px4-firmware/EKF/covariance.cpp

928 lines
71 KiB
C++
Raw Normal View History

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file covariance.cpp
* Contains functions for initialising, predicting and updating the state
* covariance matrix
*
* @author Roman Bast <bastroman@gmail.com>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <math.h>
#include <mathlib/mathlib.h>
void Ekf::initialiseCovariance()
{
P.zero();
_delta_angle_bias_var_accum.setZero();
_delta_vel_bias_var_accum.setZero();
2019-12-25 12:13:05 -04:00
const float dt = FILTER_UPDATE_PERIOD_S;
// define the initial angle uncertainty as variances for a rotation vector
Vector3f rot_vec_var;
rot_vec_var.setAll(sq(_params.initial_tilt_err));
initialiseQuatCovariances(rot_vec_var);
// velocity
P(4,4) = sq(fmaxf(_params.gps_vel_noise, 0.01f));
P(5,5) = P(4,4);
P(6,6) = sq(1.5f) * P(4,4);
// position
P(7,7) = sq(fmaxf(_params.gps_pos_noise, 0.01f));
P(8,8) = P(7,7);
if (_control_status.flags.rng_hgt) {
P(9,9) = sq(fmaxf(_params.range_noise, 0.01f));
} else if (_control_status.flags.gps_hgt) {
float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f);
float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit);
P(9,9) = sq(1.5f * math::constrain(_gps_sample_delayed.vacc, lower_limit, upper_limit));
} else {
P(9,9) = sq(fmaxf(_params.baro_noise, 0.01f));
}
// gyro bias
P(10,10) = sq(_params.switch_on_gyro_bias * dt);
P(11,11) = P(10,10);
P(12,12) = P(10,10);
// accel bias
_prev_dvel_bias_var(0) = P(13,13) = sq(_params.switch_on_accel_bias * dt);
_prev_dvel_bias_var(1) = P(14,14) = P(13,13);
_prev_dvel_bias_var(2) = P(15,15) = P(13,13);
// record IMU bias state covariance reset time - used to prevent resets being performed too often
_last_imu_bias_cov_reset_us = _imu_sample_delayed.time_us;
// earth frame and body frame magnetic field
// set to observation variance
2017-08-23 22:18:48 -03:00
for (uint8_t index = 16; index <= 21; index ++) {
P(index,index) = sq(_params.mag_noise);
}
// save covariance data for re-use when auto-switching between heading and 3-axis fusion
[ekf] controlMagFusion refactor and mag field strength check (#662) * ekf_control: Inhibit mag fusion when field magnitude is large Move mag inhibition check in separate function * ekf_control: pull out of functionalities out of controlMagFusion - yaw abd mag bias observability checks - mag 3D conditions - load mag covariances - set and clear mag control modes * ekf_control: refactor mag heading/3D start/stop. Move mag declination, mag 3d and mag heading fusion out of the main function * ekf_control: extract mag yaw reset and mag declination fusion requirements * ekf_control: use WMM in isStronMagneticField for mag fusion inhibition - Correct units of WMM strength table * ekf_control: extract mag_state_only functionality of AUTOFW (VTOL custom) Also split inAirYawReset from onGroundYawReset * ekf_control: extract mag automatic selection - transform if-else into switch-case for parameter fusion type selection * ekf_control: extract run3DMagAndDeclFusion, reorganize functions, fix flag naming in Test script * ekf_control: do not run mag fusion if tilt is not aligned. Reset some variables on ground even if mag fusion is not running yet. It could be that it runs later so we need to make sure that those variables are properly set. * ekf_control: move controlMagFusion and related functions to mag_control.cpp * ekf control: check for validity of mag strength from WMM and falls back to average earth mag field with larger gate if not valid * ekf control: remove evyaw check for mag inhibition * ekf control: change nested ternary operator into if-else if * Ekf: create AlphaFilter template class for simple low-pass filtering 0.1/0.9 type low-pass filters are commonly used to smooth data, this class is meant to abstract the computation of this filter * ekf control: reset heading using mag_lpf data to avoid resetting on an outlier fixes ecl issue #525 * ekf control: replace mag_states_only flag with mag_field_disturbed and add parameter to enable or disable mag field strength check * ekf control: remove AUTOFW mag fusion type as not needed This was implemented for VTOL but did not solve the problem and should not be used anymore * ekf control: use start/stop mag functions everywhere instead of setting the flag * ekf control: Run mag fusion depending on yaw_align instead of tilt_align as there is no reason to fuse mag when the ekf isn't aligned * AlphaFilter: add test for float and Vector3f
2019-11-08 11:02:59 -04:00
saveMagCovData();
// wind
P(22,22) = sq(_params.initial_wind_uncertainty);
P(23,23) = sq(_params.initial_wind_uncertainty);
}
void Ekf::get_pos_var(Vector3f &pos_var)
{
pos_var = P.slice<3,3>(7,7).diag();
}
void Ekf::get_vel_var(Vector3f &vel_var)
{
vel_var = P.slice<3,3>(4,4).diag();
}
void Ekf::predictCovariance()
{
// assign intermediate state variables
2019-12-25 12:13:05 -04:00
const float q0 = _state.quat_nominal(0);
const float q1 = _state.quat_nominal(1);
const float q2 = _state.quat_nominal(2);
const float q3 = _state.quat_nominal(3);
2019-12-25 12:13:05 -04:00
const float dax = _imu_sample_delayed.delta_ang(0);
const float day = _imu_sample_delayed.delta_ang(1);
const float daz = _imu_sample_delayed.delta_ang(2);
2019-12-25 12:13:05 -04:00
const float dvx = _imu_sample_delayed.delta_vel(0);
const float dvy = _imu_sample_delayed.delta_vel(1);
const float dvz = _imu_sample_delayed.delta_vel(2);
2019-12-25 12:13:05 -04:00
const float dax_b = _state.delta_ang_bias(0);
const float day_b = _state.delta_ang_bias(1);
const float daz_b = _state.delta_ang_bias(2);
2019-12-25 12:13:05 -04:00
const float dvx_b = _state.delta_vel_bias(0);
const float dvy_b = _state.delta_vel_bias(1);
const float dvz_b = _state.delta_vel_bias(2);
