ardupilot/ArduCopter/ArduCopter.pde

2055 lines
62 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2012-01-06 14:22:53 -04:00
#define THISFIRMWARE "ArduCopter V2.1.1r7 alpha"
/*
ArduCopter Version 2.0 Beta
Authors: Jason Short
Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier
This firmware is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Special Thanks for Contributors:
Hein Hollander :Octo Support
Dani Saez :V Ocoto Support
Max Levine :Tri Support, Graphics
Jose Julio :Stabilization Control laws
Randy MacKay :Heli Support
Jani Hiriven :Testing feedback
Andrew Tridgell :Mavlink Support
James Goppert :Mavlink Support
Doug Weibel :Libraries
Mike Smith :Libraries, Coding support
HappyKillmore :Mavlink GCS
Michael Oborne :Mavlink GCS
Jack Dunkle :Alpha testing
Christof Schmid :Alpha testing
2011-09-18 21:12:59 -03:00
Oliver :Piezo support
Guntars :Arming safety suggestion
And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
Requires modified "mrelax" version of Arduino, which can be found here:
http://code.google.com/p/ardupilot-mega/downloads/list
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <Arduino_Mega_ISR_Registry.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
2011-12-28 05:34:59 -04:00
#include <I2C.h> // Arduino I2C lib
#include <SPI.h> // Arduino SPI lib
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_AnalogSource.h>
#include <AP_Baro.h>
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include <AP_IMU.h> // ArduPilot Mega IMU Library
#include <AP_PeriodicProcess.h> // Parent header of Timer
// (only included for makefile libpath to work)
#include <AP_TimerProcess.h> // TimerProcess is the scheduler for MPU6000 reads.
#include <AP_DCM.h> // ArduPilot Mega DCM Library
#include <APM_PI.h> // PI library
#include <RC_Channel.h> // RC Channel Library
#include <AP_RangeFinder.h> // Range finder library
2011-09-17 00:38:18 -03:00
#include <AP_OpticalFlow.h> // Optical Flow library
#include <ModeFilter.h>
2011-10-02 09:16:31 -03:00
#include <AP_Relay.h> // APM relay
#include <GCS_MAVLink.h> // MAVLink GCS definitions
#include <memcheck.h>
// Configuration
#include "defines.h"
#include "config.h"
// Local modules
#include "Parameters.h"
#include "GCS.h"
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
FastSerialPort3(Serial3); // Telemetry port
Arduino_Mega_ISR_Registry isr_registry;
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
////////////////////////////////////////////////////////////////////////////////
// RC Hardware
////////////////////////////////////////////////////////////////////////////////
2011-11-25 19:11:25 -04:00
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
APM_RC_APM2 APM_RC;
#else
APM_RC_APM1 APM_RC;
#endif
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
2011-11-25 19:11:25 -04:00
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
DataFlash_APM2 DataFlash;
#else
DataFlash_APM1 DataFlash;
#endif
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if HIL_MODE == HIL_MODE_DISABLED
// real sensors
#if CONFIG_ADC == ENABLED
AP_ADC_ADS7844 adc;
#endif
#ifdef DESKTOP_BUILD
AP_Baro_BMP085_HIL barometer;
AP_Compass_HIL compass;
#else
#if CONFIG_BARO == AP_BARO_BMP085
# if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_Baro_BMP085 barometer(true);
# else
AP_Baro_BMP085 barometer(false);
# endif
#elif CONFIG_BARO == AP_BARO_MS5611
AP_Baro_MS5611 barometer;
#endif
AP_Compass_HMC5843 compass(Parameters::k_param_compass);
#endif
#ifdef OPTFLOW_ENABLED
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
#else
AP_OpticalFlow optflow;
#endif
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
AP_GPS_MTK16 g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN );
#else
AP_InertialSensor_Oilpan ins(&adc);
#endif
AP_IMU_INS imu(&ins, Parameters::k_param_IMU_calibration);
AP_DCM dcm(&imu, g_gps);
AP_TimerProcess timer_scheduler;
#elif HIL_MODE == HIL_MODE_SENSORS
// sensor emulators
AP_ADC_HIL adc;
AP_Baro_BMP085_HIL barometer;
AP_Compass_HIL compass;
AP_GPS_HIL g_gps_driver(NULL);
AP_IMU_Shim imu;
AP_DCM dcm(&imu, g_gps);
AP_PeriodicProcessStub timer_scheduler;
AP_InertialSensor_Stub ins;
static int32_t gps_base_alt;
#elif HIL_MODE == HIL_MODE_ATTITUDE
AP_ADC_HIL adc;
AP_DCM_HIL dcm;
AP_GPS_HIL g_gps_driver(NULL);
AP_Compass_HIL compass; // never used
AP_IMU_Shim imu; // never used
2011-11-13 02:55:56 -04:00
AP_InertialSensor_Stub ins;
AP_PeriodicProcessStub timer_scheduler;
#ifdef OPTFLOW_ENABLED
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
#endif
static int32_t gps_base_alt;
#else
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
GCS_MAVLINK gcs0(Parameters::k_param_streamrates_port0);
GCS_MAVLINK gcs3(Parameters::k_param_streamrates_port3);
////////////////////////////////////////////////////////////////////////////////
// SONAR selection
////////////////////////////////////////////////////////////////////////////////
//
ModeFilter sonar_mode_filter;
#if CONFIG_SONAR == ENABLED
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN);
#endif
AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter);
#endif
2011-10-15 19:29:33 -03:00
// agmatthews USERHOOKS
////////////////////////////////////////////////////////////////////////////////
// User variables
////////////////////////////////////////////////////////////////////////////////
#ifdef USERHOOK_VARIABLES
#include USERHOOK_VARIABLES
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
static const char *comma = ",";
static const char* flight_mode_strings[] = {
"STABILIZE",
"ACRO",
"ALT_HOLD",
"AUTO",
"GUIDED",
"LOITER",
"RTL",
"CIRCLE",
"POSITION",
"LAND"};
/* Radio values
Channel assignments
1 Ailerons (rudder if no ailerons)
2 Elevator
3 Throttle
4 Rudder (if we have ailerons)
5 Mode - 3 position switch
6 User assignable
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
8 TBD
*/
//Documentation of GLobals:
////////////////////////////////////////////////////////////////////////////////
// The GPS based velocity calculated by offsetting the Latitude and Longitude
// updated after GPS read - 5-10hz
static int16_t x_GPS_speed;
static int16_t y_GPS_speed;
// The synthesized velocity calculated by fancy filtering and fusion
// updated at 50hz
static int16_t x_actual_speed;
static int16_t y_actual_speed;
// The difference between the desired rate of travel and the actual rate of travel
// updated after GPS read - 5-10hz
static int16_t x_rate_error;
static int16_t y_rate_error;
////////////////////////////////////////////////////////////////////////////////
// Radio
////////////////////////////////////////////////////////////////////////////////
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
static byte control_mode = STABILIZE;
// This is the state of simple mode.
