Ardupilot2/ArduPlane/Parameters.pde

989 lines
50 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2012-02-12 04:25:00 -04:00
/*
2012-08-21 23:19:50 -03:00
* ArduPlane parameter definitions
*
*/
#define GSCALAR(v, name, def) { g.v.vtype, name, Parameters::k_param_ ## v, &g.v, {def_value : def} }
#define ASCALAR(v, name, def) { aparm.v.vtype, name, Parameters::k_param_ ## v, &aparm.v, {def_value : def} }
2012-08-21 23:19:50 -03:00
#define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &g.v, {group_info : class::var_info} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &v, {group_info : class::var_info} }
#define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &v, {group_info : class::var_info} }
2012-02-12 04:25:00 -04:00
const AP_Param::Info var_info[] PROGMEM = {
2012-08-21 23:19:50 -03:00
GSCALAR(format_version, "FORMAT_VERSION", 0),
GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type),
// @Param: SYSID_THISMAV
// @DisplayName: MAVLink system ID
// @Description: The identifier of this device in the MAVLink protocol
// @Range: 1 255
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID),
// @Param: SYSID_MYGCS
// @DisplayName: Ground station MAVLink system ID
// @Description: The identifier of the ground station in the MAVLink protocol. Don't change this unless you also modify the ground station to match.
// @Range: 1 255
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255),
2012-06-20 19:20:37 -03:00
// @Param: SERIAL0_BAUD
// @DisplayName: USB Console Baud Rate
// @Description: The baud rate used on the USB console
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial0_baud, "SERIAL0_BAUD", SERIAL0_BAUD/1000),
// @Param: SERIAL1_BAUD
2012-08-21 23:19:50 -03:00
// @DisplayName: Telemetry Baud Rate
// @Description: The baud rate used on the first telemetry port
2012-04-30 07:44:20 -03:00
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(serial1_baud, "SERIAL1_BAUD", SERIAL1_BAUD/1000),
#if MAVLINK_COMM_NUM_BUFFERS > 2
// @Param: SERIAL2_BAUD
// @DisplayName: Telemetry Baud Rate
// @Description: The baud rate used on the second telemetry port
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial2_baud, "SERIAL2_BAUD", SERIAL2_BAUD/1000),
#endif
2012-06-20 19:20:37 -03:00
// @Param: TELEM_DELAY
// @DisplayName: Telemetry startup delay
// @Description: The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up
// @User: Standard
// @Units: seconds
// @Range: 0 10
// @Increment: 1
GSCALAR(telem_delay, "TELEM_DELAY", 0),
2012-04-30 07:44:20 -03:00
// @Param: KFF_RDDRMIX
2012-08-21 23:19:50 -03:00
// @DisplayName: Rudder Mix
// @Description: The amount of rudder mix to apply during aileron movement 0 = 0 %, 1 = 100%
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
GSCALAR(kff_rudder_mix, "KFF_RDDRMIX", RUDDER_MIX),
2012-06-20 19:20:37 -03:00
2012-04-30 09:39:41 -03:00
// @Param: KFF_THR2PTCH
2012-08-21 23:19:50 -03:00
// @DisplayName: Throttle to Pitch Mix
// @Description: Throttle to pitch feed-forward gain.
// @Range: 0 5
// @Increment: 0.01
// @User: Advanced
GSCALAR(kff_throttle_to_pitch, "KFF_THR2PTCH", 0),
2012-06-20 19:20:37 -03:00
// @Param: STICK_MIXING
2012-08-21 23:19:50 -03:00
// @DisplayName: Stick Mixing
// @Description: When enabled, this adds user stick input to the control surfaces in auto modes, allowing the user to have some degree of flight control without changing modes. There are two types of stick mixing available. If you set STICK_MIXING to 1 then it will use "fly by wire" mixing, which controls the roll and pitch in the same way that the FBWA mode does. This is the safest option if you usually fly ArduPlane in FBWA or FBWB mode. If you set STICK_MIXING to 2 then it will enable direct mixing mode, which is what the STABILIZE mode uses. That will allow for much more extreme maneuvers while in AUTO mode.
// @Values: 0:Disabled,1:FBWMixing,2:DirectMixing
2012-08-21 23:19:50 -03:00
// @User: Advanced
GSCALAR(stick_mixing, "STICK_MIXING", STICK_MIXING_FBW),
2012-08-21 23:19:50 -03:00
// @Param: SKIP_GYRO_CAL
// @DisplayName: Skip gyro calibration
// @Description: When enabled this tells the APM to skip the normal gyroscope calibration at startup, and instead use the saved gyro calibration from the last flight. You should only enable this if you are careful to check that your aircraft has good attitude control before flying, as some boards may have significantly different gyro calibration between boots, especially if the temperature changes a lot. If gyro calibration is skipped then APM relies on using the gyro drift detection code to get the right gyro calibration in the few minutes after it boots. This option is mostly useful where the requirement to hold the plane still while it is booting is a significant problem.
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(skip_gyro_cal, "SKIP_GYRO_CAL", 0),
// @Param: AUTO_FBW_STEER
// @DisplayName: Use FBWA steering in AUTO
// @Description: When enabled this option gives FBWA navigation and steering in AUTO mode. This can be used to allow manual stabilised piloting with waypoint logic for triggering payloads. With this enabled the pilot has the same control over the plane as in FBWA mode, and the normal AUTO navigation is completely disabled. This option is not recommended for normal use.
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(auto_fbw_steer, "AUTO_FBW_STEER", 0),
// @Param: TKOFF_THR_MINSPD
// @DisplayName: Takeoff throttle min speed
// @Description: Minimum GPS ground speed in m/s used by the speed check that un-suppresses throttle in auto-takeoff. This can be be used for catapult launches where you want the motor to engage only after the plane leaves the catapult, but it is preferable to use the TKOFF_THR_MINACC and TKOFF_THR_DELAY parameters for cvatapult launches due to the errors associated with GPS measurements. For hand launches with a pusher prop it is strongly advised that this parameter be set to a value no less than 4 m/s to provide additional protection against premature motor start. Note that the GPS velocity will lag the real velocity by about 0.5 seconds. The ground speed check is delayed by the TKOFF_THR_DELAY parameter.
// @Units: m/s
// @Range: 0 30
// @Increment: 0.1
// @User: User
GSCALAR(takeoff_throttle_min_speed, "TKOFF_THR_MINSPD", 0),
// @Param: TKOFF_THR_MINACC
// @DisplayName: Takeoff throttle min acceleration
// @Description: Minimum forward acceleration in m/s/s before arming the ground speed check in auto-takeoff. This is meant to be used for hand launches. Setting this value to 0 disables the acceleration test which means the ground speed check will always be armed which could allow GPS velocity jumps to start the engine. For hand launches this should be set to 15.
// @Units: m/s/s
// @Range: 0 30
// @Increment: 0.1
// @User: User
GSCALAR(takeoff_throttle_min_accel, "TKOFF_THR_MINACC", 0),
// @Param: TKOFF_THR_DELAY
// @DisplayName: Takeoff throttle delay
// @Description: This parameter sets the time delay (in 1/10ths of a second) that the ground speed check is delayed after the forward acceleration check controlled by TKOFF_THR_MINACC has passed. For hand launches with pusher propellers it is essential that this is set to a value of no less than 2 (0.2 seconds) to ensure that the aircraft is safely clear of the throwers arm before the motor can start.