2019-12-25 12:13:05 -04:00
const float dt = math::constrain(_imu_sample_delayed.delta_ang_dt, 0.5f * FILTER_UPDATE_PERIOD_S, 2.0f * FILTER_UPDATE_PERIOD_S);
const float dt_inv = 1.0f / dt;
// convert rate of change of rate gyro bias (rad/s**2) as specified by the parameter to an expected change in delta angle (rad) since the last update
2019-12-25 12:13:05 -04:00
const float d_ang_bias_sig = dt * dt * math::constrain(_params.gyro_bias_p_noise, 0.0f, 1.0f);
// convert rate of change of accelerometer bias (m/s**3) as specified by the parameter to an expected change in delta velocity (m/s) since the last update
2019-12-25 12:13:05 -04:00
const float d_vel_bias_sig = dt * dt * math::constrain(_params.accel_bias_p_noise, 0.0f, 1.0f);
// inhibit learning of imu accel bias if the manoeuvre levels are too high to protect against the effect of sensor nonlinearities or bad accel data is detected
2019-12-25 12:13:05 -04:00
const float alpha = math::constrain((dt / _params.acc_bias_learn_tc), 0.0f, 1.0f);
const float beta = 1.0f - alpha;
_ang_rate_magnitude_filt = fmaxf(dt_inv * _imu_sample_delayed.delta_ang.norm(), beta * _ang_rate_magnitude_filt);
_accel_magnitude_filt = fmaxf(dt_inv * _imu_sample_delayed.delta_vel.norm(), beta * _accel_magnitude_filt);
_accel_vec_filt = alpha * dt_inv * _imu_sample_delayed.delta_vel + beta * _accel_vec_filt;
EKF: Fix non GPS aiding data reset logic (#418) * EKF: Move optical flow specific state reset to helper functions * EKF: Ensure loss of optical flow aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using flow data as a velocity reference. If flow data is unavailable for too long - declare optical flow use stopped. Use consistent time periods for all resets * EKF: Ensure loss of external vision aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using data as a position. Don't reset velocity if there is another source of aiding constraining it. If data is unavailable for too long, declare external vision use stopped. Use consistent time periods for all resets. * EKF: Update parameter documentation Make the distinction between the no_gps_timeout_max and no_aid_timeout_max parameters clearer * EKF: make class variable units consistent with documentation * EKF: Don't reset states when optical flow use commences if using external vision * EKF: Stop optical flow fusion when on ground if excessive movement is detected. * EKF: fix terrain estimator vulnerabilities Reset estimate to sensor value if rejected for 10 seconds Protect against user motion when on ground. Fix unnecessary duplication of terrain validity check and separate validity update and reporting. * EKF: remove unnecessary Info console prints Optical flow use information can be obtained from the estimator_status.control_mode_flags message * EKF: fix inaccurate comment * EKF: remove duplicate calculation from terrain validity accessor function
2018-04-09 05:35:15 -03:00
if (_ang_rate_magnitude_filt > _params.acc_bias_learn_gyr_lim
|| _accel_magnitude_filt > _params.acc_bias_learn_acc_lim
|| _bad_vert_accel_detected) {
// store the bias state variances to be reinstated later
if (!_accel_bias_inhibit) {
_prev_dvel_bias_var = P.slice<3,3>(13,13).diag();
}
_accel_bias_inhibit = true;
} else {
if (_accel_bias_inhibit) {
// reinstate the bias state variances
P(13,13) = _prev_dvel_bias_var(0);
P(14,14) = _prev_dvel_bias_var(1);
P(15,15) = _prev_dvel_bias_var(2);
} else {
// store the bias state variances to be reinstated later
_prev_dvel_bias_var = P.slice<3,3>(13,13).diag();
}
_accel_bias_inhibit = false;
}
// Don't continue to grow the earth field variances if they are becoming too large or we are not doing 3-axis fusion as this can make the covariance matrix badly conditioned
float mag_I_sig;
if (_control_status.flags.mag_3D && (P(16,16) + P(17,17) + P(18,18)) < 0.1f) {
mag_I_sig = dt * math::constrain(_params.mage_p_noise, 0.0f, 1.0f);
} else {
mag_I_sig = 0.0f;
}
// Don't continue to grow the body field variances if they is becoming too large or we are not doing 3-axis fusion as this can make the covariance matrix badly conditioned
float mag_B_sig;
if (_control_status.flags.mag_3D && (P(19,19) + P(20,20) + P(21,21)) < 0.1f) {
mag_B_sig = dt * math::constrain(_params.magb_p_noise, 0.0f, 1.0f);
} else {
mag_B_sig = 0.0f;
}
float wind_vel_sig;
// Calculate low pass filtered height rate
float alpha_height_rate_lpf = 0.1f * dt; // 10 seconds time constant
_height_rate_lpf = _height_rate_lpf * (1.0f - alpha_height_rate_lpf) + _state.vel(2) * alpha_height_rate_lpf;
// Don't continue to grow wind velocity state variances if they are becoming too large or we are not using wind velocity states as this can make the covariance matrix badly conditioned
if (_control_status.flags.wind && (P(22,22) + P(23,23)) < sq(_params.initial_wind_uncertainty)) {
wind_vel_sig = dt * math::constrain(_params.wind_vel_p_noise, 0.0f, 1.0f) * (1.0f + _params.wind_vel_p_noise_scaler * fabsf(_height_rate_lpf));
} else {
wind_vel_sig = 0.0f;
}
// compute noise variance for stationary processes
2019-12-09 03:49:33 -04:00
matrix::Vector<float, _k_num_states> process_noise;
// Construct the process noise variance diagonal for those states with a stationary process model
// These are kinematic states and their error growth is controlled separately by the IMU noise variances
process_noise.slice<10,1>(0,0) = 0.0f;
2016-04-30 19:11:15 -03:00
// delta angle bias states
process_noise.slice<3,1>(10,0) = sq(d_ang_bias_sig);
2016-04-30 19:11:15 -03:00
// delta_velocity bias states
process_noise.slice<3,1>(13,0) = sq(d_vel_bias_sig);
2016-04-30 19:11:15 -03:00
// earth frame magnetic field states
process_noise.slice<3,1>(16,0) = sq(mag_I_sig);
2016-04-30 19:11:15 -03:00
// body frame magnetic field states
