ardupilot/ArduCopter/system.pde

390 lines
11 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
2012-08-21 23:19:50 -03:00
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// Functions called from the top-level menu
2012-08-21 23:19:50 -03:00
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv);
// This is the help function
2012-08-21 23:19:50 -03:00
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Commands:\n"
2012-08-21 23:19:50 -03:00
" logs\n"
" setup\n"
" test\n"
" reboot\n"
2012-08-21 23:19:50 -03:00
"\n"));
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
2012-08-21 23:19:50 -03:00
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"reboot", reboot_board},
2012-08-21 23:19:50 -03:00
{"help", main_menu_help},
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv)
{
2013-09-03 22:59:02 -03:00
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
static void run_cli(AP_HAL::UARTDriver *port)
{
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(NULL, 5);
// disable main_loop failsafe
failsafe_disable();
// cut the engines
if(motors.armed()) {
motors.armed(false);
motors.output();
}
2013-10-29 01:28:27 -03:00
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void init_ardupilot()
{
2013-09-20 20:21:17 -03:00
if (!hal.gpio->usb_connected()) {
// USB is not connected, this means UART0 may be a Xbee, with
// its darned bricking problem. We can't write to it for at
// least one second after powering up. Simplest solution for
// now is to delay for 1 second. Something more elegant may be
// added later
delay(1000);
}
2012-08-21 23:19:50 -03:00
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the MAVLink protocol efficiently
//
#if HIL_MODE != HIL_MODE_DISABLED
// we need more memory for HIL, as we get a much higher packet rate
hal.uartA->begin(map_baudrate(g.serial0_baud), 256, 256);
#else
// use a bit less for non-HIL operation
hal.uartA->begin(map_baudrate(g.serial0_baud), 512, 128);
#endif
2012-08-21 23:19:50 -03:00
// GPS serial port.
//
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU
// standard gps running. Note that we need a 256 byte buffer for some
// GPS types (eg. UBLOX)
2012-12-13 15:48:01 -04:00
hal.uartB->begin(38400, 256, 16);
2012-08-21 23:19:50 -03:00
#endif
2014-02-25 18:40:29 -04:00
#if GPS2_ENABLE
if (hal.uartE != NULL) {
hal.uartE->begin(38400, 256, 16);
}
#endif
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING
2012-08-21 23:19:50 -03:00
"\n\nFree RAM: %u\n"),
2013-12-28 01:02:32 -04:00
hal.util->available_memory());
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
/*
run the timer a bit slower on APM2 to reduce the interrupt load
on the CPU
*/
hal.scheduler->set_timer_speed(500);
#endif
2012-08-21 23:19:50 -03:00
//
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
2012-08-21 23:19:50 -03:00
//
report_version();
2012-02-12 07:27:51 -04:00
// load parameters from EEPROM
load_parameters();
2014-01-19 21:58:12 -04:00
BoardConfig.init();
// FIX: this needs to be the inverse motors mask
ServoRelayEvents.set_channel_mask(0xFFF0);
relay.init();
bool enable_external_leds = true;
// init EPM cargo gripper
#if EPM_ENABLED == ENABLED
epm.init();
enable_external_leds = !epm.enabled();
#endif
// initialise notify system
// disable external leds if epm is enabled because of pin conflict on the APM
notify.init(enable_external_leds);
// initialise battery monitor
battery.init();
#if CONFIG_SONAR == ENABLED
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
sonar_analog_source = new AP_ADC_AnalogSource(
&adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
sonar_analog_source = hal.analogin->channel(
CONFIG_SONAR_SOURCE_ANALOG_PIN);
#else
#warning "Invalid CONFIG_SONAR_SOURCE"
#endif
sonar = new AP_RangeFinder_MaxsonarXL(sonar_analog_source,
&sonar_mode_filter);
#endif
rssi_analog_source = hal.analogin->channel(g.rssi_pin);
2013-05-25 00:21:29 -03:00
barometer.init();
2012-08-21 23:19:50 -03:00
// init the GCS
gcs[0].init(hal.uartA);
// Register the mavlink service callback. This will run
// anytime there are more than 5ms remaining in a call to
// hal.scheduler->delay.