// @Units: 0.1 seconds
// @Range: 0 15
// @Increment: 1
// @User: User
GSCALAR(takeoff_throttle_delay, "TKOFF_THR_DELAY", 2),
// @Param: LEVEL_ROLL_LIMIT
// @DisplayName: Level flight roll limit
// @Description: This controls the maximum bank angle in degrees during flight modes where level flight is desired, such as in the final stages of landing, and during auto takeoff. This should be a small angle (such as 5 degrees) to prevent a wing hitting the runway during takeoff or landing. Setting this to zero will completely disable heading hold on auto takeoff and final landing approach.
// @Units: degrees
// @Range: 0 45
// @Increment: 1
// @User: User
GSCALAR(level_roll_limit, "LEVEL_ROLL_LIMIT", 5),
2012-08-21 23:19:50 -03:00
// @Param: land_pitch_cd
// @DisplayName: Landing Pitch
// @Description: Used in autoland for planes without airspeed sensors in hundredths of a degree
// @Units: centi-Degrees
// @User: Advanced
GSCALAR(land_pitch_cd, "LAND_PITCH_CD", 0),
// @Param: land_flare_alt
// @DisplayName: Landing flare altitude
// @Description: Altitude in autoland at which to lock heading and flare to the LAND_PITCH_CD pitch
// @Units: meters
// @Increment: 0.1
// @User: Advanced
GSCALAR(land_flare_alt, "LAND_FLARE_ALT", 3.0),
// @Param: land_flare_sec
// @DisplayName: Landing flare time
// @Description: Time before landing point at which to lock heading and flare to the LAND_PITCH_CD pitch
// @Units: seconds
// @Increment: 0.1
// @User: Advanced
GSCALAR(land_flare_sec, "LAND_FLARE_SEC", 2.0),
// @Param: NAV_CONTROLLER
// @DisplayName: Navigation controller selection
// @Description: Which navigation controller to enable. Currently the only navigation controller available is L1. From time to time other experimental conrtrollers will be added which are selected using this parameter.
// @Values: 0:Default,1:L1Controller
// @User: Standard
GSCALAR(nav_controller, "NAV_CONTROLLER", AP_Navigation::CONTROLLER_L1),
2012-04-30 07:44:20 -03:00
// @Param: ALT_MIX
2013-05-27 21:10:22 -03:00
// @DisplayName: GPS to Baro Mix
// @Description: The percent of mixing between GPS altitude and baro altitude. 0 = 100% gps, 1 = 100% baro. It is highly recommend that you not change this from the default of 1, as GPS altitude is notoriously unreliable. The only time I would recommend changing this is if you have a high altitude enabled GPS, and you are dropping a plane from a high altitude baloon many kilometers off the ground.
2012-08-21 23:19:50 -03:00
// @Units: Percent
// @Range: 0 1
// @Increment: 0.1
// @User: Advanced
GSCALAR(altitude_mix, "ALT_MIX", ALTITUDE_MIX),
2012-06-20 19:20:37 -03:00
// @Param: ALT_CTRL_ALG
// @DisplayName: Altitude control algorithm
// @Description: This sets what algorithm will be used for altitude control. The default is zero, which selects the most appropriate algorithm for your airframe. Currently the default is to use TECS (total energy control system). From time to time we will add other experimental altitude control algorithms which will be seleted using this parameter.
// @Values: 0:Automatic
// @User: Advanced
GSCALAR(alt_control_algorithm, "ALT_CTRL_ALG", ALT_CONTROL_DEFAULT),
// @Param: ALT_OFFSET
// @DisplayName: Altitude offset
// @Description: This is added to the target altitude in automatic flight. It can be used to add a global altitude offset to a mission
// @Units: Meters
// @Range: -32767 32767
// @Increment: 1
// @User: Advanced
GSCALAR(alt_offset, "ALT_OFFSET", 0),
// @Param: CMD_TOTAL
// @DisplayName: Number of loaded mission items
// @Description: The number of mission mission items that has been loaded by the ground station. Do not change this manually.
// @Range: 1 255
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(command_total, "CMD_TOTAL", 0),
// @Param: CMD_INDEX
// @DisplayName: Current mission command index
// @Description: The index of the currently running mission item. Do not change this manually.
// @Range: 1 255
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(command_index, "CMD_INDEX", 0),
2012-06-20 19:20:37 -03:00
2012-04-30 09:39:41 -03:00
// @Param: WP_RADIUS
2012-08-21 23:19:50 -03:00
// @DisplayName: Waypoint Radius
// @Description: Defines the distance from a waypoint that when crossed indicates the waypoint has been completed. To avoid the aircraft looping around the waypoint in case it misses by more than the WP_RADIUS an additional check is made to see if the aircraft has crossed a "finish line" passing through the waypoint and perpendicular to the flight path from the previous waypoint. If that finish line is crossed then the waypoint is considered complete.
2012-08-21 23:19:50 -03:00
// @Units: Meters
// @Range: 1 32767
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
GSCALAR(waypoint_radius, "WP_RADIUS", WP_RADIUS_DEFAULT),
2012-06-20 19:20:37 -03:00
// @Param: WP_MAX_RADIUS
// @DisplayName: Waypoint Maximum Radius
// @Description: Sets the maximum distance to a waypoint for the waypoint to be considered complete. This overrides the "cross the finish line" logic that is normally used to consider a waypoint complete. For normal AUTO behaviour this parameter should be set to zero. Using a non-zero value is only recommended when it is critical that the aircraft does approach within the given radius, and should loop around until it has done so. This can cause the aircraft to loop forever if its turn radius is greater than the maximum radius set.
// @Units: Meters
// @Range: 0 32767
// @Increment: 1
// @User: Standard
GSCALAR(waypoint_max_radius, "WP_MAX_RADIUS", 0),
2012-04-30 09:39:41 -03:00
// @Param: WP_LOITER_RAD
2012-08-21 23:19:50 -03:00
// @DisplayName: Waypoint Loiter Radius
// @Description: Defines the distance from the waypoint center, the plane will maintain during a loiter. If you set this value to a negative number then the default loiter direction will be counter-clockwise instead of clockwise.
2012-08-21 23:19:50 -03:00
// @Units: Meters
// @Range: 1 32767
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
GSCALAR(loiter_radius, "WP_LOITER_RAD", LOITER_RADIUS_DEFAULT),
2012-02-12 04:25:00 -04:00
#if GEOFENCE_ENABLED == ENABLED
2012-07-05 02:06:38 -03:00
// @Param: FENCE_ACTION
2012-08-21 23:19:50 -03:00
// @DisplayName: Action on geofence breach
// @Description: What to do on fence breach. If this is set to 0 then no action is taken, and geofencing is disabled. If this is set to 1 then the plane will enter GUIDED mode, with the target waypoint as the fence return point. If this is set to 2 then the fence breach is reported to the ground station, but no other action is taken. If set to 3 then the plane enters guided mode but the pilot retains manual throttle control.