process_noise.slice<3,1>(19,0) = sq(mag_B_sig);
2016-04-30 19:11:15 -03:00
// wind velocity states
process_noise.slice<2,1>(22,0) = sq(wind_vel_sig);
// assign IMU noise variances
// inputs to the system are 3 delta angles and 3 delta velocities
float daxVar, dayVar, dazVar;
float dvxVar, dvyVar, dvzVar;
float gyro_noise = math::constrain(_params.gyro_noise, 0.0f, 1.0f);
daxVar = dayVar = dazVar = sq(dt * gyro_noise);
float accel_noise = math::constrain(_params.accel_noise, 0.0f, 1.0f);
if (_bad_vert_accel_detected) {
// Increase accelerometer process noise if bad accel data is detected. Measurement errors due to
// vibration induced clipping commonly reach an equivalent 0.5g offset.
accel_noise = BADACC_BIAS_PNOISE;
}
dvxVar = dvyVar = dvzVar = sq(dt * accel_noise);
// predict the covariance
// intermediate calculations
float SF[21];
SF[0] = dvz - dvz_b;
SF[1] = dvy - dvy_b;
SF[2] = dvx - dvx_b;
SF[3] = 2*q1*SF[2] + 2*q2*SF[1] + 2*q3*SF[0];
SF[4] = 2*q0*SF[1] - 2*q1*SF[0] + 2*q3*SF[2];
SF[5] = 2*q0*SF[2] + 2*q2*SF[0] - 2*q3*SF[1];
SF[6] = day/2 - day_b/2;
SF[7] = daz/2 - daz_b/2;
SF[8] = dax/2 - dax_b/2;
SF[9] = dax_b/2 - dax/2;
SF[10] = daz_b/2 - daz/2;
SF[11] = day_b/2 - day/2;
SF[12] = 2*q1*SF[1];
SF[13] = 2*q0*SF[0];
SF[14] = q1/2;
SF[15] = q2/2;
SF[16] = q3/2;
SF[17] = sq(q3);
SF[18] = sq(q2);
SF[19] = sq(q1);
SF[20] = sq(q0);
float SG[8];
SG[0] = q0/2;
SG[1] = sq(q3);
SG[2] = sq(q2);
SG[3] = sq(q1);
SG[4] = sq(q0);
SG[5] = 2*q2*q3;
SG[6] = 2*q1*q3;
SG[7] = 2*q1*q2;
float SQ[11];
SQ[0] = dvzVar*(SG[5] - 2*q0*q1)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvyVar*(SG[5] + 2*q0*q1)*(SG[1] - SG[2] + SG[3] - SG[4]) + dvxVar*(SG[6] - 2*q0*q2)*(SG[7] + 2*q0*q3);
SQ[1] = dvzVar*(SG[6] + 2*q0*q2)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvxVar*(SG[6] - 2*q0*q2)*(SG[1] + SG[2] - SG[3] - SG[4]) + dvyVar*(SG[5] + 2*q0*q1)*(SG[7] - 2*q0*q3);
SQ[2] = dvzVar*(SG[5] - 2*q0*q1)*(SG[6] + 2*q0*q2) - dvyVar*(SG[7] - 2*q0*q3)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvxVar*(SG[7] + 2*q0*q3)*(SG[1] + SG[2] - SG[3] - SG[4]);
SQ[3] = (dayVar*q1*SG[0])/2 - (dazVar*q1*SG[0])/2 - (daxVar*q2*q3)/4;
SQ[4] = (dazVar*q2*SG[0])/2 - (daxVar*q2*SG[0])/2 - (dayVar*q1*q3)/4;
SQ[5] = (daxVar*q3*SG[0])/2 - (dayVar*q3*SG[0])/2 - (dazVar*q1*q2)/4;
SQ[6] = (daxVar*q1*q2)/4 - (dazVar*q3*SG[0])/2 - (dayVar*q1*q2)/4;
SQ[7] = (dazVar*q1*q3)/4 - (daxVar*q1*q3)/4 - (dayVar*q2*SG[0])/2;
SQ[8] = (dayVar*q2*q3)/4 - (daxVar*q1*SG[0])/2 - (dazVar*q2*q3)/4;
SQ[9] = sq(SG[0]);
SQ[10] = sq(q1);
float SPP[11] = {};
SPP[0] = SF[12] + SF[13] - 2*q2*SF[2];
SPP[1] = SF[17] - SF[18] - SF[19] + SF[20];
SPP[2] = SF[17] - SF[18] + SF[19] - SF[20];
SPP[3] = SF[17] + SF[18] - SF[19] - SF[20];
SPP[4] = 2*q0*q2 - 2*q1*q3;
SPP[5] = 2*q0*q1 - 2*q2*q3;
SPP[6] = 2*q0*q3 - 2*q1*q2;
SPP[7] = 2*q0*q1 + 2*q2*q3;
SPP[8] = 2*q0*q3 + 2*q1*q2;
SPP[9] = 2*q0*q2 + 2*q1*q3;
SPP[10] = SF[16];
// covariance update
2019-12-09 03:49:33 -04:00
matrix::SquareMatrix<float, _k_num_states> nextP;
// calculate variances and upper diagonal covariances for quaternion, velocity, position and gyro bias states
nextP(0,0) = P(0,0) + P(1,0)*SF[9] + P(2,0)*SF[11] + P(3,0)*SF[10] + P(10,0)*SF[14] + P(11,0)*SF[15] + P(12,0)*SPP[10] + (daxVar*SQ[10])/4 + SF[9]*(P(0,1) + P(1,1)*SF[9] + P(2,1)*SF[11] + P(3,1)*SF[10] + P(10,1)*SF[14] + P(11,1)*SF[15] + P(12,1)*SPP[10]) + SF[11]*(P(0,2) + P(1,2)*SF[9] + P(2,2)*SF[11] + P(3,2)*SF[10] + P(10,2)*SF[14] + P(11,2)*SF[15] + P(12,2)*SPP[10]) + SF[10]*(P(0,3) + P(1,3)*SF[9] + P(2,3)*SF[11] + P(3,3)*SF[10] + P(10,3)*SF[14] + P(11,3)*SF[15] + P(12,3)*SPP[10]) + SF[14]*(P(0,10) + P(1,10)*SF[9] + P(2,10)*SF[11] + P(3,10)*SF[10] + P(10,10)*SF[14] + P(11,10)*SF[15] + P(12,10)*SPP[10]) + SF[15]*(P(0,11) + P(1,11)*SF[9] + P(2,11)*SF[11] + P(3,11)*SF[10] + P(10,11)*SF[14] + P(11,11)*SF[15] + P(12,11)*SPP[10]) + SPP[10]*(P(0,12) + P(1,12)*SF[9] + P(2,12)*SF[11] + P(3,12)*SF[10] + P(10,12)*SF[14] + P(11,12)*SF[15] + P(12,12)*SPP[10]) + (dayVar*sq(q2))/4 + (dazVar*sq(q3))/4;
nextP(0,1) = P(0,1) + SQ[8] + P(1,1)*SF[9] + P(2,1)*SF[11] + P(3,1)*SF[10] + P(10,1)*SF[14] + P(11,1)*SF[15] + P(12,1)*SPP[10] + SF[8]*(P(0,0) + P(1,0)*SF[9] + P(2,0)*SF[11] + P(3,0)*SF[10] + P(10,0)*SF[14] + P(11,0)*SF[15] + P(12,0)*SPP[10]) + SF[7]*(P(0,2) + P(1,2)*SF[9] + P(2,2)*SF[11] + P(3,2)*SF[10] + P(10,2)*SF[14] + P(11,2)*SF[15] + P(12,2)*SPP[10]) + SF[11]*(P(0,3) + P(1,3)*SF[9] + P(2,3)*SF[11] + P(3,3)*SF[10] + P(10,3)*SF[14] + P(11,3)*SF[15] + P(12,3)*SPP[10]) - SF[15]*(P(0,12) + P(1,12)*SF[9] + P(2,12)*SF[11] + P(3,12)*SF[10] + P(10,12)*SF[14] + P(11,12)*SF[15] + P(12,12)*SPP[10]) + SPP[10]*(P(0,11) + P(1,11)*SF[9] + P(2,11)*SF[11] + P(3,11)*SF[10] + P(10,11)*SF[14] + P(11,11)*SF[15] + P(12,11)*SPP[10]) - (q0*(P(0,10) + P(1,10)*SF[9] + P(2,10)*SF[11] + P(3,10)*SF[10] + P(10,10)*SF[14] + P(11,10)*SF[15] + P(12,10)*SPP[10]))/2;
nextP(1,1) = P(1,1) + P(0,1)*SF[8] + P(2,1)*SF[7] + P(3,1)*SF[11] - P(12,1)*SF[15] + P(11,1)*SPP[10] + daxVar*SQ[9] - (P(10,1)*q0)/2 + SF[8]*(P(1,0) + P(0,0)*SF[8] + P(2,0)*SF[7] + P(3,0)*SF[11] - P(12,0)*SF[15] + P(11,0)*SPP[10] - (P(10,0)*q0)/2) + SF[7]*(P(1,2) + P(0,2)*SF[8] + P(2,2)*SF[7] + P(3,2)*SF[11] - P(12,2)*SF[15] + P(11,2)*SPP[10] - (P(10,2)*q0)/2) + SF[11]*(P(1,3) + P(0,3)*SF[8] + P(2,3)*SF[7] + P(3,3)*SF[11] - P(12,3)*SF[15] + P(11,3)*SPP[10] - (P(10,3)*q0)/2) - SF[15]*(P(1,12) + P(0,12)*SF[8] + P(2,12)*SF[7] + P(3,12)*SF[11] - P(12,12)*SF[15] + P(11,12)*SPP[10] - (P(10,12)*q0)/2) + SPP[10]*(P(1,11) + P(0,11)*SF[8] + P(2,11)*SF[7] + P(3,11)*SF[11] - P(12,11)*SF[15] + P(11,11)*SPP[10] - (P(10,11)*q0)/2) + (dayVar*sq(q3))/4 + (dazVar*sq(q2))/4 - (q0*(P(1,10) + P(0,10)*SF[8] + P(2,10)*SF[7] + P(3,10)*SF[11] - P(12,10)*SF[15] + P(11,10)*SPP[10] - (P(10,10)*q0)/2))/2;