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
2013-09-20 20:21:17 -03:00
// we start by assuming USB connected, as we initialed the serial
2013-10-29 01:28:27 -03:00
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
ap.usb_connected = true;
2013-09-20 20:21:17 -03:00
check_usb_mux();
#if CONFIG_HAL_BOARD != HAL_BOARD_APM2
// we have a 2nd serial port for telemetry on all boards except
// APM2. We actually do have one on APM2 but it isn't necessary as
2013-10-29 01:28:27 -03:00
// a MUX is used
gcs[1].setup_uart(hal.uartC, map_baudrate(g.serial1_baud), 128, 128);
#endif
#if MAVLINK_COMM_NUM_BUFFERS > 2
gcs[2].setup_uart(hal.uartD, map_baudrate(g.serial2_baud), 128, 128);
#endif
// identify ourselves correctly with the ground station
2012-08-21 23:19:50 -03:00
mavlink_system.sysid = g.sysid_this_mav;
mavlink_system.type = 2; //MAV_QUADROTOR;
2012-02-11 02:25:24 -04:00
2011-12-28 00:53:05 -04:00
#if LOGGING_ENABLED == ENABLED
DataFlash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0]));
2011-12-28 00:53:05 -04:00
if (!DataFlash.CardInserted()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash inserted"));
g.log_bitmask.set(0);
} else if (DataFlash.NeedErase()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
2012-08-21 23:19:50 -03:00
do_erase_logs();
gcs[0].reset_cli_timeout();
2012-08-21 23:19:50 -03:00
}
2011-12-28 00:53:05 -04:00
#endif
2012-08-21 23:19:50 -03:00
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up motors and output to escs
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
2012-12-13 15:48:01 -04:00
hal.scheduler->register_timer_failsafe(failsafe_check, 1000);
2012-08-21 23:19:50 -03:00
#if CONFIG_ADC == ENABLED
// begin filtering the ADC Gyros
2012-12-13 15:48:01 -04:00
adc.Init(); // APM ADC library initialization
2012-08-21 23:19:50 -03:00
#endif // CONFIG_ADC
2012-08-21 23:19:50 -03:00
// Do GPS init
2014-03-31 04:07:46 -03:00
gps.init(&DataFlash);
2014-02-25 18:40:29 -04:00
2012-08-21 23:19:50 -03:00
if(g.compass_enabled)
init_compass();
2013-12-29 09:09:42 -04:00
// initialise attitude and position controllers
attitude_control.set_dt(MAIN_LOOP_SECONDS);
2013-12-29 09:09:42 -04:00
pos_control.set_dt(MAIN_LOOP_SECONDS);
2012-08-21 23:19:50 -03:00
// init the optical flow sensor
if(g.optflow_enabled) {
init_optflow();
}
// initialise inertial nav
inertial_nav.init();
2011-10-18 03:51:47 -03:00
#ifdef USERHOOK_INIT
2012-08-21 23:19:50 -03:00
USERHOOK_INIT
2011-10-18 03:51:47 -03:00
#endif
2013-03-18 02:07:04 -03:00
#if CLI_ENABLED == ENABLED
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
cliSerial->println_P(msg);
if (gcs[1].initialised) {
hal.uartC->println_P(msg);
}
if (num_gcs > 2 && gcs[2].initialised) {
hal.uartD->println_P(msg);
}
#endif // CLI_ENABLED
#if HIL_MODE != HIL_MODE_DISABLED
while (!barometer.healthy) {
// the barometer becomes healthy when we get the first
// HIL_STATE message
gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message"));
delay(1000);
}
#endif
2012-08-21 23:19:50 -03:00
// read Baro pressure at ground
//-----------------------------
init_barometer(true);
2012-08-21 23:19:50 -03:00
// initialise sonar
#if CONFIG_SONAR == ENABLED
init_sonar();
#endif
// initialise mission library
mission.init();
// initialise the flight mode and aux switch
2012-08-21 23:19:50 -03:00
// ---------------------------
reset_control_switch();
init_aux_switches();
2012-08-21 23:19:50 -03:00
#if FRAME_CONFIG == HELI_FRAME
// trad heli specific initialisation
heli_init();
#endif
startup_ground(true);
#if LOGGING_ENABLED == ENABLED
2012-08-21 23:19:50 -03:00
Log_Write_Startup();
#endif
2012-12-13 15:48:01 -04:00
cliSerial->print_P(PSTR("\nReady to FLY "));
}
2012-12-13 15:48:01 -04:00
//******************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
2012-12-13 15:48:01 -04:00
//******************************************************************************
static void startup_ground(bool force_gyro_cal)
{
2012-08-21 23:19:50 -03:00
gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START"));
2013-01-13 01:04:04 -04:00
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
2014-04-21 05:11:53 -03:00
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
2013-01-13 01:04:04 -04:00
2012-08-21 23:19:50 -03:00
// Warm up and read Gyro offsets
// -----------------------------
ins.init(force_gyro_cal?AP_InertialSensor::COLD_START:AP_InertialSensor::WARM_START,
2013-09-19 05:33:21 -03:00
ins_sample_rate);
2012-08-21 23:19:50 -03:00
#if CLI_ENABLED == ENABLED
report_ins();
2012-08-21 23:19:50 -03:00
#endif
// setup fast AHRS gains to get right attitude
ahrs.set_fast_gains(true);
// set landed flag
set_land_complete(true);
}
// returns true if the GPS is ok and home position is set
static bool GPS_ok()
{
if (ap.home_is_set && gps.status() >= AP_GPS::GPS_OK_FIX_3D &&
2014-03-31 04:07:46 -03:00
!gps_glitch.glitching() && !failsafe.gps) {
return true;
}else{
return false;
}
}
// update_auto_armed - update status of auto_armed flag
static void update_auto_armed()
{
// disarm checks
if(ap.auto_armed){
// if motors are disarmed, auto_armed should also be false
if(!motors.armed()) {
set_auto_armed(false);
return;
}
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
if(manual_flight_mode(control_mode) && g.rc_3.control_in == 0 && !failsafe.radio) {
set_auto_armed(false);
}
}else{
// arm checks
#if FRAME_CONFIG == HELI_FRAME
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true
2013-11-04 07:54:47 -04:00
if(motors.armed() && g.rc_3.control_in != 0 && motors.motor_runup_complete()) {
set_auto_armed(true);
}
#else
// if motors are armed and throttle is above zero auto_armed should be true
if(motors.armed() && g.rc_3.control_in != 0) {
set_auto_armed(true);
}
2013-11-04 07:54:47 -04:00
#endif // HELI_FRAME
}
}
static void check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == ap.usb_connected) {
return;
}
// the user has switched to/from the telemetry port
ap.usb_connected = usb_check;
2013-09-20 20:21:17 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
// the APM2 has a MUX setup where the first serial port switches
// between USB and a TTL serial connection. When on USB we use
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
// at SERIAL1_BAUD.
if (ap.usb_connected) {
hal.uartA->begin(map_baudrate(g.serial0_baud));
} else {
hal.uartA->begin(map_baudrate(g.serial1_baud));
}
2013-09-20 20:21:17 -03:00
#endif
}