// @Values: 0:None,1:GuidedMode,2:ReportOnly,3:GuidedModeThrPass
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(fence_action, "FENCE_ACTION", 0),
2012-07-05 02:06:38 -03:00
// @Param: FENCE_TOTAL
2012-08-21 23:19:50 -03:00
// @DisplayName: Fence Total
// @Description: Number of geofence points currently loaded
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(fence_total, "FENCE_TOTAL", 0),
2012-07-05 02:06:38 -03:00
// @Param: FENCE_CHANNEL
2012-08-21 23:19:50 -03:00
// @DisplayName: Fence Channel
// @Description: RC Channel to use to enable geofence. PWM input above 1750 enables the geofence
// @User: Standard
GSCALAR(fence_channel, "FENCE_CHANNEL", 0),
2012-07-05 02:06:38 -03:00
// @Param: FENCE_MINALT
2012-08-21 23:19:50 -03:00
// @DisplayName: Fence Minimum Altitude
// @Description: Minimum altitude allowed before geofence triggers
// @Units: meters
// @Range: 0 32767
// @Increment: 1
// @User: Standard
GSCALAR(fence_minalt, "FENCE_MINALT", 0),
2012-07-05 02:06:38 -03:00
// @Param: FENCE_MAXALT
2012-08-21 23:19:50 -03:00
// @DisplayName: Fence Maximum Altitude
// @Description: Maximum altitude allowed before geofence triggers
// @Units: meters
// @Range: 0 32767
// @Increment: 1
// @User: Standard
GSCALAR(fence_maxalt, "FENCE_MAXALT", 0),
2012-02-12 04:25:00 -04:00
#endif
2012-06-20 19:20:37 -03:00
// @Param: RALLY_TOTAL
// @DisplayName: Rally Total
// @Description: Number of rally points currently loaded
// @User: Advanced
GSCALAR(rally_total, "RALLY_TOTAL", 0),
// @Param: RALLY_LIMIT_KM
// @DisplayName: Rally Limit
// @Description: Maximum distance to rally point. If the closest rally point is more than this number of kilometers from the current position and the home location is closer than any of the rally points from the current position then do RTL to home rather than to the closest rally point. This prevents a leftover rally point from a different airfield being used accidentally. If this is set to 0 then the closest rally point is always used.
// @User: Advanced
// @Units: kilometers
// @Increment: 0.1
GSCALAR(rally_limit_km, "RALLY_LIMIT_KM", 5),
2012-04-30 09:39:41 -03:00
// @Param: ARSPD_FBW_MIN
2012-08-21 23:19:50 -03:00
// @DisplayName: Fly By Wire Minimum Airspeed
// @Description: Airspeed corresponding to minimum throttle in auto throttle modes (FBWB, CRUISE, AUTO, GUIDED, LOITER, CIRCLE and RTL). This is a calibrated (apparent) airspeed.
2012-08-21 23:19:50 -03:00
// @Units: m/s
// @Range: 5 50
// @Increment: 1
// @User: Standard
ASCALAR(airspeed_min, "ARSPD_FBW_MIN", AIRSPEED_FBW_MIN),
2012-06-20 19:20:37 -03:00
2012-04-30 09:39:41 -03:00
// @Param: ARSPD_FBW_MAX
2012-08-21 23:19:50 -03:00
// @DisplayName: Fly By Wire Maximum Airspeed
// @Description: Airspeed corresponding to maximum throttle in auto throttle modes (FBWB, CRUISE, AUTO, GUIDED, LOITER, CIRCLE and RTL). This is a calibrated (apparent) airspeed.
2012-08-21 23:19:50 -03:00
// @Units: m/s
// @Range: 5 50
// @Increment: 1
// @User: Standard
ASCALAR(airspeed_max, "ARSPD_FBW_MAX", AIRSPEED_FBW_MAX),
2012-02-12 04:25:00 -04:00
// @Param: FBWB_ELEV_REV
2012-08-21 23:19:50 -03:00
// @DisplayName: Fly By Wire elevator reverse
// @Description: Reverse sense of elevator in FBWB and CRUISE modes. When set to 0 up elevator (pulling back on the stick) means to lower altitude. When set to 1, up elevator means to raise altitude.
2012-08-21 23:19:50 -03:00
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(flybywire_elev_reverse, "FBWB_ELEV_REV", 0),
// @Param: FBWB_CLIMB_RATE
2013-04-06 03:42:20 -03:00
// @DisplayName: Fly By Wire B altitude change rate
// @Description: This sets the rate in m/s at which FBWB and CRUISE modes will change its target altitude for full elevator deflection. Note that the actual climb rate of the aircraft can be lower than this, depending on your airspeed and throttle control settings. If you have this parameter set to the default value of 2.0, then holding the elevator at maximum deflection for 10 seconds would change the target altitude by 20 meters.
// @Range: 1-10
// @Increment: 0.1
// @User: Standard
GSCALAR(flybywire_climb_rate, "FBWB_CLIMB_RATE", 2.0f),
2012-04-30 09:39:41 -03:00
// @Param: THR_MIN
2012-08-21 23:19:50 -03:00
// @DisplayName: Minimum Throttle
// @Description: The minimum throttle setting to which the autopilot will apply.
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
ASCALAR(throttle_min, "THR_MIN", THROTTLE_MIN),
2012-06-20 19:20:37 -03:00
2012-04-30 09:39:41 -03:00
// @Param: THR_MAX
2012-08-21 23:19:50 -03:00
// @DisplayName: Maximum Throttle
// @Description: The maximum throttle setting to which the autopilot will apply.
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
ASCALAR(throttle_max, "THR_MAX", THROTTLE_MAX),
2012-08-21 23:19:50 -03:00
// @Param: THR_SLEWRATE
2012-12-03 20:38:29 -04:00
// @DisplayName: Throttle slew rate
// @Description: maximum percentage change in throttle per second. A setting of 10 means to not change the throttle by more than 10% of the full throttle range in one second.
2012-08-21 23:19:50 -03:00
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
ASCALAR(throttle_slewrate, "THR_SLEWRATE", 100),
2012-06-20 19:20:37 -03:00
// @Param: THR_SUPP_MAN
// @DisplayName: Throttle suppress manual passthru
// @Description: When throttle is supressed in auto mode it is normally forced to zero. If you enable this option, then while suppressed it will be manual throttle. This is useful on petrol engines to hold the idle throttle manually while waiting for takeoff
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(throttle_suppress_manual,"THR_SUPP_MAN", 0),
// @Param: THR_PASS_STAB
// @DisplayName: Throttle passthru in stabilize
2013-07-10 19:57:46 -03:00
// @Description: If this is set then when in STABILIZE, FBWA or ACRO modes the throttle is a direct passthru from the transmitter. This means the THR_MIN and THR_MAX settings are not used in these modes. This is useful for petrol engines where you setup a throttle cut switch that suppresses the throttle below the normal minimum.