// Set in the control_mode.pde file when the control switch is read
static bool do_simple = false;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
static byte oldSwitchPosition;
// This is used to look for change in the control switch
static byte old_control_mode = STABILIZE;
////////////////////////////////////////////////////////////////////////////////
// Motor Output
////////////////////////////////////////////////////////////////////////////////
// This is the array of PWM values being sent to the motors
static int16_t motor_out[11];
// This is the array of PWM values being sent to the motors that has been lightly filtered with a simple LPF
// This was added to try and deal with biger motors
static int16_t motor_filtered[11];
////////////////////////////////////////////////////////////////////////////////
// Mavlink/HIL control
////////////////////////////////////////////////////////////////////////////////
// Used to track the GCS based control input
// Allow override of RC channel values for HIL
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
// Status flag that tracks whether we are under GCS control
static bool rc_override_active = false;
// Status flag that tracks whether we are under GCS control
static uint32_t rc_override_fs_timer = 0;
////////////////////////////////////////////////////////////////////////////////
// Heli
////////////////////////////////////////////////////////////////////////////////
#if FRAME_CONFIG == HELI_FRAME
static float heli_rollFactor[3], heli_pitchFactor[3]; // only required for 3 swashplate servos
static int16_t heli_servo_min[3], heli_servo_max[3]; // same here. for yaw servo we use heli_servo4_min/max parameter directly
static int32_t heli_servo_out[4]; // used for servo averaging for analog servos
static int16_t heli_servo_out_count; // use for servo averaging
#endif
////////////////////////////////////////////////////////////////////////////////
// Failsafe
////////////////////////////////////////////////////////////////////////////////
// A status flag for the failsafe state
// did our throttle dip below the failsafe value?
static boolean failsafe;
// A status flag for arming the motors. This is the arming that is performed when the
// Yaw control is held right or left while throttle is low.
static boolean motor_armed;
// A status flag for whether or not we should allow AP to take over copter
// This is tied to the throttle. If the throttle = 0 or low/nuetral, then we do not allow
// the APM to take control of the copter.
static boolean motor_auto_armed;
////////////////////////////////////////////////////////////////////////////////
// PIDs
////////////////////////////////////////////////////////////////////////////////
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates
// and not the adjusted omega rates, but the name is stuck
static Vector3f omega;
// This is used to hold radio tuning values for in-flight CH6 tuning
float tuning_value;
////////////////////////////////////////////////////////////////////////////////
// LED output
////////////////////////////////////////////////////////////////////////////////
// status of LED based on the motor_armed variable
// Flashing indicates we are not armed
// Solid indicates Armed state
static boolean motor_light;
// Flashing indicates we are reading the GPS Strings
// Solid indicates we have full 3D lock and can navigate
static boolean GPS_light;
// This is current status for the LED lights state machine
// setting this value changes the output of the LEDs
static byte led_mode = NORMAL_LEDS;
////////////////////////////////////////////////////////////////////////////////
// GPS variables
////////////////////////////////////////////////////////////////////////////////
// This is used to scale GPS values for EEPROM storage
// 10^7 times Decimal GPS means 1 == 1cm
// This approximation makes calculations integer and it's easy to read
static const float t7 = 10000000.0;
// We use atan2 and other trig techniques to calaculate angles
// We need to scale the longitude up to make these calcs work
static float scaleLongUp = 1;
// Sometimes we need to remove the scaling for distance calcs
static float scaleLongDown = 1;
////////////////////////////////////////////////////////////////////////////////
// Mavlink specific
////////////////////////////////////////////////////////////////////////////////
// Used by Mavlink for unknow reasons
static const float radius_of_earth = 6378100; // meters
// Used by Mavlink for unknow reasons
static const float gravity = 9.81; // meters/ sec^2
////////////////////////////////////////////////////////////////////////////////
// Location & Navigation
////////////////////////////////////////////////////////////////////////////////
// Status flag indicating we have data that can be used to navigate
// Set by a GPS read with 3D fix, or an optical flow read
static bool nav_ok;
// This is the angle from the copter to the "next_WP" location in degrees * 100
static int32_t target_bearing;
// This is the angle from the copter to the "next_WP" location
// with the addition of Crosstrack error in degrees * 100
static int32_t nav_bearing;
// This is the angle from the copter to the "home" location in degrees * 100
static int32_t home_bearing;
// Status of the Waypoint tracking mode. Options include:
// NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE
static byte wp_control;
// Register containing the index of the current navigation command in the mission script
static uint8_t command_nav_index;
// Register containing the index of the previous navigation command in the mission script
// Used to manage the execution of conditional commands
static uint8_t prev_nav_index;
// Register containing the index of the current conditional command in the mission script
static uint8_t command_cond_index;
// Used to track the required WP navigation information
// options include
// NAV_ALTITUDE - have we reached the desired altitude?
// NAV_LOCATION - have we reached the desired location?
// NAV_DELAY - have we waited at the waypoint the desired time?
static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints
// used to limit the speed ramp up of WP navigation
// Acceleration is limited to .5m/s/s
static int16_t waypoint_speed_gov;
// Used to track how many cm we are from the "next_WP" location
static int32_t long_error, lat_error;
////////////////////////////////////////////////////////////////////////////////
// Orientation
////////////////////////////////////////////////////////////////////////////////
// Convienience accessors for commonly used trig functions. These values are generated
// by the DCM through a few simple equations. They are used throughout the code where cos and sin
// would normally be used.
// The cos values are defaulted to 1 to get a decent initial value for a level state
static float cos_roll_x = 1;
static float cos_pitch_x = 1;
static float cos_yaw_x = 1;
static float sin_pitch_y, sin_yaw_y, sin_roll_y;
////////////////////////////////////////////////////////////////////////////////
// SIMPLE Mode
////////////////////////////////////////////////////////////////////////////////
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
// or in SuperSimple mode when the copter leaves a 20m radius from home.
static int32_t initial_simple_bearing;
////////////////////////////////////////////////////////////////////////////////
// Circle Mode / Loiter control
////////////////////////////////////////////////////////////////////////////////
// used to determin the desired location in Circle mode
// increments at circle_rate / second
static float circle_angle;
// used to control the speed of Circle mode
// units are in radians, default is 5° per second
2011-11-13 17:40:31 -04:00
static const float circle_rate = 0.0872664625;
// used to track the delat in Circle Mode
static int32_t old_target_bearing;
// deg : how many times to circle * 360 for Loiter/Circle Mission command
static int16_t loiter_total;
// deg : how far we have turned around a waypoint
static int16_t loiter_sum;
// How long we should stay in Loiter Mode for mission scripting
static uint16_t loiter_time_max;
// How long have we been loitering - The start time in millis
static uint32_t loiter_time;
// The synthetic location created to make the copter do circles around a WP
static struct Location circle_WP;
////////////////////////////////////////////////////////////////////////////////
// CH7 control
////////////////////////////////////////////////////////////////////////////////
// Used to enable Jose's flip code
// when true the Roll/Pitch/Throttle control is sent to the flip state machine
2011-09-21 03:20:33 -03:00
#if CH7_OPTION == CH7_FLIP
static bool do_flip = false;
#endif
// Used to track the CH7 toggle state.