nextP(0,2) = P(0,2) + SQ[7] + P(1,2)*SF[9] + P(2,2)*SF[11] + P(3,2)*SF[10] + P(10,2)*SF[14] + P(11,2)*SF[15] + P(12,2)*SPP[10] + SF[6]*(P(0,0) + P(1,0)*SF[9] + P(2,0)*SF[11] + P(3,0)*SF[10] + P(10,0)*SF[14] + P(11,0)*SF[15] + P(12,0)*SPP[10]) + SF[10]*(P(0,1) + P(1,1)*SF[9] + P(2,1)*SF[11] + P(3,1)*SF[10] + P(10,1)*SF[14] + P(11,1)*SF[15] + P(12,1)*SPP[10]) + SF[8]*(P(0,3) + P(1,3)*SF[9] + P(2,3)*SF[11] + P(3,3)*SF[10] + P(10,3)*SF[14] + P(11,3)*SF[15] + P(12,3)*SPP[10]) + SF[14]*(P(0,12) + P(1,12)*SF[9] + P(2,12)*SF[11] + P(3,12)*SF[10] + P(10,12)*SF[14] + P(11,12)*SF[15] + P(12,12)*SPP[10]) - SPP[10]*(P(0,10) + P(1,10)*SF[9] + P(2,10)*SF[11] + P(3,10)*SF[10] + P(10,10)*SF[14] + P(11,10)*SF[15] + P(12,10)*SPP[10]) - (q0*(P(0,11) + P(1,11)*SF[9] + P(2,11)*SF[11] + P(3,11)*SF[10] + P(10,11)*SF[14] + P(11,11)*SF[15] + P(12,11)*SPP[10]))/2;
nextP(1,2) = P(1,2) + SQ[5] + P(0,2)*SF[8] + P(2,2)*SF[7] + P(3,2)*SF[11] - P(12,2)*SF[15] + P(11,2)*SPP[10] - (P(10,2)*q0)/2 + SF[6]*(P(1,0) + P(0,0)*SF[8] + P(2,0)*SF[7] + P(3,0)*SF[11] - P(12,0)*SF[15] + P(11,0)*SPP[10] - (P(10,0)*q0)/2) + SF[10]*(P(1,1) + P(0,1)*SF[8] + P(2,1)*SF[7] + P(3,1)*SF[11] - P(12,1)*SF[15] + P(11,1)*SPP[10] - (P(10,1)*q0)/2) + SF[8]*(P(1,3) + P(0,3)*SF[8] + P(2,3)*SF[7] + P(3,3)*SF[11] - P(12,3)*SF[15] + P(11,3)*SPP[10] - (P(10,3)*q0)/2) + SF[14]*(P(1,12) + P(0,12)*SF[8] + P(2,12)*SF[7] + P(3,12)*SF[11] - P(12,12)*SF[15] + P(11,12)*SPP[10] - (P(10,12)*q0)/2) - SPP[10]*(P(1,10) + P(0,10)*SF[8] + P(2,10)*SF[7] + P(3,10)*SF[11] - P(12,10)*SF[15] + P(11,10)*SPP[10] - (P(10,10)*q0)/2) - (q0*(P(1,11) + P(0,11)*SF[8] + P(2,11)*SF[7] + P(3,11)*SF[11] - P(12,11)*SF[15] + P(11,11)*SPP[10] - (P(10,11)*q0)/2))/2;
nextP(2,2) = P(2,2) + P(0,2)*SF[6] + P(1,2)*SF[10] + P(3,2)*SF[8] + P(12,2)*SF[14] - P(10,2)*SPP[10] + dayVar*SQ[9] + (dazVar*SQ[10])/4 - (P(11,2)*q0)/2 + SF[6]*(P(2,0) + P(0,0)*SF[6] + P(1,0)*SF[10] + P(3,0)*SF[8] + P(12,0)*SF[14] - P(10,0)*SPP[10] - (P(11,0)*q0)/2) + SF[10]*(P(2,1) + P(0,1)*SF[6] + P(1,1)*SF[10] + P(3,1)*SF[8] + P(12,1)*SF[14] - P(10,1)*SPP[10] - (P(11,1)*q0)/2) + SF[8]*(P(2,3) + P(0,3)*SF[6] + P(1,3)*SF[10] + P(3,3)*SF[8] + P(12,3)*SF[14] - P(10,3)*SPP[10] - (P(11,3)*q0)/2) + SF[14]*(P(2,12) + P(0,12)*SF[6] + P(1,12)*SF[10] + P(3,12)*SF[8] + P(12,12)*SF[14] - P(10,12)*SPP[10] - (P(11,12)*q0)/2) - SPP[10]*(P(2,10) + P(0,10)*SF[6] + P(1,10)*SF[10] + P(3,10)*SF[8] + P(12,10)*SF[14] - P(10,10)*SPP[10] - (P(11,10)*q0)/2) + (daxVar*sq(q3))/4 - (q0*(P(2,11) + P(0,11)*SF[6] + P(1,11)*SF[10] + P(3,11)*SF[8] + P(12,11)*SF[14] - P(10,11)*SPP[10] - (P(11,11)*q0)/2))/2;
nextP(0,3) = P(0,3) + SQ[6] + P(1,3)*SF[9] + P(2,3)*SF[11] + P(3,3)*SF[10] + P(10,3)*SF[14] + P(11,3)*SF[15] + P(12,3)*SPP[10] + SF[7]*(P(0,0) + P(1,0)*SF[9] + P(2,0)*SF[11] + P(3,0)*SF[10] + P(10,0)*SF[14] + P(11,0)*SF[15] + P(12,0)*SPP[10]) + SF[6]*(P(0,1) + P(1,1)*SF[9] + P(2,1)*SF[11] + P(3,1)*SF[10] + P(10,1)*SF[14] + P(11,1)*SF[15] + P(12,1)*SPP[10]) + SF[9]*(P(0,2) + P(1,2)*SF[9] + P(2,2)*SF[11] + P(3,2)*SF[10] + P(10,2)*SF[14] + P(11,2)*SF[15] + P(12,2)*SPP[10]) + SF[15]*(P(0,10) + P(1,10)*SF[9] + P(2,10)*SF[11] + P(3,10)*SF[10] + P(10,10)*SF[14] + P(11,10)*SF[15] + P(12,10)*SPP[10]) - SF[14]*(P(0,11) + P(1,11)*SF[9] + P(2,11)*SF[11] + P(3,11)*SF[10] + P(10,11)*SF[14] + P(11,11)*SF[15] + P(12,11)*SPP[10]) - (q0*(P(0,12) + P(1,12)*SF[9] + P(2,12)*SF[11] + P(3,12)*SF[10] + P(10,12)*SF[14] + P(11,12)*SF[15] + P(12,12)*SPP[10]))/2;
nextP(1,3) = P(1,3) + SQ[4] + P(0,3)*SF[8] + P(2,3)*SF[7] + P(3,3)*SF[11] - P(12,3)*SF[15] + P(11,3)*SPP[10] - (P(10,3)*q0)/2 + SF[7]*(P(1,0) + P(0,0)*SF[8] + P(2,0)*SF[7] + P(3,0)*SF[11] - P(12,0)*SF[15] + P(11,0)*SPP[10] - (P(10,0)*q0)/2) + SF[6]*(P(1,1) + P(0,1)*SF[8] + P(2,1)*SF[7] + P(3,1)*SF[11] - P(12,1)*SF[15] + P(11,1)*SPP[10] - (P(10,1)*q0)/2) + SF[9]*(P(1,2) + P(0,2)*SF[8] + P(2,2)*SF[7] + P(3,2)*SF[11] - P(12,2)*SF[15] + P(11,2)*SPP[10] - (P(10,2)*q0)/2) + SF[15]*(P(1,10) + P(0,10)*SF[8] + P(2,10)*SF[7] + P(3,10)*SF[11] - P(12,10)*SF[15] + P(11,10)*SPP[10] - (P(10,10)*q0)/2) - SF[14]*(P(1,11) + P(0,11)*SF[8] + P(2,11)*SF[7] + P(3,11)*SF[11] - P(12,11)*SF[15] + P(11,11)*SPP[10] - (P(10,11)*q0)/2) - (q0*(P(1,12) + P(0,12)*SF[8] + P(2,12)*SF[7] + P(3,12)*SF[11] - P(12,12)*SF[15] + P(11,12)*SPP[10] - (P(10,12)*q0)/2))/2;
nextP(2,3) = P(2,3) + SQ[3] + P(0,3)*SF[6] + P(1,3)*SF[10] + P(3,3)*SF[8] + P(12,3)*SF[14] - P(10,3)*SPP[10] - (P(11,3)*q0)/2 + SF[7]*(P(2,0) + P(0,0)*SF[6] + P(1,0)*SF[10] + P(3,0)*SF[8] + P(12,0)*SF[14] - P(10,0)*SPP[10] - (P(11,0)*q0)/2) + SF[6]*(P(2,1) + P(0,1)*SF[6] + P(1,1)*SF[10] + P(3,1)*SF[8] + P(12,1)*SF[14] - P(10,1)*SPP[10] - (P(11,1)*q0)/2) + SF[9]*(P(2,2) + P(0,2)*SF[6] + P(1,2)*SF[10] + P(3,2)*SF[8] + P(12,2)*SF[14] - P(10,2)*SPP[10] - (P(11,2)*q0)/2) + SF[15]*(P(2,10) + P(0,10)*SF[6] + P(1,10)*SF[10] + P(3,10)*SF[8] + P(12,10)*SF[14] - P(10,10)*SPP[10] - (P(11,10)*q0)/2) - SF[14]*(P(2,11) + P(0,11)*SF[6] + P(1,11)*SF[10] + P(3,11)*SF[8] + P(12,11)*SF[14] - P(10,11)*SPP[10] - (P(11,11)*q0)/2) - (q0*(P(2,12) + P(0,12)*SF[6] + P(1,12)*SF[10] + P(3,12)*SF[8] + P(12,12)*SF[14] - P(10,12)*SPP[10] - (P(11,12)*q0)/2))/2;
nextP(3,3) = P(3,3) + P(0,3)*SF[7] + P(1,3)*SF[6] + P(2,3)*SF[9] + P(10,3)*SF[15] - P(11,3)*SF[14] + (dayVar*SQ[10])/4 + dazVar*SQ[9] - (P(12,3)*q0)/2 + SF[7]*(P(3,0) + P(0,0)*SF[7] + P(1,0)*SF[6] + P(2,0)*SF[9] + P(10,0)*SF[15] - P(11,0)*SF[14] - (P(12,0)*q0)/2) + SF[6]*(P(3,1) + P(0,1)*SF[7] + P(1,1)*SF[6] + P(2,1)*SF[9] + P(10,1)*SF[15] - P(11,1)*SF[14] - (P(12,1)*q0)/2) + SF[9]*(P(3,2) + P(0,2)*SF[7] + P(1,2)*SF[6] + P(2,2)*SF[9] + P(10,2)*SF[15] - P(11,2)*SF[14] - (P(12,2)*q0)/2) + SF[15]*(P(3,10) + P(0,10)*SF[7] + P(1,10)*SF[6] + P(2,10)*SF[9] + P(10,10)*SF[15] - P(11,10)*SF[14] - (P(12,10)*q0)/2) - SF[14]*(P(3,11) + P(0,11)*SF[7] + P(1,11)*SF[6] + P(2,11)*SF[9] + P(10,11)*SF[15] - P(11,11)*SF[14] - (P(12,11)*q0)/2) + (daxVar*sq(q2))/4 - (q0*(P(3,12) + P(0,12)*SF[7] + P(1,12)*SF[6] + P(2,12)*SF[9] + P(10,12)*SF[15] - P(11,12)*SF[14] - (P(12,12)*q0)/2))/2;