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(throttle_passthru_stabilize,"THR_PASS_STAB", 0),
2012-04-30 09:39:41 -03:00
// @Param: THR_FAILSAFE
2012-08-21 23:19:50 -03:00
// @DisplayName: Throttle Failsafe Enable
// @Description: The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(throttle_fs_enabled, "THR_FAILSAFE", THROTTLE_FAILSAFE),
2012-06-20 19:20:37 -03:00
2012-07-05 02:06:38 -03:00
// @Param: THR_FS_VALUE
2012-08-21 23:19:50 -03:00
// @DisplayName: Throttle Failsafe Value
// @Description: The PWM level on channel 3 below which throttle sailsafe triggers
// @Range: 925 1100
// @Increment: 1
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(throttle_fs_value, "THR_FS_VALUE", THROTTLE_FS_VALUE),
2012-07-05 02:06:38 -03:00
// @Param: TRIM_THROTTLE
2012-08-21 23:19:50 -03:00
// @DisplayName: Throttle cruise percentage
// @Description: The target percentage of throttle to apply for normal flight
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
ASCALAR(throttle_cruise, "TRIM_THROTTLE", THROTTLE_CRUISE),
2012-02-12 04:25:00 -04:00
// @Param: THROTTLE_NUDGE
// @DisplayName: Throttle nudge enable
2013-10-14 01:40:26 -03:00
// @Description: When enabled, this uses the throttle input in auto-throttle modes to 'nudge' the throttle or airspeed to higher or lower values. When you have an airspeed sensor the nudge affects the target airspeed, so that throttle inputs above 50% will increase the target airspeed from TRIM_ARSPD_CM up to a maximum of ARSPD_FBW_MAX. When no airspeed sensor is enabled the throttle nudge will push up the target throttle for throttle inputs above 50%.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
// @User: Standard
GSCALAR(throttle_nudge, "THROTTLE_NUDGE", 1),
2012-07-05 02:06:38 -03:00
// @Param: FS_SHORT_ACTN
2012-08-21 23:19:50 -03:00
// @DisplayName: Short failsafe action
// @Description: The action to take on a short (FS_SHORT_TIMEOUT) failsafe event in AUTO, GUIDED or LOITER modes. A short failsafe event in stabilization modes will always cause an immediate change to CIRCLE mode. In AUTO mode you can choose whether it will enter CIRCLE mode or continue with the mission. If FS_SHORT_ACTN is 0 then it will continue with the mission, if it is 1 then it will enter CIRCLE mode, and then enter RTL if the failsafe condition persists for FS_LONG_TIMEOUT seconds. If it is set to 2 then the plane will enter FBWA mode with zero throttle and level attitude to glide in.
// @Values: 0:Continue,1:Circle/ReturnToLaunch,2:Glide
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(short_fs_action, "FS_SHORT_ACTN", SHORT_FAILSAFE_ACTION),
2012-07-05 02:06:38 -03:00
// @Param: FS_SHORT_TIMEOUT
// @DisplayName: Short failsafe timeout
// @Description: The time in seconds that a failsafe condition has to persist before a short failsafe event will occor. This defaults to 1.5 seconds
// @Units: seconds
// @Range: 1 100
// @Increment: 0.5
// @User: Standard
GSCALAR(short_fs_timeout, "FS_SHORT_TIMEOUT", 1.5f),
2012-07-05 02:06:38 -03:00
// @Param: FS_LONG_ACTN
2012-08-21 23:19:50 -03:00
// @DisplayName: Long failsafe action
// @Description: The action to take on a long (FS_LONG_TIMEOUT seconds) failsafe event in AUTO, GUIDED or LOITER modes. A long failsafe event in stabilization modes will always cause an RTL (ReturnToLaunch). In AUTO modes you can choose whether it will RTL or continue with the mission. If FS_LONG_ACTN is 0 then it will continue with the mission, if it is 1 then it will enter RTL mode. Note that if FS_SHORT_ACTN is 1, then the aircraft will enter CIRCLE mode after FS_SHORT_TIMEOUT seconds of failsafe, and will always enter RTL after FS_LONG_TIMEOUT seconds of failsafe, regardless of the FS_LONG_ACTN setting. If FS_LONG_ACTN is set to 2 then instead of using RTL it will enter a FBWA glide with zero throttle.
// @Values: 0:Continue,1:ReturnToLaunch,2:Glide
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(long_fs_action, "FS_LONG_ACTN", LONG_FAILSAFE_ACTION),
2012-07-05 02:06:38 -03:00
// @Param: FS_LONG_TIMEOUT
// @DisplayName: Long failsafe timeout
// @Description: The time in seconds that a failsafe condition has to persist before a long failsafe event will occor. This defaults to 20 seconds
// @Units: seconds
// @Range: 1 300
// @Increment: 0.5
// @User: Standard
GSCALAR(long_fs_timeout, "FS_LONG_TIMEOUT", 20),
// @Param: FS_BATT_VOLTAGE
// @DisplayName: Failsafe battery voltage
// @Description: Battery voltage to trigger failsafe. Set to 0 to disable battery voltage failsafe. If the battery voltage drops below this voltage continuously for 10 seconds then the plane will switch to RTL mode
// @Units: Volts
// @Increment: 0.1
// @User: Standard
GSCALAR(fs_batt_voltage, "FS_BATT_VOLTAGE", 0),
// @Param: FS_BATT_MAH
// @DisplayName: Failsafe battery milliAmpHours
// @Description: Battery capacity remaining to trigger failsafe. Set to 0 to disable battery remaining failsafe. If the battery remaining drops below this level then the plane will switch to RTL mode immediately
// @Units: mAh
// @Increment: 50
// @User: Standard
GSCALAR(fs_batt_mah, "FS_BATT_MAH", 0),
2012-07-05 02:06:38 -03:00
// @Param: FS_GCS_ENABL
2012-08-21 23:19:50 -03:00
// @DisplayName: GCS failsafe enable
// @Description: Enable ground control station telemetry failsafe. Failsafe will trigger after 20 seconds of no MAVLink heartbeat messages. WARNING: Enabling this option opens up the possibility of your plane going into failsafe mode and running the motor on the ground it it loses contact with your ground station. If this option is enabled on an electric plane then either use a separate motor arming switch or remove the propeller in any ground testing.
