ardupilot/libraries/AP_Beacon/AP_Beacon.cpp

379 lines
12 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Beacon.h"
#include "AP_Beacon_Backend.h"
#include "AP_Beacon_Pozyx.h"
#include "AP_Beacon_Marvelmind.h"
#include "AP_Beacon_SITL.h"
#include <AP_Common/Location.h>
extern const AP_HAL::HAL &hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_Beacon::var_info[] = {
// @Param: _TYPE
// @DisplayName: Beacon based position estimation device type
// @Description: What type of beacon based position estimation device is connected
// @Values: 0:None,1:Pozyx,2:Marvelmind
// @User: Advanced
AP_GROUPINFO("_TYPE", 0, AP_Beacon, _type, 0),
// @Param: _LATITUDE
// @DisplayName: Beacon origin's latitude
// @Description: Beacon origin's latitude
// @Units: deg
// @Increment: 0.000001
// @Range: -90 90
// @User: Advanced
AP_GROUPINFO("_LATITUDE", 1, AP_Beacon, origin_lat, 0),
// @Param: _LONGITUDE
// @DisplayName: Beacon origin's longitude
// @Description: Beacon origin's longitude
// @Units: deg
// @Increment: 0.000001
// @Range: -180 180
// @User: Advanced
AP_GROUPINFO("_LONGITUDE", 2, AP_Beacon, origin_lon, 0),
// @Param: _ALT
// @DisplayName: Beacon origin's altitude above sealevel in meters
// @Description: Beacon origin's altitude above sealevel in meters
// @Units: m
// @Increment: 1
// @Range: 0 10000
// @User: Advanced
AP_GROUPINFO("_ALT", 3, AP_Beacon, origin_alt, 0),
// @Param: _ORIENT_YAW
// @DisplayName: Beacon systems rotation from north in degrees
// @Description: Beacon systems rotation from north in degrees
// @Units: deg
// @Increment: 1
// @Range: -180 +180
// @User: Advanced
AP_GROUPINFO("_ORIENT_YAW", 4, AP_Beacon, orient_yaw, 0),
AP_GROUPEND
};
AP_Beacon::AP_Beacon(AP_SerialManager &_serial_manager) :
serial_manager(_serial_manager)
{
AP_Param::setup_object_defaults(this, var_info);
}
// initialise the AP_Beacon class
void AP_Beacon::init(void)
{
if (_driver != nullptr) {
// init called a 2nd time?
return;
}
// create backend
if (_type == AP_BeaconType_Pozyx) {
_driver = new AP_Beacon_Pozyx(*this, serial_manager);
} else if (_type == AP_BeaconType_Marvelmind) {
_driver = new AP_Beacon_Marvelmind(*this, serial_manager);
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (_type == AP_BeaconType_SITL) {
_driver = new AP_Beacon_SITL(*this);
}
#endif
}
// return true if beacon feature is enabled
bool AP_Beacon::enabled(void)
{
return (_type != AP_BeaconType_None);
}
// return true if sensor is basically healthy (we are receiving data)
bool AP_Beacon::healthy(void)
{
if (!device_ready()) {
return false;
}
return _driver->healthy();
}
// update state. This should be called often from the main loop
void AP_Beacon::update(void)
{
if (!device_ready()) {
return;
}
_driver->update();
// update boundary for fence
update_boundary_points();
}
// return origin of position estimate system
bool AP_Beacon::get_origin(Location &origin_loc) const
{
if (!device_ready()) {
return false;
}
// check for un-initialised origin
if (is_zero(origin_lat) && is_zero(origin_lon) && is_zero(origin_alt)) {
return false;
}
// return origin
origin_loc = {};
origin_loc.lat = origin_lat * 1.0e7;
origin_loc.lng = origin_lon * 1.0e7;
origin_loc.alt = origin_alt * 100;
return true;
}
// return position in NED from position estimate system's origin in meters
bool AP_Beacon::get_vehicle_position_ned(Vector3f &position, float& accuracy_estimate) const
{
if (!device_ready()) {
return false;
}
// check for timeout
if (AP_HAL::millis() - veh_pos_update_ms > AP_BEACON_TIMEOUT_MS) {
return false;
}
// return position
position = veh_pos_ned;
accuracy_estimate = veh_pos_accuracy;
return true;
}
// return the number of beacons
uint8_t AP_Beacon::count() const
{
if (!device_ready()) {
return 0;
}
return num_beacons;
}
// return all beacon data
bool AP_Beacon::get_beacon_data(uint8_t beacon_instance, struct BeaconState& state) const
{
if (!device_ready() || beacon_instance >= num_beacons) {
return false;
}
state = beacon_state[beacon_instance];
return true;
}
// return individual beacon's id
uint8_t AP_Beacon::beacon_id(uint8_t beacon_instance) const
{
if (beacon_instance >= num_beacons) {
return 0;
}
return beacon_state[beacon_instance].id;
}
// return beacon health
bool AP_Beacon::beacon_healthy(uint8_t beacon_instance) const
{
if (beacon_instance >= num_beacons) {
return false;
}
return beacon_state[beacon_instance].healthy;
}
// return distance to beacon in meters
float AP_Beacon::beacon_distance(uint8_t beacon_instance) const
{
if (!beacon_state[beacon_instance].healthy || beacon_instance >= num_beacons) {
return 0.0f;
}
return beacon_state[beacon_instance].distance;
}
// return beacon position in meters
Vector3f AP_Beacon::beacon_position(uint8_t beacon_instance) const
{
if (!device_ready() || beacon_instance >= num_beacons) {
Vector3f temp = {};
return temp;
}
return beacon_state[beacon_instance].position;
}
// return last update time from beacon in milliseconds
uint32_t AP_Beacon::beacon_last_update_ms(uint8_t beacon_instance) const
{
if (_type == AP_BeaconType_None || beacon_instance >= num_beacons) {
return 0;
}
return beacon_state[beacon_instance].distance_update_ms;
}
// create fence boundary points
void AP_Beacon::update_boundary_points()
{
// we need three beacons at least to create boundary fence.