nextP(0,4) = P(0,4) + P(1,4)*SF[9] + P(2,4)*SF[11] + P(3,4)*SF[10] + P(10,4)*SF[14] + P(11,4)*SF[15] + P(12,4)*SPP[10] + SF[5]*(P(0,0) + P(1,0)*SF[9] + P(2,0)*SF[11] + P(3,0)*SF[10] + P(10,0)*SF[14] + P(11,0)*SF[15] + P(12,0)*SPP[10]) + SF[3]*(P(0,1) + P(1,1)*SF[9] + P(2,1)*SF[11] + P(3,1)*SF[10] + P(10,1)*SF[14] + P(11,1)*SF[15] + P(12,1)*SPP[10]) - SF[4]*(P(0,3) + P(1,3)*SF[9] + P(2,3)*SF[11] + P(3,3)*SF[10] + P(10,3)*SF[14] + P(11,3)*SF[15] + P(12,3)*SPP[10]) + SPP[0]*(P(0,2) + P(1,2)*SF[9] + P(2,2)*SF[11] + P(3,2)*SF[10] + P(10,2)*SF[14] + P(11,2)*SF[15] + P(12,2)*SPP[10]) + SPP[3]*(P(0,13) + P(1,13)*SF[9] + P(2,13)*SF[11] + P(3,13)*SF[10] + P(10,13)*SF[14] + P(11,13)*SF[15] + P(12,13)*SPP[10]) + SPP[6]*(P(0,14) + P(1,14)*SF[9] + P(2,14)*SF[11] + P(3,14)*SF[10] + P(10,14)*SF[14] + P(11,14)*SF[15] + P(12,14)*SPP[10]) - SPP[9]*(P(0,15) + P(1,15)*SF[9] + P(2,15)*SF[11] + P(3,15)*SF[10] + P(10,15)*SF[14] + P(11,15)*SF[15] + P(12,15)*SPP[10]);
nextP(1,4) = P(1,4) + P(0,4)*SF[8] + P(2,4)*SF[7] + P(3,4)*SF[11] - P(12,4)*SF[15] + P(11,4)*SPP[10] - (P(10,4)*q0)/2 + SF[5]*(P(1,0) + P(0,0)*SF[8] + P(2,0)*SF[7] + P(3,0)*SF[11] - P(12,0)*SF[15] + P(11,0)*SPP[10] - (P(10,0)*q0)/2) + SF[3]*(P(1,1) + P(0,1)*SF[8] + P(2,1)*SF[7] + P(3,1)*SF[11] - P(12,1)*SF[15] + P(11,1)*SPP[10] - (P(10,1)*q0)/2) - SF[4]*(P(1,3) + P(0,3)*SF[8] + P(2,3)*SF[7] + P(3,3)*SF[11] - P(12,3)*SF[15] + P(11,3)*SPP[10] - (P(10,3)*q0)/2) + SPP[0]*(P(1,2) + P(0,2)*SF[8] + P(2,2)*SF[7] + P(3,2)*SF[11] - P(12,2)*SF[15] + P(11,2)*SPP[10] - (P(10,2)*q0)/2) + SPP[3]*(P(1,13) + P(0,13)*SF[8] + P(2,13)*SF[7] + P(3,13)*SF[11] - P(12,13)*SF[15] + P(11,13)*SPP[10] - (P(10,13)*q0)/2) + SPP[6]*(P(1,14) + P(0,14)*SF[8] + P(2,14)*SF[7] + P(3,14)*SF[11] - P(12,14)*SF[15] + P(11,14)*SPP[10] - (P(10,14)*q0)/2) - SPP[9]*(P(1,15) + P(0,15)*SF[8] + P(2,15)*SF[7] + P(3,15)*SF[11] - P(12,15)*SF[15] + P(11,15)*SPP[10] - (P(10,15)*q0)/2);
nextP(2,4) = P(2,4) + P(0,4)*SF[6] + P(1,4)*SF[10] + P(3,4)*SF[8] + P(12,4)*SF[14] - P(10,4)*SPP[10] - (P(11,4)*q0)/2 + SF[5]*(P(2,0) + P(0,0)*SF[6] + P(1,0)*SF[10] + P(3,0)*SF[8] + P(12,0)*SF[14] - P(10,0)*SPP[10] - (P(11,0)*q0)/2) + SF[3]*(P(2,1) + P(0,1)*SF[6] + P(1,1)*SF[10] + P(3,1)*SF[8] + P(12,1)*SF[14] - P(10,1)*SPP[10] - (P(11,1)*q0)/2) - SF[4]*(P(2,3) + P(0,3)*SF[6] + P(1,3)*SF[10] + P(3,3)*SF[8] + P(12,3)*SF[14] - P(10,3)*SPP[10] - (P(11,3)*q0)/2) + SPP[0]*(P(2,2) + P(0,2)*SF[6] + P(1,2)*SF[10] + P(3,2)*SF[8] + P(12,2)*SF[14] - P(10,2)*SPP[10] - (P(11,2)*q0)/2) + SPP[3]*(P(2,13) + P(0,13)*SF[6] + P(1,13)*SF[10] + P(3,13)*SF[8] + P(12,13)*SF[14] - P(10,13)*SPP[10] - (P(11,13)*q0)/2) + SPP[6]*(P(2,14) + P(0,14)*SF[6] + P(1,14)*SF[10] + P(3,14)*SF[8] + P(12,14)*SF[14] - P(10,14)*SPP[10] - (P(11,14)*q0)/2) - SPP[9]*(P(2,15) + P(0,15)*SF[6] + P(1,15)*SF[10] + P(3,15)*SF[8] + P(12,15)*SF[14] - P(10,15)*SPP[10] - (P(11,15)*q0)/2);
nextP(3,4) = P(3,4) + P(0,4)*SF[7] + P(1,4)*SF[6] + P(2,4)*SF[9] + P(10,4)*SF[15] - P(11,4)*SF[14] - (P(12,4)*q0)/2 + SF[5]*(P(3,0) + P(0,0)*SF[7] + P(1,0)*SF[6] + P(2,0)*SF[9] + P(10,0)*SF[15] - P(11,0)*SF[14] - (P(12,0)*q0)/2) + SF[3]*(P(3,1) + P(0,1)*SF[7] + P(1,1)*SF[6] + P(2,1)*SF[9] + P(10,1)*SF[15] - P(11,1)*SF[14] - (P(12,1)*q0)/2) - SF[4]*(P(3,3) + P(0,3)*SF[7] + P(1,3)*SF[6] + P(2,3)*SF[9] + P(10,3)*SF[15] - P(11,3)*SF[14] - (P(12,3)*q0)/2) + SPP[0]*(P(3,2) + P(0,2)*SF[7] + P(1,2)*SF[6] + P(2,2)*SF[9] + P(10,2)*SF[15] - P(11,2)*SF[14] - (P(12,2)*q0)/2) + SPP[3]*(P(3,13) + P(0,13)*SF[7] + P(1,13)*SF[6] + P(2,13)*SF[9] + P(10,13)*SF[15] - P(11,13)*SF[14] - (P(12,13)*q0)/2) + SPP[6]*(P(3,14) + P(0,14)*SF[7] + P(1,14)*SF[6] + P(2,14)*SF[9] + P(10,14)*SF[15] - P(11,14)*SF[14] - (P(12,14)*q0)/2) - SPP[9]*(P(3,15) + P(0,15)*SF[7] + P(1,15)*SF[6] + P(2,15)*SF[9] + P(10,15)*SF[15] - P(11,15)*SF[14] - (P(12,15)*q0)/2);
nextP(4,4) = P(4,4) + P(0,4)*SF[5] + P(1,4)*SF[3] - P(3,4)*SF[4] + P(2,4)*SPP[0] + P(13,4)*SPP[3] + P(14,4)*SPP[6] - P(15,4)*SPP[9] + dvyVar*sq(SG[7] - 2*q0*q3) + dvzVar*sq(SG[6] + 2*q0*q2) + SF[5]*(P(4,0) + P(0,0)*SF[5] + P(1,0)*SF[3] - P(3,0)*SF[4] + P(2,0)*SPP[0] + P(13,0)*SPP[3] + P(14,0)*SPP[6] - P(15,0)*SPP[9]) + SF[3]*(P(4,1) + P(0,1)*SF[5] + P(1,1)*SF[3] - P(3,1)*SF[4] + P(2,1)*SPP[0] + P(13,1)*SPP[3] + P(14,1)*SPP[6] - P(15,1)*SPP[9]) - SF[4]*(P(4,3) + P(0,3)*SF[5] + P(1,3)*SF[3] - P(3,3)*SF[4] + P(2,3)*SPP[0] + P(13,3)*SPP[3] + P(14,3)*SPP[6] - P(15,3)*SPP[9]) + SPP[0]*(P(4,2) + P(0,2)*SF[5] + P(1,2)*SF[3] - P(3,2)*SF[4] + P(2,2)*SPP[0] + P(13,2)*SPP[3] + P(14,2)*SPP[6] - P(15,2)*SPP[9]) + SPP[3]*(P(4,13) + P(0,13)*SF[5] + P(1,13)*SF[3] - P(3,13)*SF[4] + P(2,13)*SPP[0] + P(13,13)*SPP[3] + P(14,13)*SPP[6] - P(15,13)*SPP[9]) + SPP[6]*(P(4,14) + P(0,14)*SF[5] + P(1,14)*SF[3] - P(3,14)*SF[4] + P(2,14)*SPP[0] + P(13,14)*SPP[3] + P(14,14)*SPP[6] - P(15,14)*SPP[9]) - SPP[9]*(P(4,15) + P(0,15)*SF[5] + P(1,15)*SF[3] - P(3,15)*SF[4] + P(2,15)*SPP[0] + P(13,15)*SPP[3] + P(14,15)*SPP[6] - P(15,15)*SPP[9]) + dvxVar*sq(SG[1] + SG[2] - SG[3] - SG[4]);
nextP(0,5) = P(0,5) + P(1,5)*SF[9] + P(2,5)*SF[11] + P(3,5)*SF[10] + P(10,5)*SF[14] + P(11,5)*SF[15] + P(12,5)*SPP[10] + SF[4]*(P(0,0) + P(1,0)*SF[9] + P(2,0)*SF[11] + P(3,0)*SF[10] + P(10,0)*SF[14] + P(11,0)*SF[15] + P(12,0)*SPP[10]) + SF[3]*(P(0,2) + P(1,2)*SF[9] + P(2,2)*SF[11] + P(3,2)*SF[10] + P(10,2)*SF[14] + P(11,2)*SF[15] + P(12,2)*SPP[10]) + SF[5]*(P(0,3) + P(1,3)*SF[9] + P(2,3)*SF[11] + P(3,3)*SF[10] + P(10,3)*SF[14] + P(11,3)*SF[15] + P(12,3)*SPP[10]) - SPP[0]*(P(0,1) + P(1,1)*SF[9] + P(2,1)*SF[11] + P(3,1)*SF[10] + P(10,1)*SF[14] + P(11,1)*SF[15] + P(12,1)*SPP[10]) - SPP[8]*(P(0,13) + P(1,13)*SF[9] + P(2,13)*SF[11] + P(3,13)*SF[10] + P(10,13)*SF[14] + P(11,13)*SF[15] + P(12,13)*SPP[10]) + SPP[2]*(P(0,14) + P(1,14)*SF[9] + P(2,14)*SF[11] + P(3,14)*SF[10] + P(10,14)*SF[14] + P(11,14)*SF[15] + P(12,14)*SPP[10]) + SPP[5]*(P(0,15) + P(1,15)*SF[9] + P(2,15)*SF[11] + P(3,15)*SF[10] + P(10,15)*SF[14] + P(11,15)*SF[15] + P(12,15)*SPP[10]);
