02-07 18:21:22 -04:00
// ground speed error in m/s
2012-04-30 04:17:14 -03:00
static float groundspeed_error;
// 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
2012-11-27 18:20:20 -04:00
static int16_t throttle_nudge = 0;
2012-12-18 15:30:42 -04:00
// receiver RSSI
static uint8_t receiver_rssi;
// the time when the last HEARTBEAT message arrived from a GCS
static uint32_t last_heartbeat_ms;
2013-03-21 17:41:36 -03:00
// obstacle detection information
static struct {
// have we detected an obstacle?
2013-03-28 20:49:08 -03:00
uint8_t detected_count;
2013-03-21 18:49:51 -03:00
float turn_angle;
2013-04-18 21:23:57 -03:00
uint16_t sonar1_distance_cm;
uint16_t sonar2_distance_cm;
2013-03-21 18:49:51 -03:00
2013-03-21 17:41:36 -03:00
// time when we last detected an obstacle, in milliseconds
uint32_t detected_time_ms;
} obstacle;
2013-02-28 22:06:04 -04:00
2013-03-21 19:38:25 -03:00
// this is set to true when auto has been triggered to start
static bool auto_triggered;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// Ground speed
////////////////////////////////////////////////////////////////////////////////
2013-02-07 18:21:22 -04:00
// The amount current ground speed is below min ground speed. meters per second
static float ground_speed = 0;
2012-11-27 18:20:20 -04:00
static int16_t throttle_last = 0, throttle = 500;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// CH7 control
////////////////////////////////////////////////////////////////////////////////
// Used to track the CH7 toggle state.
// When CH7 goes LOW PWM from HIGH PWM, this value will have been set true
// This allows advanced functionality to know when to execute
2013-02-07 18:21:22 -04:00
static bool ch7_flag;
2012-04-30 04:17:14 -03:00
// This register tracks the current Mission Command index when writing
// a mission using CH7 in flight
static int8_t CH7_wp_index;
////////////////////////////////////////////////////////////////////////////////
// Battery Sensors
////////////////////////////////////////////////////////////////////////////////
2013-10-02 03:07:28 -03:00
static AP_BattMonitor battery;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// Navigation control variables
////////////////////////////////////////////////////////////////////////////////
2013-06-16 20:50:53 -03:00
// The instantaneous desired lateral acceleration in m/s/s
static float lateral_acceleration;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// Waypoint distances
////////////////////////////////////////////////////////////////////////////////
2013-03-01 07:32:57 -04:00
// Distance between rover and next waypoint. Meters
2013-02-07 18:21:22 -04:00
static float wp_distance;
2012-04-30 04:17:14 -03:00
// Distance between previous and next waypoint. Meters
2012-11-27 18:20:20 -04:00
static int32_t wp_totalDistance;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// repeating event control
////////////////////////////////////////////////////////////////////////////////
// Flag indicating current event type
2012-12-18 07:44:12 -04:00
static uint8_t event_id;
2012-04-30 04:17:14 -03:00
// when the event was started in ms
2012-11-27 18:20:20 -04:00
static int32_t event_timer;
2012-04-30 04:17:14 -03:00
// how long to delay the next firing of event in millis
static uint16_t event_delay;
// how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles
2012-11-27 18:20:20 -04:00
static int16_t event_repeat = 0;
2012-04-30 04:17:14 -03:00
// per command value, such as PWM for servos
2012-11-27 18:20:20 -04:00
static int16_t event_value;
2012-04-30 04:17:14 -03:00
// the value used to cycle events (alternate value to event_value)
2012-11-27 18:20:20 -04:00
static int16_t event_undo_value;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// Conditional command
////////////////////////////////////////////////////////////////////////////////
// A value used in condition commands (eg delay, change alt, etc.)
// For example in a change altitude command, it is the altitude to change to.
2012-11-27 18:20:20 -04:00
static int32_t condition_value;
2012-04-30 04:17:14 -03:00
// A starting value used to check the status of a conditional command.
// For example in a delay command the condition_start records that start time for the delay
2012-11-27 18:20:20 -04:00
static int32_t condition_start;
2012-04-30 04:17:14 -03:00
// A value used in condition commands. For example the rate at which to change altitude.
