The PSTR is already define as a NOP for all supported platforms. It's
only needed for AVR so here we remove all the uses throughout the
codebase.
This was automated with a simple python script so it also converts
places which spans to multiple lines, removing the matching parentheses.
AVR-specific places were not changed.
- inhibit switching from FLIGHT_NORMAL to FLIGHT_LAND_APPROACH until we meet stricter criteria other than just that LAND is next waypoint
- requires: nav bearing error < 10deg && have traveled path forward 30% of path && are below top of approach in case we hit waypoint while still descending
- exceptions: traveled path forward > 80% which basically means we're getting close to the flare point and better get into approach mode ASAP
Include board-specific files only when the board is used. Since these
should be exceptional cases, let the includer handle the ifdef instead
of putting ifdefs in every platform-specific header.
In the future we should evaluate whether the HAL for the board should
instantiate this.
Instead of requiring every program to specify the HAL related modules,
let the build system do it (in practice everything we compiled depended
on HAL anyway). This allow including only the necessary files in the
compilation.
The switching between different AP_HAL was happening by giving different
definitions of AP_HAL_BOARD_DRIVER, and the programs would use it to
instantiate.
A program or library code would have to explicitly include (and depend)
on the concrete implementation of the HAL, even when using it only via
interface.
The proposed change move this dependency to be link time. There is a
AP_HAL::get_HAL() function that is used by the client code. Each
implementation of HAL provides its own definition of this function,
returning the appropriate concrete instance.
Since this replaces the job of AP_HAL_BOARD_DRIVER, the definition was
removed.
The static variables for PX4 and VRBRAIN were named differently to avoid
shadowing the extern symbol 'hal'.
we only accept a lidar if it changes by 5% of its full range, and we
reject a lidar again if the correction between barometric and lidar
range changes by more than 30m
This allows us to cope with faulty lidars which may give a constant
reading
when aborting a landing via mode change, check if NAV_CONTINUE_AND_CHANGE_ALT is after LAND. If so, go ahead and execute it. Else, normal behavior or check do_land_start else decrement mission index
- previously we only kept track of starting flying while in auto which gets reset when switching in and out of auto and on takeoff/land. Now we keep track of a "global" one that will track the is_flying flag regardless of the flight mode.
fixes https://github.com/diydrones/ardupilot/issues/2778
When executing a takeoff, and the throttle is suppressed, but we're already flying, we should unsuppress the throttle. We can get into this situation if we reset the mission in-flight.