// When CH7 goes LOW PWM from HIGH PWM, this value will have been set true
// This allows advanced functionality to know when to execute
static boolean trim_flag;
// This register tracks the current Mission Command index when writing
// a mission using CH7 in flight
static int8_t CH7_wp_index;
////////////////////////////////////////////////////////////////////////////////
// Battery Sensors
////////////////////////////////////////////////////////////////////////////////
// Battery Voltage of total battery, initialized above threshold for filter
static float battery_voltage = LOW_VOLTAGE * 1.05;
// Battery Voltage of cell 1, initialized above threshold for filter
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
// Battery Voltage of cells 1 + 2, initialized above threshold for filter
static float battery_voltage2 = LOW_VOLTAGE * 1.05;
// Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
static float battery_voltage3 = LOW_VOLTAGE * 1.05;
// Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
static float battery_voltage4 = LOW_VOLTAGE * 1.05;
// refers to the instant amp draw based on an Attopilot Current sensor
static float current_amps;
// refers to the total amps drawn based on an Attopilot Current sensor
static float current_total;
// Used to track if the battery is low - LED output flashes when the batt is low
static bool low_batt = false;
////////////////////////////////////////////////////////////////////////////////
// Altitude
////////////////////////////////////////////////////////////////////////////////
// The pressure at home location - calibrated at arming
static int32_t ground_pressure;
// The ground temperature at home location - calibrated at arming
static int16_t ground_temperature;
// The cm we are off in altitude from next_WP.alt  Positive value means we are below the WP
static int32_t altitude_error;
// The cm/s we are moving up or down - Positive = UP
static int16_t climb_rate;
// The altitude as reported by Sonar in cm Values are 20 to 700 generally.
static int16_t sonar_alt;
// The previous altitude as reported by Sonar in cm for calculation of Climb Rate
static int16_t old_sonar_alt;
// The climb_rate as reported by sonar in cm/s
static int16_t sonar_rate;
// The altitude as reported by Baro in cm Values can be quite high
static int32_t baro_alt;
// The previous altitude as reported by Baro in cm for calculation of Climb Rate
static int32_t old_baro_alt;
// The climb_rate as reported by Baro in cm/s
static int16_t baro_rate;
////////////////////////////////////////////////////////////////////////////////
// flight modes
////////////////////////////////////////////////////////////////////////////////
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes
// Each Flight mode is a unique combination of these modes
//
// The current desired control scheme for Yaw
static byte yaw_mode;
// The current desired control scheme for roll and pitch / navigation
static byte roll_pitch_mode;
// The current desired control scheme for altitude hold
static byte throttle_mode;
////////////////////////////////////////////////////////////////////////////////
// flight specific
////////////////////////////////////////////////////////////////////////////////
// Flag for monitoring the status of flight
// We must be in the air with throttle for 5 seconds before this flag is true
// This flag is reset when we are in a manual throttle mode with 0 throttle or disarmed
static boolean takeoff_complete;
// Used to record the most recent time since we enaged the throttle to take off
static int32_t takeoff_timer;
// Used to see if we have landed and if we should shut our engines - not fully implemented
static boolean land_complete = true;
// used to manually override throttle in interactive Alt hold modes
static int16_t manual_boost;
// An additional throttle added to keep the copter at the same altitude when banking
static int16_t angle_boost;
////////////////////////////////////////////////////////////////////////////////
// Navigation general
////////////////////////////////////////////////////////////////////////////////
// The location of the copter in relation to home, updated every GPS read
static int32_t home_to_copter_bearing;
// distance between plane and home in meters (not cm!!!)
static int32_t home_distance;
// distance between plane and next_WP in meters (not cm!!!)
static int32_t wp_distance;
////////////////////////////////////////////////////////////////////////////////
// 3D Location vectors
////////////////////////////////////////////////////////////////////////////////
// home location is stored when we have a good GPS lock and arm the copter
// Can be reset each the copter is re-armed
static struct Location home;
// Flag for if we have g_gps lock and have set the home location
static boolean home_is_set;
// Current location of the copter
static struct Location current_loc;
// Next WP is the desired location of the copter - the next waypoint or loiter location
static struct Location next_WP;
// Prev WP is used to get the optimum path from one WP to the next
static struct Location prev_WP;
// Holds the current loaded command from the EEPROM for navigation
static struct Location command_nav_queue;
// Holds the current loaded command from the EEPROM for conditional scripts
static struct Location command_cond_queue;
// Holds the current loaded command from the EEPROM for guided mode
static struct Location guided_WP;
////////////////////////////////////////////////////////////////////////////////
// Crosstrack
////////////////////////////////////////////////////////////////////////////////
// deg * 100, The original angle to the next_WP when the next_WP was set
// Also used to check when we pass a WP
static int32_t original_target_bearing;
// The amount of angle correction applied to target_bearing to bring the copter back on its optimum path
static int16_t crosstrack_error;
////////////////////////////////////////////////////////////////////////////////
// Navigation Roll/Pitch functions
////////////////////////////////////////////////////////////////////////////////
// all angles are deg * 100 : target yaw angle
// The Commanded ROll from the autopilot.
static int32_t nav_roll;
// The Commanded pitch from the autopilot. negative Pitch means go forward.
static int32_t nav_pitch;
// The desired bank towards North (Positive) or South (Negative)
// Don't be fooled by the fact that Pitch is reversed from Roll in its sign!
static int16_t nav_lat;
// The desired bank towards East (Positive) or West (Negative)
static int16_t nav_lon;
// This may go away, but for now I'm tracking the desired bank before we apply the Wind compensation I term
// This is mainly for debugging
static int16_t nav_lat_p;
static int16_t nav_lon_p;
////////////////////////////////////////////////////////////////////////////////
// Navigation Throttle control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Throttle from the autopilot.
static int16_t nav_throttle; // 0-1000 for throttle control
// This is a simple counter to track the amount of throttle used during flight
// This could be useful later in determining and debuging current usage and predicting battery life
static uint32_t throttle_integrator;
// This is a future value for replacing the throttle_cruise setup procedure. It's an average of throttle control
// that is generated when the climb rate is within a certain threshold
static float throttle_avg = THROTTLE_CRUISE;
// This is a flag used to trigger the updating of nav_throttle at 10hz
static bool invalid_throttle;
// Used to track the altitude offset for climbrate control
static int32_t target_altitude;
////////////////////////////////////////////////////////////////////////////////
// Navigation Yaw control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Yaw from the autopilot.