2012-11-27 18:20:20 -04:00
static int16_t condition_rate;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// 3D Location vectors
// Location structure defined in AP_Common
////////////////////////////////////////////////////////////////////////////////
// The home location used for RTL. The location is set when we first get stable GPS lock
static struct Location home;
// Flag for if we have g_gps lock and have set the home location
static bool home_is_set;
// The location of the previous waypoint. Used for track following and altitude ramp calculations
static struct Location prev_WP;
2012-11-27 18:20:20 -04:00
// The location of the current/active waypoint. Used for track following
2012-04-30 04:17:14 -03:00
static struct Location next_WP;
// The location of the active waypoint in Guided mode.
static struct Location guided_WP;
2012-05-09 02:12:26 -03:00
2012-04-30 04:17:14 -03:00
// The location structure information from the Nav command being processed
static struct Location next_nav_command;
// The location structure information from the Non-Nav command being processed
static struct Location next_nonnav_command;
////////////////////////////////////////////////////////////////////////////////
// IMU variables
////////////////////////////////////////////////////////////////////////////////
// The main loop execution time. Seconds
//This is the time between calls to the DCM algorithm and is the Integration time for the gyros.
static float G_Dt = 0.02;
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////////////////////////////////////////////
// Timer used to accrue data and trigger recording of the performanc monitoring log message
2012-11-27 18:20:20 -04:00
static int32_t perf_mon_timer;
2012-04-30 04:17:14 -03:00
// The maximum main loop execution time recorded in the current performance monitoring interval
2013-10-28 03:21:35 -03:00
static uint32_t G_Dt_max;
2012-04-30 04:17:14 -03:00
// The number of gps fixes recorded in the current performance monitoring interval
2013-01-26 22:04:41 -04:00
static uint8_t gps_fix_count = 0;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// System Timers
////////////////////////////////////////////////////////////////////////////////
2013-10-28 03:21:35 -03:00
// Time in microseconds of start of main control loop.
static uint32_t fast_loopTimer_us;
2012-04-30 04:17:14 -03:00
// Number of milliseconds used in last main loop cycle
2013-10-28 03:21:35 -03:00
static uint32_t delta_us_fast_loop;
2012-04-30 04:17:14 -03:00
// Counter of main loop executions. Used for performance monitoring and failsafe processing
static uint16_t mainLoop_count;
2013-11-17 19:58:22 -04:00
// set if we are driving backwards
static bool in_reverse;
2012-04-30 04:17:14 -03:00
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
2013-06-03 21:37:05 -03:00
/*
2013-10-27 20:33:52 -03:00
scheduler table - all regular tasks should be listed here, along
with how often they should be called (in 20ms units) and the maximum
time they are expected to take (in microseconds)
2013-06-03 21:37:05 -03:00
*/
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = {
2013-10-27 20:33:52 -03:00
{ read_radio, 1, 1000 },
{ ahrs_update, 1, 6400 },
{ read_sonars, 1, 2000 },
{ update_current_mode, 1, 1000 },
{ set_servos, 1, 1000 },
2013-06-03 22:57:59 -03:00
{ update_GPS, 5, 2500 },
{ navigate, 5, 1600 },
2013-06-03 21:54:42 -03:00
{ update_compass, 5, 2000 },
2013-06-03 21:37:05 -03:00
{ update_commands, 5, 1000 },
{ update_logging, 5, 1000 },
2013-10-27 20:33:52 -03:00
{ gcs_retry_deferred, 1, 1000 },
{ gcs_update, 1, 1700 },
{ gcs_data_stream_send, 1, 3000 },
{ read_control_switch, 15, 1000 },
{ read_trim_switch, 5, 1000 },
2013-06-03 21:37:05 -03:00
{ read_battery, 5, 1000 },
{ read_receiver_rssi, 5, 1000 },
{ update_events, 15, 1000 },
{ check_usb_mux, 15, 1000 },
2013-10-27 20:33:52 -03:00
{ mount_update, 1, 600 },
{ gcs_failsafe_check, 5, 600 },
2013-06-03 21:54:42 -03:00
{ compass_accumulate, 1, 900 },
2013-10-27 20:33:52 -03:00
{ update_notify, 1, 300 },
2013-06-03 21:54:42 -03:00
{ one_second_loop, 50, 3000 }
2013-06-03 21:37:05 -03:00