nextP(1,5) = P(1,5) + P(0,5)*SF[8] + P(2,5)*SF[7] + P(3,5)*SF[11] - P(12,5)*SF[15] + P(11,5)*SPP[10] - (P(10,5)*q0)/2 + SF[4]*(P(1,0) + P(0,0)*SF[8] + P(2,0)*SF[7] + P(3,0)*SF[11] - P(12,0)*SF[15] + P(11,0)*SPP[10] - (P(10,0)*q0)/2) + SF[3]*(P(1,2) + P(0,2)*SF[8] + P(2,2)*SF[7] + P(3,2)*SF[11] - P(12,2)*SF[15] + P(11,2)*SPP[10] - (P(10,2)*q0)/2) + SF[5]*(P(1,3) + P(0,3)*SF[8] + P(2,3)*SF[7] + P(3,3)*SF[11] - P(12,3)*SF[15] + P(11,3)*SPP[10] - (P(10,3)*q0)/2) - SPP[0]*(P(1,1) + P(0,1)*SF[8] + P(2,1)*SF[7] + P(3,1)*SF[11] - P(12,1)*SF[15] + P(11,1)*SPP[10] - (P(10,1)*q0)/2) - SPP[8]*(P(1,13) + P(0,13)*SF[8] + P(2,13)*SF[7] + P(3,13)*SF[11] - P(12,13)*SF[15] + P(11,13)*SPP[10] - (P(10,13)*q0)/2) + SPP[2]*(P(1,14) + P(0,14)*SF[8] + P(2,14)*SF[7] + P(3,14)*SF[11] - P(12,14)*SF[15] + P(11,14)*SPP[10] - (P(10,14)*q0)/2) + SPP[5]*(P(1,15) + P(0,15)*SF[8] + P(2,15)*SF[7] + P(3,15)*SF[11] - P(12,15)*SF[15] + P(11,15)*SPP[10] - (P(10,15)*q0)/2);
nextP(2,5) = P(2,5) + P(0,5)*SF[6] + P(1,5)*SF[10] + P(3,5)*SF[8] + P(12,5)*SF[14] - P(10,5)*SPP[10] - (P(11,5)*q0)/2 + SF[4]*(P(2,0) + P(0,0)*SF[6] + P(1,0)*SF[10] + P(3,0)*SF[8] + P(12,0)*SF[14] - P(10,0)*SPP[10] - (P(11,0)*q0)/2) + SF[3]*(P(2,2) + P(0,2)*SF[6] + P(1,2)*SF[10] + P(3,2)*SF[8] + P(12,2)*SF[14] - P(10,2)*SPP[10] - (P(11,2)*q0)/2) + SF[5]*(P(2,3) + P(0,3)*SF[6] + P(1,3)*SF[10] + P(3,3)*SF[8] + P(12,3)*SF[14] - P(10,3)*SPP[10] - (P(11,3)*q0)/2) - SPP[0]*(P(2,1) + P(0,1)*SF[6] + P(1,1)*SF[10] + P(3,1)*SF[8] + P(12,1)*SF[14] - P(10,1)*SPP[10] - (P(11,1)*q0)/2) - SPP[8]*(P(2,13) + P(0,13)*SF[6] + P(1,13)*SF[10] + P(3,13)*SF[8] + P(12,13)*SF[14] - P(10,13)*SPP[10] - (P(11,13)*q0)/2) + SPP[2]*(P(2,14) + P(0,14)*SF[6] + P(1,14)*SF[10] + P(3,14)*SF[8] + P(12,14)*SF[14] - P(10,14)*SPP[10] - (P(11,14)*q0)/2) + SPP[5]*(P(2,15) + P(0,15)*SF[6] + P(1,15)*SF[10] + P(3,15)*SF[8] + P(12,15)*SF[14] - P(10,15)*SPP[10] - (P(11,15)*q0)/2);
nextP(3,5) = P(3,5) + P(0,5)*SF[7] + P(1,5)*SF[6] + P(2,5)*SF[9] + P(10,5)*SF[15] - P(11,5)*SF[14] - (P(12,5)*q0)/2 + SF[4]*(P(3,0) + P(0,0)*SF[7] + P(1,0)*SF[6] + P(2,0)*SF[9] + P(10,0)*SF[15] - P(11,0)*SF[14] - (P(12,0)*q0)/2) + SF[3]*(P(3,2) + P(0,2)*SF[7] + P(1,2)*SF[6] + P(2,2)*SF[9] + P(10,2)*SF[15] - P(11,2)*SF[14] - (P(12,2)*q0)/2) + SF[5]*(P(3,3) + P(0,3)*SF[7] + P(1,3)*SF[6] + P(2,3)*SF[9] + P(10,3)*SF[15] - P(11,3)*SF[14] - (P(12,3)*q0)/2) - SPP[0]*(P(3,1) + P(0,1)*SF[7] + P(1,1)*SF[6] + P(2,1)*SF[9] + P(10,1)*SF[15] - P(11,1)*SF[14] - (P(12,1)*q0)/2) - SPP[8]*(P(3,13) + P(0,13)*SF[7] + P(1,13)*SF[6] + P(2,13)*SF[9] + P(10,13)*SF[15] - P(11,13)*SF[14] - (P(12,13)*q0)/2) + SPP[2]*(P(3,14) + P(0,14)*SF[7] + P(1,14)*SF[6] + P(2,14)*SF[9] + P(10,14)*SF[15] - P(11,14)*SF[14] - (P(12,14)*q0)/2) + SPP[5]*(P(3,15) + P(0,15)*SF[7] + P(1,15)*SF[6] + P(2,15)*SF[9] + P(10,15)*SF[15] - P(11,15)*SF[14] - (P(12,15)*q0)/2);
nextP(4,5) = P(4,5) + SQ[2] + P(0,5)*SF[5] + P(1,5)*SF[3] - P(3,5)*SF[4] + P(2,5)*SPP[0] + P(13,5)*SPP[3] + P(14,5)*SPP[6] - P(15,5)*SPP[9] + SF[4]*(P(4,0) + P(0,0)*SF[5] + P(1,0)*SF[3] - P(3,0)*SF[4] + P(2,0)*SPP[0] + P(13,0)*SPP[3] + P(14,0)*SPP[6] - P(15,0)*SPP[9]) + SF[3]*(P(4,2) + P(0,2)*SF[5] + P(1,2)*SF[3] - P(3,2)*SF[4] + P(2,2)*SPP[0] + P(13,2)*SPP[3] + P(14,2)*SPP[6] - P(15,2)*SPP[9]) + SF[5]*(P(4,3) + P(0,3)*SF[5] + P(1,3)*SF[3] - P(3,3)*SF[4] + P(2,3)*SPP[0] + P(13,3)*SPP[3] + P(14,3)*SPP[6] - P(15,3)*SPP[9]) - SPP[0]*(P(4,1) + P(0,1)*SF[5] + P(1,1)*SF[3] - P(3,1)*SF[4] + P(2,1)*SPP[0] + P(13,1)*SPP[3] + P(14,1)*SPP[6] - P(15,1)*SPP[9]) - SPP[8]*(P(4,13) + P(0,13)*SF[5] + P(1,13)*SF[3] - P(3,13)*SF[4] + P(2,13)*SPP[0] + P(13,13)*SPP[3] + P(14,13)*SPP[6] - P(15,13)*SPP[9]) + SPP[2]*(P(4,14) + P(0,14)*SF[5] + P(1,14)*SF[3] - P(3,14)*SF[4] + P(2,14)*SPP[0] + P(13,14)*SPP[3] + P(14,14)*SPP[6] - P(15,14)*SPP[9]) + SPP[5]*(P(4,15) + P(0,15)*SF[5] + P(1,15)*SF[3] - P(3,15)*SF[4] + P(2,15)*SPP[0] + P(13,15)*SPP[3] + P(14,15)*SPP[6] - P(15,15)*SPP[9]);
nextP(5,5) = P(5,5) + P(0,5)*SF[4] + P(2,5)*SF[3] + P(3,5)*SF[5] - P(1,5)*SPP[0] - P(13,5)*SPP[8] + P(14,5)*SPP[2] + P(15,5)*SPP[5] + dvxVar*sq(SG[7] + 2*q0*q3) + dvzVar*sq(SG[5] - 2*q0*q1) + SF[4]*(P(5,0) + P(0,0)*SF[4] + P(2,0)*SF[3] + P(3,0)*SF[5] - P(1,0)*SPP[0] - P(13,0)*SPP[8] + P(14,0)*SPP[2] + P(15,0)*SPP[5]) + SF[3]*(P(5,2) + P(0,2)*SF[4] + P(2,2)*SF[3] + P(3,2)*SF[5] - P(1,2)*SPP[0] - P(13,2)*SPP[8] + P(14,2)*SPP[2] + P(15,2)*SPP[5]) + SF[5]*(P(5,3) + P(0,3)*SF[4] + P(2,3)*SF[3] + P(3,3)*SF[5] - P(1,3)*SPP[0] - P(13,3)*SPP[8] + P(14,3)*SPP[2] + P(15,3)*SPP[5]) - SPP[0]*(P(5,1) + P(0,1)*SF[4] + P(2,1)*SF[3] + P(3,1)*SF[5] - P(1,1)*SPP[0] - P(13,1)*SPP[8] + P(14,1)*SPP[2] + P(15,1)*SPP[5]) - SPP[8]*(P(5,13) + P(0,13)*SF[4] + P(2,13)*SF[3] + P(3,13)*SF[5] - P(1,13)*SPP[0] - P(13,13)*SPP[8] + P(14,13)*SPP[2] + P(15,13)*SPP[5]) + SPP[2]*(P(5,14) + P(0,14)*SF[4] + P(2,14)*SF[3] + P(3,14)*SF[5] - P(1,14)*SPP[0] - P(13,14)*SPP[8] + P(14,14)*SPP[2] + P(15,14)*SPP[5]) + SPP[5]*(P(5,15) + P(0,15)*SF[4] + P(2,15)*SF[3] + P(3,15)*SF[5] - P(1,15)*SPP[0] - P(13,15)*SPP[8] + P(14,15)*SPP[2] + P(15,15)*SPP[5]) + dvyVar*sq(SG[1] - SG[2] + SG[3] - SG[4]);