2012-08-21 23:19:50 -03:00
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(gcs_heartbeat_fs_enabled, "FS_GCS_ENABL", GCS_HEARTBEAT_FAILSAFE),
2012-02-12 04:25:00 -04:00
2012-07-05 02:06:38 -03:00
// @Param: FLTMODE_CH
2012-08-21 23:19:50 -03:00
// @DisplayName: Flightmode channel
// @Description: RC Channel to use for flight mode control
// @User: Advanced
GSCALAR(flight_mode_channel, "FLTMODE_CH", FLIGHT_MODE_CHANNEL),
2012-07-05 02:06:38 -03:00
// @Param: FLTMODE1
2012-08-21 23:19:50 -03:00
// @DisplayName: FlightMode1
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,10:Auto,11:RTL,12:Loiter,15:Guided
2012-08-21 23:19:50 -03:00
// @User: Standard
// @Description: Flight mode for switch position 1 (910 to 1230 and above 2049)
GSCALAR(flight_mode1, "FLTMODE1", FLIGHT_MODE_1),
2012-07-05 02:06:38 -03:00
// @Param: FLTMODE2
2012-08-21 23:19:50 -03:00
// @DisplayName: FlightMode2
// @Description: Flight mode for switch position 2 (1231 to 1360)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,10:Auto,11:RTL,12:Loiter,15:Guided
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(flight_mode2, "FLTMODE2", FLIGHT_MODE_2),
2012-07-05 02:06:38 -03:00
// @Param: FLTMODE3
2012-08-21 23:19:50 -03:00
// @DisplayName: FlightMode3
// @Description: Flight mode for switch position 3 (1361 to 1490)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,10:Auto,11:RTL,12:Loiter,15:Guided
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(flight_mode3, "FLTMODE3", FLIGHT_MODE_3),
2012-07-05 02:06:38 -03:00
// @Param: FLTMODE4
2012-08-21 23:19:50 -03:00
// @DisplayName: FlightMode4
// @Description: Flight mode for switch position 4 (1491 to 1620)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,10:Auto,11:RTL,12:Loiter,15:Guided
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(flight_mode4, "FLTMODE4", FLIGHT_MODE_4),
2012-07-05 02:06:38 -03:00
// @Param: FLTMODE5
2012-08-21 23:19:50 -03:00
// @DisplayName: FlightMode5
// @Description: Flight mode for switch position 5 (1621 to 1749)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,10:Auto,11:RTL,12:Loiter,15:Guided
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(flight_mode5, "FLTMODE5", FLIGHT_MODE_5),
2012-07-05 02:06:38 -03:00
// @Param: FLTMODE6
2012-08-21 23:19:50 -03:00
// @DisplayName: FlightMode6
// @Description: Flight mode for switch position 6 (1750 to 2049)
// @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,10:Auto,11:RTL,12:Loiter,15:Guided
2012-08-21 23:19:50 -03:00
// @User: Standard
GSCALAR(flight_mode6, "FLTMODE6", FLIGHT_MODE_6),
2012-02-12 04:25:00 -04:00
2012-04-30 09:39:41 -03:00
// @Param: LIM_ROLL_CD
2012-08-21 23:19:50 -03:00
// @DisplayName: Maximum Bank Angle
// @Description: The maximum commanded bank angle in either direction
// @Units: centi-Degrees
// @Range: 0 9000
// @Increment: 1
// @User: Standard
GSCALAR(roll_limit_cd, "LIM_ROLL_CD", HEAD_MAX_CENTIDEGREE),
2012-06-20 19:20:37 -03:00
2012-04-30 09:39:41 -03:00
// @Param: LIM_PITCH_MAX
2012-08-21 23:19:50 -03:00
// @DisplayName: Maximum Pitch Angle
// @Description: The maximum commanded pitch up angle
// @Units: centi-Degrees
// @Range: 0 9000
// @Increment: 1
// @User: Standard
ASCALAR(pitch_limit_max_cd, "LIM_PITCH_MAX", PITCH_MAX_CENTIDEGREE),
2012-06-20 19:20:37 -03:00
2012-04-30 09:39:41 -03:00
// @Param: LIM_PITCH_MIN
2012-08-21 23:19:50 -03:00
// @DisplayName: Minimum Pitch Angle
// @Description: The minimum commanded pitch down angle
// @Units: centi-Degrees
2012-08-30 01:55:08 -03:00
// @Range: -9000 0
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
ASCALAR(pitch_limit_min_cd, "LIM_PITCH_MIN", PITCH_MIN_CENTIDEGREE),
2012-02-12 04:25:00 -04:00
// @Param: ACRO_ROLL_RATE
// @DisplayName: ACRO mode roll rate
// @Description: The maximum roll rate at full stick deflection in ACRO mode
// @Units: degrees/second
// @Range: 10 500
// @Increment: 1
// @User: Standard
GSCALAR(acro_roll_rate, "ACRO_ROLL_RATE", 180),
// @Param: ACRO_PITCH_RATE
// @DisplayName: ACRO mode pitch rate
// @Description: The maximum pitch rate at full stick deflection in ACRO mode
// @Units: degrees/second
// @Range: 10 500
// @Increment: 1
// @User: Standard
GSCALAR(acro_pitch_rate, "ACRO_PITCH_RATE", 180),
// @Param: ACRO_LOCKING
// @DisplayName: ACRO mode attitude locking
// @Description: Enable attitude locking when sticks are released
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(acro_locking, "ACRO_LOCKING", 0),
// @Param: GROUND_STEER_ALT
// @DisplayName: Ground steer altitude
// @Description: Altitude at which to use the ground steering controller on the rudder. If non-zero then the STEER2SRV controller will be used to control the rudder for altitudes within this limit of the home altitude.
// @Units: Meters
// @Range: -100 100
// @Increment: 0.1
// @User: Standard
GSCALAR(ground_steer_alt, "GROUND_STEER_ALT", 0),
// @Param: GROUND_STEER_DPS
// @DisplayName: Ground steer rate
// @Description: Ground steering rate in degrees per second for full rudder stick deflection
// @Units: Meters
// @Range: 10 360
// @Increment: 1
// @User: Advanced
GSCALAR(ground_steer_dps, "GROUND_STEER_DPS", 90),
2013-07-14 08:23:15 -03:00
// @Param: TRIM_AUTO
// @DisplayName: Automatic trim adjustment
// @Description: Set RC trim PWM levels to current levels when switching away from manual mode. When this option is enabled and you change from MANUAL to any other mode then the APM will take the current position of the control sticks as the trim values for aileron, elevator and rudder. It will use those to set RC1_TRIM, RC2_TRIM and RC4_TRIM. This option is disabled by default as if a pilot is not aware of this option and changes from MANUAL to another mode while control inputs are not centered then the trim could be changed to a dangerously bad value. You can enable this option to assist with trimming your plane, by enabling it before takeoff then switching briefly to MANUAL in flight, and seeing how the plane reacts. You can then switch back to FBWA, trim the surfaces then again test MANUAL mode. Each time you switch from MANUAL the APM will take your control inputs as the new trim. After you have good trim on your aircraft you can disable TRIM_AUTO for future flights.
2012-08-21 23:19:50 -03:00
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(auto_trim, "TRIM_AUTO", AUTO_TRIM),
2012-07-05 02:06:38 -03:00
// @Param: ELEVON_MIXING
2012-08-21 23:19:50 -03:00
// @DisplayName: Elevon mixing
// @Description: Enable elevon mixing on both input and output. To enable just output mixing see the ELEVON_OUTPUT option.