};
/*
setup is called when the sketch starts
*/
2012-04-30 04:17:14 -03:00
void setup() {
memcheck_init();
2012-12-18 07:44:12 -04:00
cliSerial = hal.console;
2012-12-18 16:17:17 -04:00
// load the default values of variables listed in var_info[]
AP_Param::setup_sketch_defaults();
2013-09-17 21:55:54 -03:00
// rover does not use arming nor pre-arm checks
2013-08-24 06:05:18 -03:00
AP_Notify::flags.armed = true;
AP_Notify::flags.pre_arm_check = true;
2013-09-17 21:55:54 -03:00
AP_Notify::flags.failsafe_battery = false;
notify.init();
2013-08-24 06:05:18 -03:00
2013-10-02 03:07:28 -03:00
battery.init();
2013-05-13 02:14:23 -03:00
rssi_analog_source = hal.analogin->channel(ANALOG_INPUT_NONE);
2012-12-18 07:44:12 -04:00
vcc_pin = hal.analogin->channel(ANALOG_INPUT_BOARD_VCC);
2012-04-30 04:17:14 -03:00
init_ardupilot();
2013-06-03 21:37:05 -03:00
// initialise the main loop scheduler
scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0]));
2012-04-30 04:17:14 -03:00
}
2013-06-03 21:37:05 -03:00
/*
loop() is called rapidly while the sketch is running
*/
2012-04-30 04:17:14 -03:00
void loop()
{
2013-10-08 03:30:55 -03:00
// wait for an INS sample
if (!ins.wait_for_sample(1000)) {
return;
}
2013-10-28 03:21:35 -03:00
uint32_t timer = hal.scheduler->micros();
2013-06-03 21:37:05 -03:00
2013-10-28 03:21:35 -03:00
delta_us_fast_loop = timer - fast_loopTimer_us;
G_Dt = delta_us_fast_loop * 1.0e-6f;
fast_loopTimer_us = timer;
2012-04-30 04:17:14 -03:00
2013-10-28 03:21:35 -03:00
if (delta_us_fast_loop > G_Dt_max)
G_Dt_max = delta_us_fast_loop;
2012-04-30 04:17:14 -03:00
2013-10-27 20:33:52 -03:00
mainLoop_count++;
2012-04-30 04:17:14 -03:00
2013-10-08 03:30:55 -03:00
// tell the scheduler one tick has passed
scheduler.tick();
2013-07-23 04:07:35 -03:00
2013-10-27 20:33:52 -03:00
scheduler.run(19500U);
2012-04-30 04:17:14 -03:00
}
2013-10-27 20:33:52 -03:00
// update AHRS system
static void ahrs_update()
2012-04-30 04:17:14 -03:00
{
2013-10-27 20:33:52 -03:00
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before AHRS update
gcs_update();
#endif
2013-02-28 16:40:47 -04:00
2013-11-17 19:58:22 -04:00
// when in reverse we need to tell AHRS not to assume we are a
// 'fly forward' vehicle, otherwise it will see a large
// discrepancy between the mag and the GPS heading and will try to
// correct for it, leading to a large yaw error
ahrs.set_fly_forward(!in_reverse);
2013-10-27 20:33:52 -03:00
ahrs.update();
2012-04-30 04:17:14 -03:00
2013-06-03 22:57:59 -03:00
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
Log_Write_Attitude();
2012-04-30 04:17:14 -03:00
2013-06-03 22:57:59 -03:00
if (g.log_bitmask & MASK_LOG_IMU)
2013-11-03 23:37:54 -04:00
DataFlash.Log_Write_IMU(ins);
2012-04-30 04:17:14 -03:00
}
2013-06-03 21:37:05 -03:00
/*
update camera mount - 50Hz
*/
static void mount_update(void)
2012-04-30 04:17:14 -03:00
{
#if MOUNT == ENABLED
camera_mount.update_mount_position();
#endif
2013-07-14 20:57:00 -03:00
#if CAMERA == ENABLED
camera.trigger_pic_cleanup();
#endif
2012-04-30 04:17:14 -03:00
}
2013-06-03 21:37:05 -03:00
/*
check for GCS failsafe - 10Hz
*/
2013-09-30 07:37:12 -03:00
static void gcs_failsafe_check(void)
2012-04-30 04:17:14 -03:00
{
2013-09-15 20:17:00 -03:00
if (g.fs_gcs_enabled) {
2013-09-15 19:23:21 -03:00
failsafe_trigger(FAILSAFE_EVENT_GCS, last_heartbeat_ms != 0 && (millis() - last_heartbeat_ms) > 2000);
}
2013-06-03 21:37:05 -03:00
}
2012-04-30 04:17:14 -03:00
2013-06-03 21:54:42 -03:00
/*
if the compass is enabled then try to accumulate a reading
*/
static void compass_accumulate(void)
{
if (g.compass_enabled) {
compass.accumulate();
}
}
2013-06-03 21:37:05 -03:00
/*
check for new compass data - 10Hz
*/
static void update_compass(void)
{
if (g.compass_enabled && compass.read()) {
ahrs.set_compass(&compass);
// update offsets
compass.null_offsets();
if (g.log_bitmask & MASK_LOG_COMPASS) {
Log_Write_Compass();
}
} else {
ahrs.set_compass(NULL);
}
}
2012-04-30 04:17:14 -03:00
2013-06-03 21:37:05 -03:00
/*
log some key data - 10Hz
*/
static void update_logging(void)
{