static int32_t nav_yaw;
// A speed governer for Yaw control - limits the rate the quad can be turned by the autopilot
static int32_t auto_yaw;
// Used to manage the Yaw hold capabilities -
// Options include: no tracking, point at next wp, or at a target
static byte yaw_tracking = MAV_ROI_WPNEXT;
// In AP Mission scripting we have a fine level of control for Yaw
// This is our initial angle for relative Yaw movements
static int32_t command_yaw_start;
// Timer values used to control the speed of Yaw movements
static uint32_t command_yaw_start_time;
static uint16_t command_yaw_time; // how long we are turning
static int32_t command_yaw_end; // what angle are we trying to be
// how many degrees will we turn
static int32_t command_yaw_delta;
// Deg/s we should turn
static int16_t command_yaw_speed;
// Direction we will turn 1 = CW, 0 or -1 = CCW
static byte command_yaw_dir;
// Direction we will turn 1 = relative, 0 = Absolute
static byte command_yaw_relative;
// Yaw will point at this location if yaw_tracking is set to MAV_ROI_LOCATION
static struct Location target_WP;
////////////////////////////////////////////////////////////////////////////////
// Repeat Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
// The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc
static byte event_id;
// Used to manage the timimng of repeating events
static uint32_t event_timer;
// How long to delay the next firing of event in millis
static uint16_t event_delay;
// how many times to fire : 0 = forever, 1 = do once, 2 = do twice
static int16_t event_repeat;
// per command value, such as PWM for servos
static int16_t event_value;
// the stored value used to undo commands - such as original PWM command
static int16_t event_undo_value;
////////////////////////////////////////////////////////////////////////////////
// Delay Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
static int32_t condition_start;
////////////////////////////////////////////////////////////////////////////////
// Auto Landing
////////////////////////////////////////////////////////////////////////////////
// Time when we intiated command in millis - used for controlling decent rate
static int32_t land_start;
// The orginal altitude used to base our new altitude during decent
static int32_t original_alt;
////////////////////////////////////////////////////////////////////////////////
// IMU variables
////////////////////////////////////////////////////////////////////////////////
// Integration time for the gyros (DCM algorithm)
// Updated with th efast loop
static float G_Dt = 0.02;
// The rotated accelerometer values
// Used by Z accel control, updated at 10hz
Vector3f accels_rot;
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////////////////////////////////////////////
// Used to manage the rate of performance logging messages
static int16_t perf_mon_counter;
// The number of GPS fixes we have had
static int16_t gps_fix_count;
// gps_watchdog check for bad reads and if we miss 12 in a row, we stop navigating
// by lowering nav_lat and navlon to 0 gradually
static byte gps_watchdog;
// System Timers
// --------------
// Time in microseconds of main control loop
static uint32_t fast_loopTimer;
// Time in microseconds of 50hz control loop
static uint32_t fiftyhz_loopTimer;
// Counters for branching from 10 hz control loop
static byte medium_loopCounter;
// Counters for branching from 3 1/3hz control loop
static byte slow_loopCounter;
// Counters for branching at 1 hz
static byte counter_one_herz;
// Stat machine counter for Simple Mode
static byte simple_counter;
// used to track the elapsed time between GPS reads
static uint32_t nav_loopTimer;
// Delta Time in milliseconds for navigation computations, updated with every good GPS read
static float dTnav;
// Counters for branching from 4 minute control loop used to save Compass offsets
static int16_t superslow_loopCounter;
2012-01-06 01:15:03 -04:00
// RTL Autoland Timer
static uint32_t auto_land_timer;
// Tracks if GPS is enabled based on statup routine
// If we do not detect GPS at startup, we stop trying and assume GPS is not connected
static bool GPS_enabled = false;
// Set true if we have new PWM data to act on from the Radio
static bool new_radio_frame;
// Used to auto exit the in-flight leveler
static int16_t auto_level_counter;
// Reference to the AP relay object - APM1 only
2011-10-02 09:52:02 -03:00
AP_Relay relay;
// APM2 only
#if USB_MUX_PIN > 0
static bool usb_connected;
#endif
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
void setup() {
memcheck_init();
init_ardupilot();
}
void loop()
{
2012-01-04 21:31:06 -04:00
uint32_t timer = micros();
// We want this to execute fast
// ----------------------------
if ((timer - fast_loopTimer) >= 5000) {
//PORTK |= B00010000;
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
fast_loopTimer = timer;
// Execute the fast loop
// ---------------------
fast_loop();
}
// port manipulation for external timing of main loops
//PORTK &= B11101111;
if ((timer - fiftyhz_loopTimer) >= 20000) {
// store the micros for the 50 hz timer
fiftyhz_loopTimer = timer;
// port manipulation for external timing of main loops
//PORTK |= B01000000;
// reads all of the necessary trig functions for cameras, throttle, etc.
// --------------------------------------------------------------------
update_trig();
// update our velocity estimate based on IMU at 50hz
// -------------------------------------------------
estimate_velocity();
// perform 10hz tasks
// ------------------
medium_loop();
// Stuff to run at full 50hz, but after the med loops
// --------------------------------------------------
fifty_hz_loop();
counter_one_herz++;
if(counter_one_herz >= 50){
super_slow_loop();
counter_one_herz = 0;
}
perf_mon_counter++;
if (perf_mon_counter > 600 ) {
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
gps_fix_count = 0;
perf_mon_counter = 0;
}
//PORTK &= B10111111;
}
}
// PORTK |= B01000000;
// PORTK &= B10111111;
// Main loop
static void fast_loop()
{
// try to send any deferred messages if the serial port now has
// some space available
gcs_send_message(MSG_RETRY_DEFERRED);
// Read radio
// ----------
read_radio();
// IMU DCM Algorithm
read_AHRS();
// custom code/exceptions for flight modes
// ---------------------------------------
update_yaw_mode();
update_roll_pitch_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
//if(motor_armed)
//Log_Write_Attitude();
2011-10-15 19:29:33 -03:00
// agmatthews - USERHOOKS
#ifdef USERHOOK_FASTLOOP
USERHOOK_FASTLOOP
#endif
2011-10-15 19:29:33 -03:00
}
static void medium_loop()
{
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS and Compass
//-----------------------------------------
case 0:
medium_loopCounter++;
if(GPS_enabled){
update_GPS();
}
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled){
update_optical_flow();
}
#endif
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
if(g.compass_enabled){
if (compass.read()) {
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
compass.null_offsets(dcm.get_dcm_matrix());
}
}
#endif
// auto_trim, uses an auto_level algorithm
auto_trim();
// record throttle output
// ------------------------------
throttle_integrator += g.rc_3.servo_out;
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
// Auto control modes:
if(nav_ok){
// clear nav flag
nav_ok = false;
// invalidate GPS data
// -------------------
g_gps->new_data = false;
// calculate the copter's desired bearing and WP distance
// ------------------------------------------------------
if(navigate()){
// this calculates the velocity for Loiter
// only called when there is new data
// ----------------------------------
calc_XY_velocity();
// If we have optFlow enabled we can grab a more accurate speed