nextP(0,6) = P(0,6) + P(1,6)*SF[9] + P(2,6)*SF[11] + P(3,6)*SF[10] + P(10,6)*SF[14] + P(11,6)*SF[15] + P(12,6)*SPP[10] + SF[4]*(P(0,1) + P(1,1)*SF[9] + P(2,1)*SF[11] + P(3,1)*SF[10] + P(10,1)*SF[14] + P(11,1)*SF[15] + P(12,1)*SPP[10]) - SF[5]*(P(0,2) + P(1,2)*SF[9] + P(2,2)*SF[11] + P(3,2)*SF[10] + P(10,2)*SF[14] + P(11,2)*SF[15] + P(12,2)*SPP[10]) + SF[3]*(P(0,3) + P(1,3)*SF[9] + P(2,3)*SF[11] + P(3,3)*SF[10] + P(10,3)*SF[14] + P(11,3)*SF[15] + P(12,3)*SPP[10]) + SPP[0]*(P(0,0) + P(1,0)*SF[9] + P(2,0)*SF[11] + P(3,0)*SF[10] + P(10,0)*SF[14] + P(11,0)*SF[15] + P(12,0)*SPP[10]) + SPP[4]*(P(0,13) + P(1,13)*SF[9] + P(2,13)*SF[11] + P(3,13)*SF[10] + P(10,13)*SF[14] + P(11,13)*SF[15] + P(12,13)*SPP[10]) - SPP[7]*(P(0,14) + P(1,14)*SF[9] + P(2,14)*SF[11] + P(3,14)*SF[10] + P(10,14)*SF[14] + P(11,14)*SF[15] + P(12,14)*SPP[10]) - SPP[1]*(P(0,15) + P(1,15)*SF[9] + P(2,15)*SF[11] + P(3,15)*SF[10] + P(10,15)*SF[14] + P(11,15)*SF[15] + P(12,15)*SPP[10]);
nextP(1,6) = P(1,6) + P(0,6)*SF[8] + P(2,6)*SF[7] + P(3,6)*SF[11] - P(12,6)*SF[15] + P(11,6)*SPP[10] - (P(10,6)*q0)/2 + SF[4]*(P(1,1) + P(0,1)*SF[8] + P(2,1)*SF[7] + P(3,1)*SF[11] - P(12,1)*SF[15] + P(11,1)*SPP[10] - (P(10,1)*q0)/2) - SF[5]*(P(1,2) + P(0,2)*SF[8] + P(2,2)*SF[7] + P(3,2)*SF[11] - P(12,2)*SF[15] + P(11,2)*SPP[10] - (P(10,2)*q0)/2) + SF[3]*(P(1,3) + P(0,3)*SF[8] + P(2,3)*SF[7] + P(3,3)*SF[11] - P(12,3)*SF[15] + P(11,3)*SPP[10] - (P(10,3)*q0)/2) + SPP[0]*(P(1,0) + P(0,0)*SF[8] + P(2,0)*SF[7] + P(3,0)*SF[11] - P(12,0)*SF[15] + P(11,0)*SPP[10] - (P(10,0)*q0)/2) + SPP[4]*(P(1,13) + P(0,13)*SF[8] + P(2,13)*SF[7] + P(3,13)*SF[11] - P(12,13)*SF[15] + P(11,13)*SPP[10] - (P(10,13)*q0)/2) - SPP[7]*(P(1,14) + P(0,14)*SF[8] + P(2,14)*SF[7] + P(3,14)*SF[11] - P(12,14)*SF[15] + P(11,14)*SPP[10] - (P(10,14)*q0)/2) - SPP[1]*(P(1,15) + P(0,15)*SF[8] + P(2,15)*SF[7] + P(3,15)*SF[11] - P(12,15)*SF[15] + P(11,15)*SPP[10] - (P(10,15)*q0)/2);
nextP(2,6) = P(2,6) + P(0,6)*SF[6] + P(1,6)*SF[10] + P(3,6)*SF[8] + P(12,6)*SF[14] - P(10,6)*SPP[10] - (P(11,6)*q0)/2 + SF[4]*(P(2,1) + P(0,1)*SF[6] + P(1,1)*SF[10] + P(3,1)*SF[8] + P(12,1)*SF[14] - P(10,1)*SPP[10] - (P(11,1)*q0)/2) - SF[5]*(P(2,2) + P(0,2)*SF[6] + P(1,2)*SF[10] + P(3,2)*SF[8] + P(12,2)*SF[14] - P(10,2)*SPP[10] - (P(11,2)*q0)/2) + SF[3]*(P(2,3) + P(0,3)*SF[6] + P(1,3)*SF[10] + P(3,3)*SF[8] + P(12,3)*SF[14] - P(10,3)*SPP[10] - (P(11,3)*q0)/2) + SPP[0]*(P(2,0) + P(0,0)*SF[6] + P(1,0)*SF[10] + P(3,0)*SF[8] + P(12,0)*SF[14] - P(10,0)*SPP[10] - (P(11,0)*q0)/2) + SPP[4]*(P(2,13) + P(0,13)*SF[6] + P(1,13)*SF[10] + P(3,13)*SF[8] + P(12,13)*SF[14] - P(10,13)*SPP[10] - (P(11,13)*q0)/2) - SPP[7]*(P(2,14) + P(0,14)*SF[6] + P(1,14)*SF[10] + P(3,14)*SF[8] + P(12,14)*SF[14] - P(10,14)*SPP[10] - (P(11,14)*q0)/2) - SPP[1]*(P(2,15) + P(0,15)*SF[6] + P(1,15)*SF[10] + P(3,15)*SF[8] + P(12,15)*SF[14] - P(10,15)*SPP[10] - (P(11,15)*q0)/2);
nextP(3,6) = P(3,6) + P(0,6)*SF[7] + P(1,6)*SF[6] + P(2,6)*SF[9] + P(10,6)*SF[15] - P(11,6)*SF[14] - (P(12,6)*q0)/2 + SF[4]*(P(3,1) + P(0,1)*SF[7] + P(1,1)*SF[6] + P(2,1)*SF[9] + P(10,1)*SF[15] - P(11,1)*SF[14] - (P(12,1)*q0)/2) - SF[5]*(P(3,2) + P(0,2)*SF[7] + P(1,2)*SF[6] + P(2,2)*SF[9] + P(10,2)*SF[15] - P(11,2)*SF[14] - (P(12,2)*q0)/2) + SF[3]*(P(3,3) + P(0,3)*SF[7] + P(1,3)*SF[6] + P(2,3)*SF[9] + P(10,3)*SF[15] - P(11,3)*SF[14] - (P(12,3)*q0)/2) + SPP[0]*(P(3,0) + P(0,0)*SF[7] + P(1,0)*SF[6] + P(2,0)*SF[9] + P(10,0)*SF[15] - P(11,0)*SF[14] - (P(12,0)*q0)/2) + SPP[4]*(P(3,13) + P(0,13)*SF[7] + P(1,13)*SF[6] + P(2,13)*SF[9] + P(10,13)*SF[15] - P(11,13)*SF[14] - (P(12,13)*q0)/2) - SPP[7]*(P(3,14) + P(0,14)*SF[7] + P(1,14)*SF[6] + P(2,14)*SF[9] + P(10,14)*SF[15] - P(11,14)*SF[14] - (P(12,14)*q0)/2) - SPP[1]*(P(3,15) + P(0,15)*SF[7] + P(1,15)*SF[6] + P(2,15)*SF[9] + P(10,15)*SF[15] - P(11,15)*SF[14] - (P(12,15)*q0)/2);
nextP(4,6) = P(4,6) + SQ[1] + P(0,6)*SF[5] + P(1,6)*SF[3] - P(3,6)*SF[4] + P(2,6)*SPP[0] + P(13,6)*SPP[3] + P(14,6)*SPP[6] - P(15,6)*SPP[9] + SF[4]*(P(4,1) + P(0,1)*SF[5] + P(1,1)*SF[3] - P(3,1)*SF[4] + P(2,1)*SPP[0] + P(13,1)*SPP[3] + P(14,1)*SPP[6] - P(15,1)*SPP[9]) - SF[5]*(P(4,2) + P(0,2)*SF[5] + P(1,2)*SF[3] - P(3,2)*SF[4] + P(2,2)*SPP[0] + P(13,2)*SPP[3] + P(14,2)*SPP[6] - P(15,2)*SPP[9]) + SF[3]*(P(4,3) + P(0,3)*SF[5] + P(1,3)*SF[3] - P(3,3)*SF[4] + P(2,3)*SPP[0] + P(13,3)*SPP[3] + P(14,3)*SPP[6] - P(15,3)*SPP[9]) + SPP[0]*(P(4,0) + P(0,0)*SF[5] + P(1,0)*SF[3] - P(3,0)*SF[4] + P(2,0)*SPP[0] + P(13,0)*SPP[3] + P(14,0)*SPP[6] - P(15,0)*SPP[9]) + SPP[4]*(P(4,13) + P(0,13)*SF[5] + P(1,13)*SF[3] - P(3,13)*SF[4] + P(2,13)*SPP[0] + P(13,13)*SPP[3] + P(14,13)*SPP[6] - P(15,13)*SPP[9]) - SPP[7]*(P(4,14) + P(0,14)*SF[5] + P(1,14)*SF[3] - P(3,14)*SF[4] + P(2,14)*SPP[0] + P(13,14)*SPP[3] + P(14,14)*SPP[6] - P(15,14)*SPP[9]) - SPP[1]*(P(4,15) + P(0,15)*SF[5] + P(1,15)*SF[3] - P(3,15)*SF[4] + P(2,15)*SPP[0] + P(13,15)*SPP[3] + P(14,15)*SPP[6] - P(15,15)*SPP[9]);
nextP(5,6) = P(5,6) + SQ[0] + P(0,6)*SF[4] + P(2,6)*SF[3] + P(3,6)*SF[5] - P(1,6)*SPP[0] - P(13,6)*SPP[8] + P(14,6)*SPP[2] + P(15,6)*SPP[5] + SF[4]*(P(5,1) + P(0,1)*SF[4] + P(2,1)*SF[3] + P(3,1)*SF[5] - P(1,1)*SPP[0] - P(13,1)*SPP[8] + P(14,1)*SPP[2] + P(15,1)*SPP[5]) - SF[5]*(P(5,2) + P(0,2)*SF[4] + P(2,2)*SF[3] + P(3,2)*SF[5] - P(1,2)*SPP[0] - P(13,2)*SPP[8] + P(14,2)*SPP[2] + P(15,2)*SPP[5]) + SF[3]*(P(5,3) + P(0,3)*SF[4] + P(2,3)*SF[3] + P(3,3)*SF[5] - P(1,3)*SPP[0] - P(13,3)*SPP[8] + P(14,3)*SPP[2] + P(15,3)*SPP[5]) + SPP[0]*(P(5,0) + P(0,0)*SF[4] + P(2,0)*SF[3] + P(3,0)*SF[5] - P(1,0)*SPP[0] - P(13,0)*SPP[8] + P(14,0)*SPP[2] + P(15,0)*SPP[5]) + SPP[4]*(P(5,13) + P(0,13)*SF[4] + P(2,13)*SF[3] + P(3,13)*SF[5] - P(1,13)*SPP[0] - P(13,13)*SPP[8] + P(14,13)*SPP[2] + P(15,13)*SPP[5]) - SPP[7]*(P(5,14) + P(0,14)*SF[4] + P(2,14)*SF[3] + P(3,14)*SF[5] - P(1,14)*SPP[0] - P(13,14)*SPP[8] + P(14,14)*SPP[2] + P(15,14)*SPP[5]) - SPP[1]*(P(5,15) + P(0,15)*SF[4] + P(2,15)*SF[3] + P(3,15)*SF[5] - P(1,15)*SPP[0] - P(13,15)*SPP[8] + P(14,15)*SPP[2] + P(15,15)*SPP[5]);