if ((g.log_bitmask & MASK_LOG_ATTITUDE_MED) && !(g.log_bitmask & MASK_LOG_ATTITUDE_FAST))
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_CTUN)
Log_Write_Control_Tuning();
if (g.log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
2012-04-30 04:17:14 -03:00
}
2013-07-14 20:57:00 -03:00
/*
update aux servo mappings
*/
static void update_aux(void)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_9, &g.rc_10, &g.rc_11, &g.rc_12);
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM2
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11);
#else
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
#endif
enable_aux_servos();
#if MOUNT == ENABLED
camera_mount.update_mount_type();
#endif
}
2013-06-03 21:37:05 -03:00
/*
once a second events
*/
static void one_second_loop(void)
2012-04-30 04:17:14 -03:00
{
2013-01-26 04:41:38 -04:00
if (g.log_bitmask & MASK_LOG_CURRENT)
2012-04-30 04:17:14 -03:00
Log_Write_Current();
// send a heartbeat
gcs_send_message(MSG_HEARTBEAT);
2013-06-03 03:53:10 -03:00
// allow orientation change at runtime to aid config
ahrs.set_orientation();
2013-06-03 06:33:59 -03:00
set_control_channels();
2013-06-03 21:37:05 -03:00
// cope with changes to aux functions
2013-07-14 20:57:00 -03:00
update_aux();
2013-06-03 21:37:05 -03:00
#if MOUNT == ENABLED
camera_mount.update_mount_type();
#endif
// cope with changes to mavlink system ID
mavlink_system.sysid = g.sysid_this_mav;
static uint8_t counter;
counter++;
// write perf data every 20s
2013-10-28 03:21:35 -03:00
if (counter % 10 == 0) {
if (scheduler.debug() != 0) {
hal.console->printf_P(PSTR("G_Dt_max=%lu\n"), (unsigned long)G_Dt_max);
}
2013-06-03 21:37:05 -03:00
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
2013-11-01 20:40:29 -03:00
G_Dt_max = 0;
2013-06-03 21:37:05 -03:00
resetPerfData();
}
// save compass offsets once a minute
if (counter >= 60) {
if (g.compass_enabled) {
compass.save_offsets();
}
counter = 0;
}
2012-04-30 04:17:14 -03:00
}
static void update_GPS(void)
2012-11-17 02:45:20 -04:00
{
2013-04-28 01:57:19 -03:00
static uint32_t last_gps_reading;
2012-04-30 04:17:14 -03:00
g_gps->update();
2013-04-28 01:57:19 -03:00
if (g_gps->last_message_time_ms() != last_gps_reading) {
last_gps_reading = g_gps->last_message_time_ms();
if (g.log_bitmask & MASK_LOG_GPS) {
DataFlash.Log_Write_GPS(g_gps, current_loc.alt);
}
}
2013-08-04 21:18:29 -03:00
have_position = ahrs.get_projected_position(current_loc);
2012-11-28 07:44:03 -04:00
2013-03-25 07:09:04 -03:00
if (g_gps->new_data && g_gps->status() >= GPS::GPS_OK_FIX_3D) {
2012-04-30 04:17:14 -03:00
gps_fix_count++;
if(ground_start_count > 1){
ground_start_count--;
2013-07-10 01:02:40 -03:00
ground_start_avg += g_gps->ground_speed_cm;
2012-04-30 04:17:14 -03:00
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
ground_start_count = 5;
} else {
2012-11-17 02:45:20 -04:00
init_home();
2013-10-23 09:28:07 -03:00
// set system clock for log timestamps
hal.util->set_system_clock(g_gps->time_epoch_usec());
2012-04-30 04:17:14 -03:00
if (g.compass_enabled) {
// Set compass declination automatically
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
}
ground_start_count = 0;
}
}
2013-07-10 01:02:40 -03:00
ground_speed = g_gps->ground_speed_cm * 0.01;
2013-07-14 20:57:00 -03:00
#if CAMERA == ENABLED
if (camera.update_location(current_loc) == true) {
do_take_picture();
}
#endif
2012-04-30 04:17:14 -03:00
}
}
2013-02-07 18:21:22 -04:00
static void update_current_mode(void)
2012-11-17 02:45:20 -04:00
{
2013-02-07 18:21:22 -04:00
switch (control_mode){
2012-11-27 18:20:20 -04:00
case AUTO:
case RTL:
2013-02-07 18:21:22 -04:00
case GUIDED:
2013-06-16 20:50:53 -03:00
calc_lateral_acceleration();
2013-02-07 18:21:22 -04:00
calc_nav_steer();
2013-03-01 07:32:57 -04:00
calc_throttle(g.speed_cruise);
break;
2013-06-16 20:50:53 -03:00
case STEERING: {
2013-03-01 07:32:57 -04:00
/*
2013-09-29 20:04:34 -03:00
in steering mode we control lateral acceleration
directly. We first calculate the maximum lateral
acceleration at full steering lock for this speed. That is
V^2/R where R is the radius of turn. We get the radius of
turn from half the STEER2SRV_P.