// here and override the speed from the GPS
// ----------------------------------------
2011-12-23 22:45:01 -04:00
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled && current_loc.alt < 500){
// optflow wont be enabled on 1280's
x_GPS_speed = optflow.x_cm;
y_GPS_speed = optflow.y_cm;
}
2011-12-23 22:45:01 -04:00
#endif
// control mode specific updates
// -----------------------------
update_navigation();
if (g.log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
}
}
break;
// command processing
//-------------------
case 2:
medium_loopCounter++;
// Read altitude from sensors
// --------------------------
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
update_altitude();
#endif
// invalidate the throttle hold value
// ----------------------------------
invalid_throttle = true;
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
// perform next command
// --------------------
if(control_mode == AUTO){
2011-11-16 04:15:59 -04:00
if(home_is_set == true && g.command_total > 1){
update_commands();
2011-11-16 04:15:59 -04:00
}
}
if(motor_armed){
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED)
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_CTUN)
Log_Write_Control_Tuning();
}
// send all requested output streams with rates requested
// between 5 and 45 Hz
gcs_data_stream_send(5,45);
if (g.log_bitmask & MASK_LOG_MOTORS)
Log_Write_Motors();
break;
// This case controls the slow loop
//---------------------------------
case 4:
medium_loopCounter = 0;
if (g.battery_monitoring != 0){
read_battery();
}
// Accel trims = hold > 2 seconds
// Throttle cruise = switch less than 1 second
// --------------------------------------------
read_trim_switch();
// Check for engine arming
// -----------------------
arm_motors();
// Do an extra baro read
// ---------------------
#if HIL_MODE != HIL_MODE_ATTITUDE
barometer.read();
#endif
// agmatthews - USERHOOKS
#ifdef USERHOOK_MEDIUMLOOP
USERHOOK_MEDIUMLOOP
#endif
slow_loop();
break;
default:
// this is just a catch all
// ------------------------
medium_loopCounter = 0;
break;
}
}
// stuff that happens at 50 hz
// ---------------------------
static void fifty_hz_loop()
{
// moved to slower loop
// --------------------
update_throttle_mode();
// Read Sonar
// ----------
# if CONFIG_SONAR == ENABLED
if(g.sonar_enabled){
sonar_alt = sonar.read();
}
#endif
2011-10-15 19:29:33 -03:00
// agmatthews - USERHOOKS
#ifdef USERHOOK_50HZLOOP
USERHOOK_50HZLOOP
#endif
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME
// HIL for a copter needs very fast update of the servo values
gcs_send_message(MSG_RADIO_OUT);
#endif
camera_stabilization();
# if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_RAW)
Log_Write_Raw();
#endif
// kick the GCS to process uplink data
gcs_update();
gcs_data_stream_send(45,1000);
#if FRAME_CONFIG == TRI_FRAME
// servo Yaw
g.rc_4.calc_pwm();
APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
#endif
}
static void slow_loop()
{
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter){
case 0:
slow_loopCounter++;
superslow_loopCounter++;
if(superslow_loopCounter > 1200){
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled){
compass.save_offsets();
superslow_loopCounter = 0;
}
#endif
}
break;
case 1:
slow_loopCounter++;
// Read 3-position switch on radio
// -------------------------------
read_control_switch();
// agmatthews - USERHOOKS
#ifdef USERHOOK_SLOWLOOP
USERHOOK_SLOWLOOP
#endif
break;
case 2:
slow_loopCounter = 0;
update_events();
// blink if we are armed
update_lights();
// send all requested output streams with rates requested
2011-12-03 18:32:08 -04:00
// between 3 and 5 Hz
gcs_data_stream_send(3,5);
if(g.radio_tuning > 0)
tuning();
#if MOTOR_LEDS == 1
update_motor_leds();
#endif
#if USB_MUX_PIN > 0
check_usb_mux();
#endif
break;
default:
slow_loopCounter = 0;
break;
}
}
// 1Hz loop
static void super_slow_loop()
{
if (g.log_bitmask & MASK_LOG_CUR)
Log_Write_Current();
gcs_send_message(MSG_HEARTBEAT);
2011-12-03 18:32:08 -04:00
gcs_data_stream_send(1,3);
2011-10-15 19:29:33 -03:00
// agmatthews - USERHOOKS
#ifdef USERHOOK_SUPERSLOWLOOP
USERHOOK_SUPERSLOWLOOP
#endif
/*
Serial.printf("alt %d, next.alt %d, alt_err: %d, cruise: %d, Alt_I:%1.2f, wp_dist %d, tar_bear %d, home_d %d, homebear %d\n",
current_loc.alt,
next_WP.alt,
altitude_error,
g.throttle_cruise.get(),
g.pi_alt_hold.get_integrator(),
wp_distance,
target_bearing,
home_distance,
home_to_copter_bearing);
*/
}
// updated at 10 Hz
#ifdef OPTFLOW_ENABLED
static void update_optical_flow(void)
{
optflow.update();
optflow.update_position(dcm.roll, dcm.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
// write to log
if (g.log_bitmask & MASK_LOG_OPTFLOW){
Log_Write_Optflow();
}
if(g.optflow_enabled && current_loc.alt < 500){
if(GPS_enabled){
// if we have a GPS, we add some detail to the GPS
// XXX this may not ne right
current_loc.lng += optflow.vlon;
current_loc.lat += optflow.vlat;
// some sort of error correction routine
//current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction
//current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction
}else{
// if we do not have a GPS, use relative from 0 for lat and lon
current_loc.lng = optflow.vlon;
current_loc.lat = optflow.vlat;
}
// OK to run the nav routines
nav_ok = true;
}
}
#endif
static void update_GPS(void)
{
// A counter that is used to grab at least 10 reads before commiting the Home location
static byte ground_start_count = 10;
g_gps->update();
update_GPS_light();
//current_loc.lng = 377697000; // Lon * 10 * *7
//current_loc.lat = -1224318000; // Lat * 10 * *7
//current_loc.alt = 100; // alt * 10 * *7
//return;
if(gps_watchdog < 12){
gps_watchdog++;
}else{
// after 12 reads we guess we may have lost GPS signal, stop navigating
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
nav_roll >>= 1;
nav_pitch >>= 1;
}
if (g_gps->new_data && g_gps->fix) {
gps_watchdog = 0;
// OK to run the nav routines
nav_ok = true;
// for performance
// ---------------
gps_fix_count++;
2011-12-31 14:54:31 -04:00
// used to calculate speed in X and Y, iterms
// ------------------------------------------
dTnav = (float)(millis() - nav_loopTimer)/ 1000.0;
nav_loopTimer = millis();
// prevent runup from bad GPS
2011-12-31 14:54:31 -04:00
// --------------------------
dTnav = min(dTnav, 1.0);
if(ground_start_count > 1){
ground_start_count--;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
ground_start_count = 5;
}else{
// block until we get a good fix
// -----------------------------
while (!g_gps->new_data || !g_gps->fix) {
g_gps->update();
// we need GCS update while waiting for GPS, to ensure
// we react to HIL mavlink
gcs_update();
}
init_home();
ground_start_count = 0;
}
}
current_loc.lng = g_gps->longitude; // Lon * 10 * *7
current_loc.lat = g_gps->latitude; // Lat * 10 * *7
if (g.log_bitmask & MASK_LOG_GPS){
Log_Write_GPS();
}
#if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode
update_altitude();
#endif
} else {
g_gps->new_data = false;
}
}
void update_yaw_mode(void)
{
switch(yaw_mode){
case YAW_ACRO:
g.rc_4.servo_out = get_rate_yaw(g.rc_4.control_in);
return;
break;
case YAW_HOLD:
// calcualte new nav_yaw offset
if (control_mode <= STABILIZE){
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, g.rc_3.control_in);
}else{
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, 1);
}
break;
case YAW_LOOK_AT_HOME:
//nav_yaw updated in update_navigation()
break;
case YAW_AUTO:
nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -20, 20);
nav_yaw = wrap_360(nav_yaw);
break;
}
// Yaw control
g.rc_4.servo_out = get_stabilize_yaw(nav_yaw);
//Serial.printf("4: %d\n",g.rc_4.servo_out);
}
void update_roll_pitch_mode(void)
{
int control_roll, control_pitch;
// hack to do auto_flip - need to remove, no one is using.