2012-08-21 23:19:50 -03:00
// @Values: 0:Disabled,1:Enabled
// @User: User
GSCALAR(mix_mode, "ELEVON_MIXING", ELEVON_MIXING),
2012-07-05 02:06:38 -03:00
// @Param: ELEVON_REVERSE
2012-08-21 23:19:50 -03:00
// @DisplayName: Elevon reverse
// @Description: Reverse elevon mixing
// @Values: 0:Disabled,1:Enabled
// @User: User
GSCALAR(reverse_elevons, "ELEVON_REVERSE", ELEVON_REVERSE),
2012-07-05 02:06:38 -03:00
2012-07-12 20:06:01 -03:00
// @Param: ELEVON_CH1_REV
2012-08-21 23:19:50 -03:00
// @DisplayName: Elevon reverse
// @Description: Reverse elevon channel 1
// @Values: -1:Disabled,1:Enabled
// @User: User
GSCALAR(reverse_ch1_elevon, "ELEVON_CH1_REV", ELEVON_CH1_REVERSE),
2012-07-05 02:06:38 -03:00
2012-07-12 20:06:01 -03:00
// @Param: ELEVON_CH2_REV
2012-08-21 23:19:50 -03:00
// @DisplayName: Elevon reverse
// @Description: Reverse elevon channel 2
// @Values: -1:Disabled,1:Enabled
// @User: User
GSCALAR(reverse_ch2_elevon, "ELEVON_CH2_REV", ELEVON_CH2_REVERSE),
2012-07-05 02:06:38 -03:00
// @Param: VTAIL_OUTPUT
// @DisplayName: VTail output
// @Description: Enable VTail output in software. If enabled then the APM will provide software VTail mixing on the elevator and rudder channels. There are 4 different mixing modes available, which refer to the 4 ways the elevator can be mapped to the two VTail servos. Note that you must not use VTail output mixing with hardware pass-through of RC values, such as with channel 8 manual control on an APM1. So if you use an APM1 then set FLTMODE_CH to something other than 8 before you enable VTAIL_OUTPUT. Please also see the MIXING_GAIN parameter for the output gain of the mixer.
// @Values: 0:Disabled,1:UpUp,2:UpDown,3:DownUp,4:DownDown
// @User: User
GSCALAR(vtail_output, "VTAIL_OUTPUT", 0),
// @Param: ELEVON_OUTPUT
// @DisplayName: Elevon output
// @Description: Enable software elevon output mixer. If enabled then the APM will provide software elevon mixing on the aileron and elevator channels. There are 4 different mixing modes available, which refer to the 4 ways the elevator can be mapped to the two elevon servos. Note that you must not use elevon output mixing with hardware pass-through of RC values, such as with channel 8 manual control on an APM1. So if you use an APM1 then set FLTMODE_CH to something other than 8 before you enable ELEVON_OUTPUT. Please also see the MIXING_GAIN parameter for the output gain of the mixer.
// @Values: 0:Disabled,1:UpUp,2:UpDown,3:DownUp,4:DownDown
// @User: User
GSCALAR(elevon_output, "ELEVON_OUTPUT", 0),
// @Param: MIXING_GAIN
// @DisplayName: Mixing Gain
// @Description: The gain for the Vtail and elevon output mixers. The default is 0.5, which ensures that the mixer doesn't saturate, allowing both input channels to go to extremes while retaining control over the output. Hardware mixers often have a 1.0 gain, which gives more servo throw, but can saturate. If you don't have enough throw on your servos with VTAIL_OUTPUT or ELEVON_OUTPUT enabled then you can raise the gain using MIXING_GAIN. The mixer allows outputs in the range 900 to 2100 microseconds.
// @Range: 0.5 1.2
// @User: User
GSCALAR(mixing_gain, "MIXING_GAIN", 0.5f),
2012-07-05 02:06:38 -03:00
// @Param: SYS_NUM_RESETS
2012-08-21 23:19:50 -03:00
// @DisplayName: Num Resets
// @Description: Number of APM board resets
// @User: Advanced
GSCALAR(num_resets, "SYS_NUM_RESETS", 0),
2012-07-05 02:06:38 -03:00
// @Param: LOG_BITMASK
2012-08-21 23:19:50 -03:00
// @DisplayName: Log bitmask
// @Description: Two byte bitmap of log types to enable in dataflash
// @Values: 0:Disabled,1902:Default,2030:Default+IMU
2012-08-21 23:19:50 -03:00
// @User: Advanced
GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK),
2012-07-05 02:06:38 -03:00
// @Param: RST_SWITCH_CH
2012-08-21 23:19:50 -03:00
// @DisplayName: Reset Switch Channel
// @Description: RC channel to use to reset to last flight mode after geofence takeover.
// @User: Advanced
GSCALAR(reset_switch_chan, "RST_SWITCH_CH", 0),
2012-07-05 02:06:38 -03:00
// @Param: RST_MISSION_CH
2012-08-21 23:19:50 -03:00
// @DisplayName: Reset Mission Channel
// @Description: RC channel to use to reset the mission to the first waypoint. When this channel goes above 1750 the mission is reset. Set RST_MISSION_CH to 0 to disable.
// @User: Advanced
GSCALAR(reset_mission_chan, "RST_MISSION_CH", 0),
2012-07-05 02:06:38 -03:00
// @Param: TRIM_ARSPD_CM
2012-08-21 23:19:50 -03:00
// @DisplayName: Target airspeed
// @Description: Airspeed in cm/s to aim for when airspeed is enabled in auto mode. This is a calibrated (apparent) airspeed.
2012-08-21 23:19:50 -03:00
// @Units: cm/s
// @User: User
GSCALAR(airspeed_cruise_cm, "TRIM_ARSPD_CM", AIRSPEED_CRUISE_CM),
2012-07-05 02:06:38 -03:00
// @Param: SCALING_SPEED
2012-08-21 23:19:50 -03:00
// @DisplayName: speed used for speed scaling calculations
// @Description: Airspeed in m/s to use when calculating surface speed scaling. Note that changing this value will affect all PID values
// @Units: m/s
// @User: Advanced
GSCALAR(scaling_speed, "SCALING_SPEED", SCALING_SPEED),
2012-07-05 02:06:38 -03:00
// @Param: MIN_GNDSPD_CM
2012-08-21 23:19:50 -03:00
// @DisplayName: Minimum ground speed
// @Description: Minimum ground speed in cm/s when under airspeed control
// @Units: cm/s
// @User: Advanced
GSCALAR(min_gndspeed_cm, "MIN_GNDSPD_CM", MIN_GNDSPEED_CM),
2012-07-05 02:06:38 -03:00
// @Param: TRIM_PITCH_CD
2012-08-21 23:19:50 -03:00
// @DisplayName: Pitch angle offset
// @Description: offset to add to pitch - used for in-flight pitch trimming. It is recommended that instead of using this parameter you level your plane correctly on the ground for good flight attitude.
2012-08-21 23:19:50 -03:00
// @Units: centi-Degrees
// @User: Advanced
GSCALAR(pitch_trim_cd, "TRIM_PITCH_CD", 0),
2012-07-05 02:06:38 -03:00
// @Param: ALT_HOLD_RTL
2012-08-21 23:19:50 -03:00
// @DisplayName: RTL altitude
2013-05-30 04:39:49 -03:00
// @Description: Return to launch target altitude. This is the altitude the plane will aim for and loiter at when returning home. If this is negative (usually -1) then the plane will use the current altitude at the time of entering RTL.
2012-08-21 23:19:50 -03:00
// @Units: centimeters
// @User: User
GSCALAR(RTL_altitude_cm, "ALT_HOLD_RTL", ALT_HOLD_HOME_CM),
2012-07-05 02:06:38 -03:00
// @Param: ALT_HOLD_FBWCM
// @DisplayName: Minimum altitude for FBWB mode
// @Description: This is the minimum altitude in centimeters that FBWB and CRUISE modes will allow. If you attempt to descend below this altitude then the plane will level off. A value of zero means no limit.