2013-03-01 07:32:57 -04:00
*/
2013-09-29 20:04:34 -03:00
float max_g_force = ground_speed * ground_speed / steerController.get_turn_radius();
// constrain to user set TURN_MAX_G
max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS);
lateral_acceleration = max_g_force * (channel_steer->pwm_to_angle()/4500.0f);
2013-03-01 07:32:57 -04:00
calc_nav_steer();
2013-10-04 18:41:32 -03:00
// and throttle gives speed in proportion to cruise speed, up
// to 50% throttle, then uses nudging above that.
float target_speed = channel_throttle->pwm_to_angle() * 0.01 * 2 * g.speed_cruise;
2013-11-24 20:21:15 -04:00
set_reverse(target_speed < 0);
2013-11-17 19:58:22 -04:00
if (in_reverse) {
target_speed = constrain_float(target_speed, -g.speed_cruise, 0);
} else {
target_speed = constrain_float(target_speed, 0, g.speed_cruise);
}
2013-10-04 18:41:32 -03:00
calc_throttle(target_speed);
2012-11-27 18:20:20 -04:00
break;
2013-06-16 20:50:53 -03:00
}
2012-11-27 18:20:20 -04:00
case LEARNING:
case MANUAL:
2013-03-01 07:32:57 -04:00
/*
in both MANUAL and LEARNING we pass through the
controls. Setting servo_out here actually doesn't matter, as
we set the exact value in set_servos(), but it helps for
logging
*/
2013-06-03 06:33:59 -03:00
channel_throttle->servo_out = channel_throttle->control_in;
channel_steer->servo_out = channel_steer->pwm_to_angle();
2013-11-17 19:58:22 -04:00
// mark us as in_reverse when using a negative throttle to
// stop AHRS getting off
2013-11-24 20:21:15 -04:00
set_reverse(channel_throttle->servo_out < 0);
2013-02-07 18:21:22 -04:00
break;
2013-03-28 18:53:20 -03:00
case HOLD:
// hold position - stop motors and center steering
2013-06-03 06:33:59 -03:00
channel_throttle->servo_out = 0;
channel_steer->servo_out = 0;
2013-03-28 18:53:20 -03:00
break;
2013-02-07 18:21:22 -04:00
case INITIALISING:
2012-11-27 18:20:20 -04:00
break;
2012-04-30 04:17:14 -03:00
}
}
static void update_navigation()
{
2012-11-29 03:09:05 -04:00
switch (control_mode) {
2013-02-07 18:21:22 -04:00
case MANUAL:
2013-03-28 18:53:20 -03:00
case HOLD:
2013-02-07 18:21:22 -04:00
case LEARNING:
2013-03-01 07:32:57 -04:00
case STEERING:
2013-02-07 18:21:22 -04:00
case INITIALISING:
break;
2012-11-29 03:09:05 -04:00
case AUTO:
2012-04-30 04:17:14 -03:00
verify_commands();
2012-11-29 03:09:05 -04:00
break;
2012-04-30 04:17:14 -03:00
2012-11-29 03:09:05 -04:00
case RTL:
case GUIDED:
// no loitering around the wp with the rover, goes direct to the wp position
2013-06-16 20:50:53 -03:00
calc_lateral_acceleration();
2013-02-07 18:21:22 -04:00
calc_nav_steer();
if (verify_RTL()) {
2013-06-03 06:33:59 -03:00
channel_throttle->servo_out = g.throttle_min.get();
2013-03-28 18:53:20 -03:00
set_mode(HOLD);
2012-11-29 03:09:05 -04:00
}
break;
2012-04-30 04:17:14 -03:00
}
}
2012-12-18 07:44:12 -04:00
AP_HAL_MAIN();