2011-09-21 03:20:33 -03:00
#if CH7_OPTION == CH7_FLIP
if (do_flip){
roll_flip();
return;
}
#endif
switch(roll_pitch_mode){
case ROLL_PITCH_ACRO:
// ACRO does not get SIMPLE mode ability
g.rc_1.servo_out = get_rate_roll(g.rc_1.control_in);
g.rc_2.servo_out = get_rate_pitch(g.rc_2.control_in);
break;
case ROLL_PITCH_STABLE:
// apply SIMPLE mode transform
if(do_simple && new_radio_frame){
update_simple_mode();
}
#if WIND_COMP_STAB == 1
// in this mode, nav_roll and nav_pitch = the iterm
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in + nav_roll);
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in + nav_pitch);
#else
// in this mode, nav_roll and nav_pitch = the iterm
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in);
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in);
#endif
break;
case ROLL_PITCH_AUTO:
// apply SIMPLE mode transform
if(do_simple && new_radio_frame){
update_simple_mode();
}
// mix in user control with Nav control
control_roll = g.rc_1.control_mix(nav_roll);
control_pitch = g.rc_2.control_mix(nav_pitch);
g.rc_1.servo_out = get_stabilize_roll(control_roll);
g.rc_2.servo_out = get_stabilize_pitch(control_pitch);
break;
}
// clear new radio frame info
new_radio_frame = false;
}
// new radio frame is used to make sure we only call this at 50hz
void update_simple_mode(void)
{
float simple_sin_y=0, simple_cos_x=0;
// used to manage state machine
// which improves speed of function
simple_counter++;
int delta = wrap_360(dcm.yaw_sensor - initial_simple_bearing)/100;
if (simple_counter == 1){
// roll
simple_cos_x = sin(radians(90 - delta));
}else if (simple_counter > 2){
// pitch
simple_sin_y = cos(radians(90 - delta));
simple_counter = 0;
}
// Rotate input by the initial bearing
int control_roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y;
int control_pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x);
g.rc_1.control_in = control_roll;
g.rc_2.control_in = control_pitch;
}
#define THROTTLE_FILTER_SIZE 4
// 50 hz update rate, not 250
// controls all throttle behavior
void update_throttle_mode(void)
{
int16_t throttle_out;
switch(throttle_mode){
case THROTTLE_MANUAL:
if (g.rc_3.control_in > 0){
#if FRAME_CONFIG == HELI_FRAME
g.rc_3.servo_out = heli_get_angle_boost(g.rc_3.control_in);
#else
if (control_mode == ACRO){
g.rc_3.servo_out = g.rc_3.control_in;
}else{
angle_boost = get_angle_boost(g.rc_3.control_in);
g.rc_3.servo_out = g.rc_3.control_in + angle_boost;
}
#endif
// calc average throttle
if ((g.rc_3.control_in > MINIMUM_THROTTLE)){
//throttle_avg = throttle_avg * .98 + rc_3.control_in * .02;
//g.throttle_cruise = throttle_avg;
}
// Code to manage the Copter state
if ((millis() - takeoff_timer) > 5000){
// we must be in the air by now
takeoff_complete = true;
land_complete = false;
}else{
// reset these I terms to prevent flips on takeoff
reset_rate_I();
}
}else{
// we are on the ground
takeoff_complete = false;
// reset baro data if we are near home
if(home_distance < 4 || GPS_enabled == false){
// causes Baro to do a quick recalibration
// XXX commented until further testing
// reset_baro();
}
// reset out i terms and takeoff timer
// -----------------------------------
reset_rate_I();
// remember our time since takeoff
// -------------------------------
takeoff_timer = millis();
// make sure we also request 0 throttle out
// so the props stop ... properly
// ----------------------------------------
g.rc_3.servo_out = 0;
}
break;
case THROTTLE_HOLD:
// allow interactive changing of atitude
adjust_altitude();
// fall through
case THROTTLE_AUTO:
// calculate angle boost
angle_boost = get_angle_boost(g.throttle_cruise);
// manual command up or down?