// @Units: centimeters
// @User: User
2012-08-21 23:19:50 -03:00
GSCALAR(FBWB_min_altitude_cm, "ALT_HOLD_FBWCM", ALT_HOLD_FBW_CM),
2012-06-20 19:20:37 -03:00
2012-04-30 07:44:20 -03:00
// @Param: MAG_ENABLE
2012-08-21 23:19:50 -03:00
// @DisplayName: Enable Compass
// @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.
2012-08-21 23:19:50 -03:00
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(compass_enabled, "MAG_ENABLE", 1),
2012-07-05 02:06:38 -03:00
// @Param: FLAP_1_PERCNT
// @DisplayName: Flap 1 percentage
// @Description: The percentage change in flap position when FLAP_1_SPEED is reached. Use zero to disable flaps
// @Range: 0 100
// @Units: Percent
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(flap_1_percent, "FLAP_1_PERCNT", FLAP_1_PERCENT),
// @Param: FLAP_1_SPEED
// @DisplayName: Flap 1 speed
// @Description: The speed in meters per second at which to engage FLAP_1_PERCENT of flaps. Note that FLAP_1_SPEED should be greater than or equal to FLAP_2_SPEED
// @Range: 0 100
// @Increment: 1
// @Units: m/s
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(flap_1_speed, "FLAP_1_SPEED", FLAP_1_SPEED),
// @Param: FLAP_2_PERCNT
// @DisplayName: Flap 2 percentage
// @Description: The percentage change in flap position when FLAP_2_SPEED is reached. Use zero to disable flaps
// @Range: 0 100
// @Units: Percent
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(flap_2_percent, "FLAP_2_PERCNT", FLAP_2_PERCENT),
2012-02-12 04:25:00 -04:00
// @Param: FLAP_2_SPEED
// @DisplayName: Flap 2 speed
// @Description: The speed in meters per second at which to engage FLAP_2_PERCENT of flaps. Note that FLAP_1_SPEED should be greater than or equal to FLAP_2_SPEED
// @Range: 0 100
// @Units: m/s
// @Increment: 1
// @User: Advanced
GSCALAR(flap_2_speed, "FLAP_2_SPEED", FLAP_2_SPEED),
2012-02-12 04:25:00 -04:00
// @Param: RSSI_PIN
// @DisplayName: Receiver RSSI sensing pin
// @Description: This selects an analog pin for the receiver RSSI voltage. It assumes the voltage is 5V for max rssi, 0V for minimum
// @Values: -1:Disabled, 0:A0, 1:A1, 13:A13
// @User: Standard
GSCALAR(rssi_pin, "RSSI_PIN", -1),
2013-03-30 00:54:14 -03:00
// @Param: INVERTEDFLT_CH
// @DisplayName: Inverted flight channel
// @Description: A RC input channel number to enable inverted flight. If this is non-zero then the APM will monitor the correcponding RC input channel and will enable inverted flight when the channel goes above 1750.
// @Values: 0:Disabled,1:Channel1,2:Channel2,3:Channel3,4:Channel4,5:Channel5,6:Channel6,7:Channel7,8:Channel8
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(inverted_flight_ch, "INVERTEDFLT_CH", 0),
2012-06-20 19:20:37 -03:00
#if HIL_MODE != HIL_MODE_DISABLED
// @Param: HIL_SERVOS
// @DisplayName: HIL Servos enable
// @Description: This controls whether real servo controls are used in HIL mode. If you enable this then the APM will control the real servos in HIL mode. If disabled it will report servo values, but will not output to the real servos. Be careful that your motor and propeller are not connected if you enable this option.
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(hil_servos, "HIL_SERVOS", 0),
// @Param: HIL_ERR_LIMIT
// @DisplayName: Limit of error in HIL attitude before reset
// @Description: This controls the maximum error in degrees on any axis before HIL will reset the DCM attitude to match the HIL_STATE attitude. This limit will prevent poor timing on HIL from causing a major attitude error. If the value is zero then no limit applies.
// @Units: degrees
// @Range: 0 90
// @Increment: 0.1
// @User: Advanced
GSCALAR(hil_err_limit, "HIL_ERR_LIMIT", 5),
#endif
2012-08-21 23:19:50 -03:00
// barometer ground calibration. The GND_ prefix is chosen for
// compatibility with previous releases of ArduPlane
2013-05-21 02:22:23 -03:00
// @Group: GND_
// @Path: ../libraries/AP_Baro/AP_Baro.cpp
2012-08-21 23:19:50 -03:00
GOBJECT(barometer, "GND_", AP_Baro),
2012-06-13 16:00:20 -03:00
#if CAMERA == ENABLED
2012-08-21 23:19:50 -03:00
// @Group: CAM_
// @Path: ../libraries/AP_Camera/AP_Camera.cpp
GOBJECT(camera, "CAM_", AP_Camera),
2012-06-13 16:00:20 -03:00
#endif
2013-11-27 22:19:34 -04:00
// @Group: ARMING_
2013-12-11 06:37:01 -04:00
// @Path: ../libraries/AP_Arming/AP_Arming.cpp
2013-11-27 22:19:34 -04:00
GOBJECT(arming, "ARMING_", AP_Arming),
2013-06-24 09:40:10 -03:00
// @Group: RELAY_
// @Path: ../libraries/AP_Relay/AP_Relay.cpp
GOBJECT(relay, "RELAY_", AP_Relay),
// @Group: SONAR_
// @Path: ../libraries/AP_RangeFinder/AP_RangeFinder_analog.cpp
GOBJECT(sonar, "SONAR_", AP_RangeFinder_analog),
2012-08-21 23:19:50 -03:00
// RC channel
//-----------
// @Group: RC1_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_1, "RC1_", RC_Channel),
2012-08-21 23:19:50 -03:00
// @Group: RC2_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_2, "RC2_", RC_Channel),
2012-08-21 23:19:50 -03:00
// @Group: RC3_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_3, "RC3_", RC_Channel),
2012-08-21 23:19:50 -03:00
// @Group: RC4_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_4, "RC4_", RC_Channel),
2012-08-21 23:19:50 -03:00
// @Group: RC5_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_5, "RC5_", RC_Channel_aux),
// @Group: RC6_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_6, "RC6_", RC_Channel_aux),
// @Group: RC7_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_7, "RC7_", RC_Channel_aux),
// @Group: RC8_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_8, "RC8_", RC_Channel_aux),
2012-02-12 04:25:00 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
2012-08-21 23:19:50 -03:00
// @Group: RC9_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_9, "RC9_", RC_Channel_aux),
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 || CONFIG_HAL_BOARD == HAL_BOARD_PX4
2012-08-21 23:19:50 -03:00