// update boundary fence if number of beacons changes
if (!device_ready() || num_beacons < AP_BEACON_MINIMUM_FENCE_BEACONS || boundary_num_beacons == num_beacons) {
return;
}
// record number of beacons so we do not repeat calculations
boundary_num_beacons = num_beacons;
// accumulate beacon points
Vector2f beacon_points[AP_BEACON_MAX_BEACONS];
for (uint8_t index = 0; index < num_beacons; index++) {
const Vector3f& point_3d = beacon_position(index);
beacon_points[index].x = point_3d.x;
beacon_points[index].y = point_3d.y;
}
// create polygon around boundary points using the following algorithm
// set the "current point" as the first boundary point
// loop through all the boundary points looking for the point which creates a vector (from the current point to this new point) with the lowest angle
// check if point is already in boundary
// - no: add to boundary, move current point to this new point and repeat the above
// - yes: we've completed the bounding box, delete any boundary points found earlier than the duplicate
Vector2f boundary_points[AP_BEACON_MAX_BEACONS+1]; // array of boundary points
uint8_t curr_boundary_idx = 0; // index into boundary_sorted index. always points to the highest filled in element of the array
uint8_t curr_beacon_idx = 0; // index into beacon_point array. point indexed is same point as curr_boundary_idx's
// initialise first point of boundary_sorted with first beacon's position (this point may be removed later if it is found to not be on the outer boundary)
boundary_points[curr_boundary_idx] = beacon_points[curr_beacon_idx];
bool boundary_success = false; // true once the boundary has been successfully found
bool boundary_failure = false; // true if we fail to build the boundary
float start_angle = 0.0f; // starting angle used when searching for next boundary point, on each iteration this climbs but never climbs past PI * 2
while (!boundary_success && !boundary_failure) {
// look for next outer point
uint8_t next_idx;
float next_angle;
if (get_next_boundary_point(beacon_points, num_beacons, curr_beacon_idx, start_angle, next_idx, next_angle)) {
// add boundary point to boundary_sorted array
curr_boundary_idx++;
boundary_points[curr_boundary_idx] = beacon_points[next_idx];
curr_beacon_idx = next_idx;
start_angle = next_angle;
// check if we have a complete boundary by looking for duplicate points within the boundary_sorted
uint8_t dup_idx = 0;
bool dup_found = false;
while (dup_idx < curr_boundary_idx && !dup_found) {
dup_found = (boundary_points[dup_idx] == boundary_points[curr_boundary_idx]);
if (!dup_found) {
dup_idx++;
}
}
// if duplicate is found, remove all boundary points before the duplicate because they are inner points
if (dup_found) {
uint8_t num_pts = curr_boundary_idx - dup_idx + 1;
if (num_pts > AP_BEACON_MINIMUM_FENCE_BEACONS) {
// success, copy boundary points to boundary array and convert meters to cm
for (uint8_t j = 0; j < num_pts; j++) {
boundary[j] = boundary_points[j+dup_idx] * 100.0f;
}
boundary_num_points = num_pts;
boundary_success = true;
} else {
// boundary has too few points
boundary_failure = true;
}
}
} else {
// failed to create boundary - give up!
boundary_failure = true;
}
}
// clear boundary on failure
if (boundary_failure) {
boundary_num_points = 0;
}
}
// find next boundary point from an array of boundary points given the current index into that array
// returns true if a next point can be found
// current_index should be an index into the boundary_pts array
// start_angle is an angle (in radians), the search will sweep clockwise from this angle
// the index of the next point is returned in the next_index argument
// the angle to the next point is returned in the next_angle argument
bool AP_Beacon::get_next_boundary_point(const Vector2f* boundary_pts, uint8_t num_points, uint8_t current_index, float start_angle, uint8_t& next_index, float& next_angle)
{
// sanity check
if (boundary_pts == nullptr || current_index >= num_points) {
return false;
}
// get current point
Vector2f curr_point = boundary_pts[current_index];
// search through all points for next boundary point in a clockwise direction
float lowest_angle = M_PI_2;
float lowest_angle_relative = M_PI_2;
bool lowest_found = false;
uint8_t lowest_index = 0;
for (uint8_t i=0; i < num_points; i++) {
if (i != current_index) {
Vector2f vec = boundary_pts[i] - curr_point;
if (!vec.is_zero()) {
float angle = wrap_2PI(atan2f(vec.y, vec.x));
float angle_relative = wrap_2PI(angle - start_angle);
if ((angle_relative < lowest_angle_relative) || !lowest_found) {
lowest_angle = angle;
lowest_angle_relative = angle_relative;
lowest_index = i;
lowest_found = true;
}
}
}
}
// return results
if (lowest_found) {
next_index = lowest_index;
next_angle = lowest_angle;
}
return lowest_found;
}
2017-06-08 03:57:24 -03:00
// return fence boundary array
const Vector2f* AP_Beacon::get_boundary_points(uint16_t& num_points) const
{
if (!device_ready()) {
num_points = 0;
return nullptr;
}
num_points = boundary_num_points;
2017-06-08 03:57:24 -03:00
return boundary;
}
// check if the device is ready
bool AP_Beacon::device_ready(void) const
{
return ((_driver != nullptr) && (_type != AP_BeaconType_None));
}