if(manual_boost != 0){
#if FRAME_CONFIG == HELI_FRAME
throttle_out = heli_get_angle_boost(g.throttle_cruise + manual_boost);
#else
throttle_out = g.throttle_cruise + angle_boost + manual_boost;
#endif
// reset next_WP.alt and don't go below 1 meter
next_WP.alt = max(current_loc.alt, 100);
/*
Serial.printf("tar_alt: %d, actual_alt: %d \talt_err: %d, \t manb: %d\n",
next_WP.alt,
current_loc.alt,
altitude_error,
manual_boost);
//*/
}else{
// 10hz, don't run up i term
if(invalid_throttle && motor_auto_armed == true){
// how far off are we
altitude_error = get_altitude_error();
// get the AP throttle
nav_throttle = get_nav_throttle(altitude_error);
// clear the new data flag
invalid_throttle = false;
/*
Serial.printf("tar_alt: %d, actual_alt: %d \talt_err: %d, \tnav_thr: %d, \talt Int: %d, \trate_int %d \n",
next_WP.alt,
current_loc.alt,
altitude_error,
nav_throttle,
(int16_t)g.pi_alt_hold.get_integrator(),
(int16_t) g.pi_throttle.get_integrator());
*/
}
#if FRAME_CONFIG == HELI_FRAME
throttle_out = heli_get_angle_boost(g.throttle_cruise + nav_throttle + get_z_damping());
#else
throttle_out = g.throttle_cruise + nav_throttle + angle_boost + get_z_damping();
#endif
}
// light filter of output
g.rc_3.servo_out = (g.rc_3.servo_out * (THROTTLE_FILTER_SIZE - 1) + throttle_out) / THROTTLE_FILTER_SIZE;
break;
}
}
// called after a GPS read
static void update_navigation()
{
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
// ------------------------------------------------------------------------
switch(control_mode){
case AUTO:
// note: wp_control is handled by commands_logic
verify_commands();
// calculates desired Yaw
update_auto_yaw();
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case GUIDED:
wp_control = WP_MODE;
2011-10-13 07:34:32 -03:00
// check if we are close to point > loiter
wp_verify_byte = 0;
verify_nav_wp();
if (wp_control == WP_MODE) {
update_auto_yaw();
} else {
set_mode(LOITER);
}
update_nav_wp();
break;
case RTL:
if((wp_distance <= g.waypoint_radius) || check_missed_wp()){
2012-01-06 01:15:03 -04:00
// if this value > 0, we are set to trigger auto_land after 30 seconds
2011-10-07 15:06:31 -03:00
set_mode(LOITER);
2012-01-06 01:57:34 -04:00
auto_land_timer = millis();
}else if(current_loc.alt < (next_WP.alt - 300)){
// don't navigate if we are below our target alt
wp_control = LOITER_MODE;
2011-10-07 15:06:31 -03:00
}else{
// calculates desired Yaw
#if FRAME_CONFIG == HELI_FRAME
update_auto_yaw();
#endif
wp_control = WP_MODE;
}
// calculates the desired Roll and Pitch
update_nav_wp();
break;
// switch passthrough to LOITER
case LOITER:
case POSITION:
// This feature allows us to reposition the quad when the user lets
// go of the sticks
if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 500){
// this sets the copter to not try and nav while we control it
wp_control = NO_NAV_MODE;
// reset LOITER to current position
next_WP = current_loc;
}else{
// this is also set by GPS in update_nav
wp_control = LOITER_MODE;
}
if(auto_land_timer != 0 && (millis() - auto_land_timer) > 20000){
2012-01-06 01:15:03 -04:00
// just to make sure we clear the timer
auto_land_timer = 0;
2012-01-06 01:57:34 -04:00
set_mode(LAND);
2012-01-06 01:15:03 -04:00
}
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case LAND:
wp_control = LOITER_MODE;
if(verify_land()) { // JLN fix for auto land in RTL
set_mode(STABILIZE);
} else {
// calculates the desired Roll and Pitch
update_nav_wp();
}
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case CIRCLE:
yaw_tracking = MAV_ROI_WPNEXT;
wp_control = CIRCLE_MODE;
// calculates desired Yaw
update_auto_yaw();
update_nav_wp();
break;
2011-12-31 14:54:31 -04:00
case STABILIZE:
wp_control = NO_NAV_MODE;
update_nav_wp();
2011-12-31 14:54:31 -04:00
break;
}
// are we in SIMPLE mode?
if(do_simple && g.super_simple){
// get distance to home
if(home_distance > 10){ // 10m from home
// we reset the angular offset to be a vector from home to the quad
2011-12-11 03:29:29 -04:00
initial_simple_bearing = home_to_copter_bearing;
//Serial.printf("ISB: %d\n", initial_simple_bearing);
}
}
if(yaw_mode == YAW_LOOK_AT_HOME){
if(home_is_set){
//nav_yaw = point_at_home_yaw();
nav_yaw = get_bearing(&current_loc, &home);
} else {
nav_yaw = 0;
}
}
}
static void read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before dcm update
gcs_update();
#endif
dcm.update_DCM_fast();
omega = imu.get_gyro();
}
static void update_trig(void){
Vector2f yawvector;
Matrix3f temp = dcm.get_dcm_matrix();
yawvector.x = temp.a.x; // sin
yawvector.y = temp.b.x; // cos
yawvector.normalize();
sin_pitch_y = -temp.c.x; // level = 0
cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x)); // level = 1
sin_roll_y = temp.c.y / cos_pitch_x; // level = 0
cos_roll_x = temp.c.z / cos_pitch_x; // level = 1
sin_yaw_y = yawvector.x; // 1y = north
cos_yaw_x = yawvector.y; // 0x = north
//flat:
// 0 ° = cos_yaw: 0.00, sin_yaw: 1.00,
// 90° = cos_yaw: 1.00, sin_yaw: 0.00,
// 180 = cos_yaw: 0.00, sin_yaw: -1.00,
// 270 = cos_yaw: -1.00, sin_yaw: 0.00,
}
// updated at 10hz
static void update_altitude()
{
#if HIL_MODE == HIL_MODE_ATTITUDE
// we are in the SIM, fake out the baro and Sonar
int fake_relative_alt = g_gps->altitude - gps_base_alt;
baro_alt = fake_relative_alt;
sonar_alt = fake_relative_alt;
baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz
old_baro_alt = baro_alt;
#else
// This is real life
2011-11-19 17:58:41 -04:00
// read in Actual Baro Altitude
baro_alt = (baro_alt + read_barometer()) >> 1;
// calc the vertical accel rate
2011-11-25 15:33:50 -04:00
int temp = (baro_alt - old_baro_alt) * 10;
baro_rate = (temp + baro_rate) >> 1;
2011-11-19 17:58:41 -04:00
old_baro_alt = baro_alt;
// sonar_alt is calculated in a faster loop and filtered with a mode filter
#endif
if(g.sonar_enabled){
// filter out offset
float scale;
// calc rate of change for Sonar
#if HIL_MODE == HIL_MODE_ATTITUDE
// we are in the SIM, fake outthe Sonar rate
sonar_rate = baro_rate;
#else
// This is real life
// calc the vertical accel rate
sonar_rate = (sonar_alt - old_sonar_alt) * 10;
old_sonar_alt = sonar_alt;
#endif
if(baro_alt < 800){
#if SONAR_TILT_CORRECTION == 1
// correct alt for angle of the sonar
float temp = cos_pitch_x * cos_roll_x;
temp = max(temp, 0.707);
sonar_alt = (float)sonar_alt * temp;
#endif
scale = (sonar_alt - 400) / 200;
scale = constrain(scale, 0, 1);
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale) + home.alt;