// @Group: RC10_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_10, "RC10_", RC_Channel_aux),
2012-08-21 23:19:50 -03:00
// @Group: RC11_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_11, "RC11_", RC_Channel_aux),
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
// @Group: RC12_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
GGROUP(rc_12, "RC12_", RC_Channel_aux),
#endif
// @Group: RLL2SRV_
// @Path: ../libraries/APM_Control/AP_RollController.cpp
2013-08-14 01:57:41 -03:00
GOBJECT(rollController, "RLL2SRV_", AP_RollController),
// @Group: PTCH2SRV_
// @Path: ../libraries/APM_Control/AP_PitchController.cpp
2013-08-14 01:57:41 -03:00
GOBJECT(pitchController, "PTCH2SRV_", AP_PitchController),
// @Group: YAW2SRV_
// @Path: ../libraries/APM_Control/AP_YawController.cpp
2013-08-14 01:57:41 -03:00
GOBJECT(yawController, "YAW2SRV_", AP_YawController),
// @Group: STEER2SRV_
// @Path: ../libraries/APM_Control/AP_SteerController.cpp
GOBJECT(steerController, "STEER2SRV_", AP_SteerController),
// variables not in the g class which contain EEPROM saved variables
2012-06-20 19:20:37 -03:00
2012-08-21 23:19:50 -03:00
// @Group: COMPASS_
// @Path: ../libraries/AP_Compass/Compass.cpp
GOBJECT(compass, "COMPASS_", Compass),
// @Group: SCHED_
// @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp
GOBJECT(scheduler, "SCHED_", AP_Scheduler),
// @Group: RCMAP_
// @Path: ../libraries/AP_RCMapper/AP_RCMapper.cpp
GOBJECT(rcmap, "RCMAP_", RCMapper),
2013-09-11 20:53:24 -03:00
// @Group: SR0_
// @Path: GCS_Mavlink.pde
GOBJECTN(gcs[0], gcs0, "SR0_", GCS_MAVLINK),
2013-09-11 20:53:24 -03:00
// @Group: SR1_
2013-09-11 20:53:24 -03:00
// @Path: GCS_Mavlink.pde
GOBJECTN(gcs[1], gcs1, "SR1_", GCS_MAVLINK),
#if MAVLINK_COMM_NUM_BUFFERS > 2
// @Group: SR2_
// @Path: GCS_Mavlink.pde
GOBJECTN(gcs[2], gcs2, "SR2_", GCS_MAVLINK),
#endif
2012-06-20 19:20:37 -03:00
2012-08-21 23:19:50 -03:00
// @Group: INS_
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
GOBJECT(ins, "INS_", AP_InertialSensor),
2012-07-19 03:07:50 -03:00
2012-08-21 23:19:50 -03:00
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
// @Group: ARSPD_
2012-08-21 23:19:50 -03:00
// @Path: ../libraries/AP_Airspeed/AP_Airspeed.cpp
GOBJECT(airspeed, "ARSPD_", AP_Airspeed),
// @Group: NAVL1_
// @Path: ../libraries/AP_L1_Control/AP_L1_Control.cpp
GOBJECT(L1_controller, "NAVL1_", AP_L1_Control),
// @Group: TECS_
// @Path: ../libraries/AP_TECS/AP_TECS.cpp
GOBJECT(TECS_controller, "TECS_", AP_TECS),
#if MOUNT == ENABLED
2012-08-21 23:19:50 -03:00
// @Group: MNT_
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount, "MNT_", AP_Mount),
#endif
#if MOUNT2 == ENABLED
2012-08-21 23:19:50 -03:00
// @Group: MNT2_
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount2, "MNT2_", AP_Mount),
#endif
2013-09-29 09:54:39 -03:00
// @Group: BATT_
// @Path: ../libraries/AP_BattMonitor/AP_BattMonitor.cpp
GOBJECT(battery, "BATT_", AP_BattMonitor),
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
2012-08-21 23:19:50 -03:00
// @Group: SIM_
// @Path: ../libraries/SITL/SITL.cpp
2012-08-21 23:19:50 -03:00
GOBJECT(sitl, "SIM_", SITL),
#endif
#if OBC_FAILSAFE == ENABLED
2012-08-21 23:19:50 -03:00
GOBJECT(obc, "FS_", APM_OBC),
#endif
2012-08-21 23:19:50 -03:00
AP_VAREND
2012-02-12 04:25:00 -04:00
};
/*
This is a conversion table from old parameter values to new
parameter names. The startup code looks for saved values of the old
parameters and will copy them across to the new parameters if the
new parameter does not yet have a saved value. It then saves the new
value.
Note that this works even if the old parameter has been removed. It
relies on the old k_param index not being removed
The second column below is the index in the var_info[] table for the
old object. This should be zero for top level parameters.
*/
const AP_Param::ConversionInfo conversion_table[] PROGMEM = {
{ Parameters::k_param_pidServoRoll, 0, AP_PARAM_FLOAT, "RLL2SRV_P" },
{ Parameters::k_param_pidServoRoll, 1, AP_PARAM_FLOAT, "RLL2SRV_I" },
{ Parameters::k_param_pidServoRoll, 2, AP_PARAM_FLOAT, "RLL2SRV_D" },
{ Parameters::k_param_pidServoRoll, 3, AP_PARAM_FLOAT, "RLL2SRV_IMAX" },
{ Parameters::k_param_pidServoPitch, 0, AP_PARAM_FLOAT, "PTCH2SRV_P" },
{ Parameters::k_param_pidServoPitch, 1, AP_PARAM_FLOAT, "PTCH2SRV_I" },
{ Parameters::k_param_pidServoPitch, 2, AP_PARAM_FLOAT, "PTCH2SRV_D" },
{ Parameters::k_param_pidServoPitch, 3, AP_PARAM_FLOAT, "PTCH2SRV_IMAX" },
{ Parameters::k_param_battery_monitoring, 0, AP_PARAM_INT8, "BATT_MONITOR" },
{ Parameters::k_param_battery_volt_pin, 0, AP_PARAM_INT8, "BATT_VOLT_PIN" },
{ Parameters::k_param_battery_curr_pin, 0, AP_PARAM_INT8, "BATT_CURR_PIN" },
{ Parameters::k_param_volt_div_ratio, 0, AP_PARAM_FLOAT, "BATT_VOLT_MULT" },
{ Parameters::k_param_curr_amp_per_volt, 0, AP_PARAM_FLOAT, "BATT_AMP_PERVOLT" },
{ Parameters::k_param_curr_amp_offset, 0, AP_PARAM_FLOAT, "BATT_AMP_OFFSET" },
{ Parameters::k_param_pack_capacity, 0, AP_PARAM_INT32, "BATT_CAPACITY" },
};
2012-02-12 04:25:00 -04:00
static void load_parameters(void)
{
2012-08-21 23:19:50 -03:00
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
2012-02-12 04:25:00 -04:00
2012-08-21 23:19:50 -03:00
// erase all parameters
cliSerial->printf_P(PSTR("Firmware change: erasing EEPROM...\n"));
2012-08-21 23:19:50 -03:00
AP_Param::erase_all();
2012-02-12 04:25:00 -04:00
2012-08-21 23:19:50 -03:00
// save the current format version
g.format_version.set_and_save(Parameters::k_format_version);
cliSerial->println_P(PSTR("done."));
2012-02-12 04:25:00 -04:00
} else {
2012-08-21 23:19:50 -03:00
uint32_t before = micros();
// Load all auto-loaded EEPROM variables
AP_Param::load_all();
AP_Param::convert_old_parameters(&conversion_table[0], sizeof(conversion_table)/sizeof(conversion_table[0]));
cliSerial->printf_P(PSTR("load_all took %luus\n"), micros() - before);
2012-08-21 23:19:50 -03:00
}
2012-02-12 04:25:00 -04:00
}