// solve for a blended climb_rate
climb_rate = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale;
}else{
// we must be higher than sonar (>800), don't get tricked by bad sonar reads
current_loc.alt = baro_alt + home.alt; // home alt = 0
// dont blend, go straight baro
climb_rate = baro_rate;
}
}else{
// NO Sonar case
current_loc.alt = baro_alt + home.alt;
climb_rate = baro_rate;
}
// manage bad data
climb_rate = constrain(climb_rate, -300, 300);
}
static void
adjust_altitude()
{
/*
2011-11-01 13:28:36 -03:00
// old vert control
if(g.rc_3.control_in <= 200){
next_WP.alt -= 1; // 1 meter per second
next_WP.alt = max(next_WP.alt, (current_loc.alt - 500)); // don't go less than 4 meters below current location
next_WP.alt = max(next_WP.alt, 100); // don't go less than 1 meter
//manual_boost = (g.rc_3.control_in == 0) ? -20 : 0;
}else if (g.rc_3.control_in > 700){
next_WP.alt += 1; // 1 meter per second
next_WP.alt = min(next_WP.alt, (current_loc.alt + 500)); // don't go more than 4 meters below current location
//manual_boost = (g.rc_3.control_in == 800) ? 20 : 0;
}*/
if(g.rc_3.control_in <= 180){
// we remove 0 to 100 PWM from hover
manual_boost = g.rc_3.control_in - 180;
manual_boost = max(-120, manual_boost);
g.throttle_cruise += g.pi_alt_hold.get_integrator();
g.pi_alt_hold.reset_I();
g.pi_throttle.reset_I();
}else if (g.rc_3.control_in >= 650){
// we add 0 to 100 PWM to hover
manual_boost = g.rc_3.control_in - 650;
g.throttle_cruise += g.pi_alt_hold.get_integrator();
g.pi_alt_hold.reset_I();
g.pi_throttle.reset_I();
}else {
manual_boost = 0;
}
}
static void tuning(){
tuning_value = (float)g.rc_6.control_in / 1000.0;
switch(g.radio_tuning){
case CH6_DAMP:
g.rc_6.set_range(0,1500); // 0 to 1
g.stablize_d.set(tuning_value);
break;
case CH6_STABILIZE_KP:
g.rc_6.set_range(0,8000); // 0 to 8
g.pi_stabilize_roll.kP(tuning_value);
g.pi_stabilize_pitch.kP(tuning_value);
break;
case CH6_STABILIZE_KI:
g.rc_6.set_range(0,300); // 0 to .3
tuning_value = (float)g.rc_6.control_in / 1000.0;
g.pi_stabilize_roll.kI(tuning_value);
g.pi_stabilize_pitch.kI(tuning_value);
break;
case CH6_RATE_KP:
g.rc_6.set_range(40,300); // 0 to .3
g.pi_rate_roll.kP(tuning_value);
g.pi_rate_pitch.kP(tuning_value);
break;
case CH6_RATE_KI:
g.rc_6.set_range(0,300); // 0 to .3
g.pi_rate_roll.kI(tuning_value);
g.pi_rate_pitch.kI(tuning_value);
break;
case CH6_YAW_KP:
g.rc_6.set_range(0,1000);
g.pi_stabilize_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KP:
g.rc_6.set_range(0,1000);
g.pi_rate_yaw.kP(tuning_value);
break;
case CH6_THROTTLE_KP:
g.rc_6.set_range(0,1000); // 0 to 1
g.pi_throttle.kP(tuning_value);
break;
case CH6_TOP_BOTTOM_RATIO:
g.rc_6.set_range(800,1000); // .8 to 1
g.top_bottom_ratio = tuning_value;
break;
case CH6_RELAY:
g.rc_6.set_range(0,1000);
2011-10-02 09:16:31 -03:00
if (g.rc_6.control_in > 525) relay.on();
if (g.rc_6.control_in < 475) relay.off();
break;
case CH6_TRAVERSE_SPEED:
g.rc_6.set_range(0,1000);
g.waypoint_speed_max = g.rc_6.control_in;
break;
2011-09-10 22:37:28 -03:00
2011-09-27 13:39:32 -03:00
case CH6_LOITER_P:
g.rc_6.set_range(0,1000);
g.pi_loiter_lat.kP(tuning_value);
g.pi_loiter_lon.kP(tuning_value);
break;
2011-09-10 22:37:28 -03:00
case CH6_NAV_P:
g.rc_6.set_range(0,6000);
g.pi_nav_lat.kP(tuning_value);
g.pi_nav_lon.kP(tuning_value);
break;
#if FRAME_CONFIG == HELI_FRAME
case CH6_HELI_EXTERNAL_GYRO:
g.rc_6.set_range(1000,2000);
g.heli_ext_gyro_gain = tuning_value * 1000;
break;
#endif
case CH6_THR_HOLD_KP:
g.rc_6.set_range(0,1000); // 0 to 1
g.pi_alt_hold.kP(tuning_value);
break;
}
}
static void update_nav_wp()
{
if(wp_control == LOITER_MODE){
// calc a pitch to the target
2011-09-08 22:59:42 -03:00
calc_location_error(&next_WP);
// use error as the desired rate towards the target
calc_loiter(long_error, lat_error);
// rotate pitch and roll to the copter frame of reference
calc_loiter_pitch_roll();
}else if(wp_control == CIRCLE_MODE){
// check if we have missed the WP
int loiter_delta = (target_bearing - old_target_bearing)/100;
// reset the old value
old_target_bearing = target_bearing;
// wrap values
if (loiter_delta > 180) loiter_delta -= 360;
if (loiter_delta < -180) loiter_delta += 360;
// sum the angle around the WP
2011-10-13 00:59:12 -03:00
loiter_sum += loiter_delta;
2011-10-11 17:52:02 -03:00
// create a virtual waypoint that circles the next_WP
// Count the degrees we have circulated the WP
//int circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100;
circle_angle += (circle_rate * dTnav);
//1° = 0.0174532925 radians
// wrap
if (circle_angle > 6.28318531)
circle_angle -= 6.28318531;
circle_WP.lng = next_WP.lng + (g.loiter_radius * 100 * cos(1.57 - circle_angle) * scaleLongUp);
circle_WP.lat = next_WP.lat + (g.loiter_radius * 100 * sin(1.57 - circle_angle));
// calc the lat and long error to the target
calc_location_error(&circle_WP);
// use error as the desired rate towards the target
// nav_lon, nav_lat is calculated
calc_loiter(long_error, lat_error);
//CIRCLE: angle:29, dist:0, lat:400, lon:242
// rotate pitch and roll to the copter frame of reference
calc_loiter_pitch_roll();
// debug
//int angleTest = degrees(circle_angle);
//int nroll = nav_roll;
//int npitch = nav_pitch;
//Serial.printf("CIRCLE: angle:%d, dist:%d, X:%d, Y:%d, P:%d, R:%d \n", angleTest, (int)wp_distance , (int)long_error, (int)lat_error, npitch, nroll);
}else if(wp_control == WP_MODE){
int16_t speed = calc_desired_speed(g.waypoint_speed_max);
// use error as the desired rate towards the target
calc_nav_rate(speed);
// rotate pitch and roll to the copter frame of reference
//calc_nav_pitch_roll();
calc_loiter_pitch_roll();
}else if(wp_control == NO_NAV_MODE){
// calc the Iterms for Loiter based on velocity
#if WIND_COMP_STAB == 1
if (g_gps->ground_speed < 50)
calc_wind_compensation();
else
reduce_wind_compensation();
// rotate nav_lat, nav_lon to roll and pitch
calc_loiter_pitch_roll();
#else
// clear out our nav so we can do things like land straight
nav_pitch = 0;
nav_roll = 0;
#endif
}
}
static void update_auto_yaw()
{
// If we Loiter, don't start Yawing, allow Yaw control
if(wp_control == LOITER_MODE)
return;
// this tracks a location so the copter is always pointing towards it.
if(yaw_tracking == MAV_ROI_LOCATION){
auto_yaw = get_bearing(&current_loc, &target_WP);
}else if(yaw_tracking == MAV_ROI_WPNEXT){
// Point towards next WP
auto_yaw = target_bearing;
}
2011-09-21 02:59:23 -03:00
// MAV_ROI_NONE = basic Yaw hold
}