nextP(6,6) = P(6,6) + P(1,6)*SF[4] - P(2,6)*SF[5] + P(3,6)*SF[3] + P(0,6)*SPP[0] + P(13,6)*SPP[4] - P(14,6)*SPP[7] - P(15,6)*SPP[1] + dvxVar*sq(SG[6] - 2*q0*q2) + dvyVar*sq(SG[5] + 2*q0*q1) + SF[4]*(P(6,1) + P(1,1)*SF[4] - P(2,1)*SF[5] + P(3,1)*SF[3] + P(0,1)*SPP[0] + P(13,1)*SPP[4] - P(14,1)*SPP[7] - P(15,1)*SPP[1]) - SF[5]*(P(6,2) + P(1,2)*SF[4] - P(2,2)*SF[5] + P(3,2)*SF[3] + P(0,2)*SPP[0] + P(13,2)*SPP[4] - P(14,2)*SPP[7] - P(15,2)*SPP[1]) + SF[3]*(P(6,3) + P(1,3)*SF[4] - P(2,3)*SF[5] + P(3,3)*SF[3] + P(0,3)*SPP[0] + P(13,3)*SPP[4] - P(14,3)*SPP[7] - P(15,3)*SPP[1]) + SPP[0]*(P(6,0) + P(1,0)*SF[4] - P(2,0)*SF[5] + P(3,0)*SF[3] + P(0,0)*SPP[0] + P(13,0)*SPP[4] - P(14,0)*SPP[7] - P(15,0)*SPP[1]) + SPP[4]*(P(6,13) + P(1,13)*SF[4] - P(2,13)*SF[5] + P(3,13)*SF[3] + P(0,13)*SPP[0] + P(13,13)*SPP[4] - P(14,13)*SPP[7] - P(15,13)*SPP[1]) - SPP[7]*(P(6,14) + P(1,14)*SF[4] - P(2,14)*SF[5] + P(3,14)*SF[3] + P(0,14)*SPP[0] + P(13,14)*SPP[4] - P(14,14)*SPP[7] - P(15,14)*SPP[1]) - SPP[1]*(P(6,15) + P(1,15)*SF[4] - P(2,15)*SF[5] + P(3,15)*SF[3] + P(0,15)*SPP[0] + P(13,15)*SPP[4] - P(14,15)*SPP[7] - P(15,15)*SPP[1]) + dvzVar*sq(SG[1] - SG[2] - SG[3] + SG[4]);
nextP(0,7) = P(0,7) + P(1,7)*SF[9] + P(2,7)*SF[11] + P(3,7)*SF[10] + P(10,7)*SF[14] + P(11,7)*SF[15] + P(12,7)*SPP[10] + dt*(P(0,4) + P(1,4)*SF[9] + P(2,4)*SF[11] + P(3,4)*SF[10] + P(10,4)*SF[14] + P(11,4)*SF[15] + P(12,4)*SPP[10]);
nextP(1,7) = P(1,7) + P(0,7)*SF[8] + P(2,7)*SF[7] + P(3,7)*SF[11] - P(12,7)*SF[15] + P(11,7)*SPP[10] - (P(10,7)*q0)/2 + dt*(P(1,4) + P(0,4)*SF[8] + P(2,4)*SF[7] + P(3,4)*SF[11] - P(12,4)*SF[15] + P(11,4)*SPP[10] - (P(10,4)*q0)/2);
nextP(2,7) = P(2,7) + P(0,7)*SF[6] + P(1,7)*SF[10] + P(3,7)*SF[8] + P(12,7)*SF[14] - P(10,7)*SPP[10] - (P(11,7)*q0)/2 + dt*(P(2,4) + P(0,4)*SF[6] + P(1,4)*SF[10] + P(3,4)*SF[8] + P(12,4)*SF[14] - P(10,4)*SPP[10] - (P(11,4)*q0)/2);
nextP(3,7) = P(3,7) + P(0,7)*SF[7] + P(1,7)*SF[6] + P(2,7)*SF[9] + P(10,7)*SF[15] - P(11,7)*SF[14] - (P(12,7)*q0)/2 + dt*(P(3,4) + P(0,4)*SF[7] + P(1,4)*SF[6] + P(2,4)*SF[9] + P(10,4)*SF[15] - P(11,4)*SF[14] - (P(12,4)*q0)/2);
nextP(4,7) = P(4,7) + P(0,7)*SF[5] + P(1,7)*SF[3] - P(3,7)*SF[4] + P(2,7)*SPP[0] + P(13,7)*SPP[3] + P(14,7)*SPP[6] - P(15,7)*SPP[9] + dt*(P(4,4) + P(0,4)*SF[5] + P(1,4)*SF[3] - P(3,4)*SF[4] + P(2,4)*SPP[0] + P(13,4)*SPP[3] + P(14,4)*SPP[6] - P(15,4)*SPP[9]);
nextP(5,7) = P(5,7) + P(0,7)*SF[4] + P(2,7)*SF[3] + P(3,7)*SF[5] - P(1,7)*SPP[0] - P(13,7)*SPP[8] + P(14,7)*SPP[2] + P(15,7)*SPP[5] + dt*(P(5,4) + P(0,4)*SF[4] + P(2,4)*SF[3] + P(3,4)*SF[5] - P(1,4)*SPP[0] - P(13,4)*SPP[8] + P(14,4)*SPP[2] + P(15,4)*SPP[5]);
nextP(6,7) = P(6,7) + P(1,7)*SF[4] - P(2,7)*SF[5] + P(3,7)*SF[3] + P(0,7)*SPP[0] + P(13,7)*SPP[4] - P(14,7)*SPP[7] - P(15,7)*SPP[1] + dt*(P(6,4) + P(1,4)*SF[4] - P(2,4)*SF[5] + P(3,4)*SF[3] + P(0,4)*SPP[0] + P(13,4)*SPP[4] - P(14,4)*SPP[7] - P(15,4)*SPP[1]);
nextP(7,7) = P(7,7) + P(4,7)*dt + dt*(P(7,4) + P(4,4)*dt);
nextP(0,8) = P(0,8) + P(1,8)*SF[9] + P(2,8)*SF[11] + P(3,8)*SF[10] + P(10,8)*SF[14] + P(11,8)*SF[15] + P(12,8)*SPP[10] + dt*(P(0,5) + P(1,5)*SF[9] + P(2,5)*SF[11] + P(3,5)*SF[10] + P(10,5)*SF[14] + P(11,5)*SF[15] + P(12,5)*SPP[10]);
nextP(1,8) = P(1,8) + P(0,8)*SF[8] + P(2,8)*SF[7] + P(3,8)*SF[11] - P(12,8)*SF[15] + P(11,8)*SPP[10] - (P(10,8)*q0)/2 + dt*(P(1,5) + P(0,5)*SF[8] + P(2,5)*SF[7] + P(3,5)*SF[11] - P(12,5)*SF[15] + P(11,5)*SPP[10] - (P(10,5)*q0)/2);
nextP(2,8) = P(2,8) + P(0,8)*SF[6] + P(1,8)*SF[10] + P(3,8)*SF[8] + P(12,8)*SF[14] - P(10,8)*SPP[10] - (P(11,8)*q0)/2 + dt*(P(2,5) + P(0,5)*SF[6] + P(1,5)*SF[10] + P(3,5)*SF[8] + P(12,5)*SF[14] - P(10,5)*SPP[10] - (P(11,5)*q0)/2);
nextP(3,8) = P(3,8) + P(0,8)*SF[7] + P(1,8)*SF[6] + P(2,8)*SF[9] + P(10,8)*SF[15] - P(11,8)*SF[14] - (P(12,8)*q0)/2 + dt*(P(3,5) + P(0,5)*SF[7] + P(1,5)*SF[6] + P(2,5)*SF[9] + P(10,5)*SF[15] - P(11,5)*SF[14] - (P(12,5)*q0)/2);
nextP(4,8) = P(4,8) + P(0,8)*SF[5] + P(1,8)*SF[3] - P(3,8)*SF[4] + P(2,8)*SPP[0] + P(13,8)*SPP[3] + P(14,8)*SPP[6] - P(15,8)*SPP[9] + dt*(P(4,5) + P(0,5)*SF[5] + P(1,5)*SF[3] - P(3,5)*SF[4] + P(2,5)*SPP[0] + P(13,5)*SPP[3] + P(14,5)*SPP[6] - P(15,5)*SPP[9]);
nextP(5,8) = P(5,8) + P(0,8)*SF[4] + P(2,8)*SF[3] + P(3,8)*SF[5] - P(1,8)*SPP[0] - P(13,8)*SPP[8] + P(14,8)*SPP[2] + P(15,8)*SPP[5] + dt*(P(5,5) + P(0,5)*SF[4] + P(2,5)*SF[3] + P(3,5)*SF[5] - P(1,5)*SPP[0] - P(13,5)*SPP[8] + P(14,5)*SPP[2] + P(15,5)*SPP[5]);
nextP(6,8) = P(6,8) + P(1,8)*SF[4] - P(2,8)*SF[5] + P(3,8)*SF[3] + P(0,8)*SPP[0] + P(13,8)*SPP[4] - P(14,8)*SPP[7] - P(15,8)*SPP[1] + dt*(P(6,5) + P(1,5)*SF[4] - P(2,5)*SF[5] + P(3,5)*SF[3] + P(0,5)*SPP[0] + P(13,5)*SPP[4] - P(14,5)*SPP[7] - P(15,5)*SPP[1]);
nextP(7,8) = P(7,8) + P(4,8)*dt + dt*(P(7,5) + P(4,5)*dt);
nextP(8,8) = P(8,8) + P(5,8)*dt + dt*(P(8,5) + P(5,5)*dt);
nextP(0,9) = P(0,9) + P(1,9)*SF[9] + P(2,9)*SF[11] + P(3,9)*SF[10] + P(10,9)*SF[14] + P(11,9)*SF[15] + P(12,9)*SPP[10] + dt*(P(0,6) + P(1,6)*SF[9] + P(2,6)*SF[11] + P(3,6)*SF[10] + P(10,6)*SF[14] + P(11,6)*SF[15] + P(12,6)*SPP[10]);
nextP(1,9) = P(1,9) + P(0,9)*SF[8] + P(2,9)*SF[7] + P(3,9)*SF[11] - P(12,9)*SF[15] + P(11,9)*SPP[10] - (P(10,9)*q0)/2 + dt*(P(1,6) + P(0,6)*SF[8] + P(2,6)*SF[7] + P(3,6)*SF[11] - P(12,6)*SF[15] + P(11,6)*SPP[10] - (P(10,6)*q0)/2);
nextP(2,9) = P(2,9) + P(0,9)*SF[6] + P(1,9)*SF[10] + P(3,9)*SF[8] + P(12,9)*SF[14] - P(10,9)*SPP[10] - (P(11,9)*q0)/2 + dt*(P(2,6) + P(0,6)*SF[6] + P(1,6)*SF[10] + P(3,6)*SF[8] + P(12,6)*SF[14] - P(10,6)*SPP[10] - (P(11,6)*q0)/2);
nextP(3,9) = P(3,9) + P(0,9)*SF[7] + P(1,9)*SF[6] + P(2,9)*SF[9] + P(10,9)*SF[15] - P(11,9)*SF[14] - (P(12,9)*q0)/2 + dt*(P(3,6) + P(0,6)*SF[7] + P(1,6)*SF[6] + P(2,6)*SF[9] + P(10,6)*SF[15] - P(11,6)*SF[14] - (P(12,6)*q0)/2);
nextP(4,9) = P(4,9) + P(0,9)*SF[5] + P(1,9)*SF[3] - P(3,9)*SF[4] + P(2,9)*SPP[0] + P(13,9)*SPP[3] + P(14,9)*SPP[6] - P(15,9)*SPP[9] + dt*(P(4,6) + P(0,6)*SF[5] + P(1,6)*SF[3] - P(3,6)*SF[4] + P(2,6)*SPP[0] + P(13,6)*SPP[3] + P(14,6)*SPP[6] - P(15,6)*SPP[9]);
nextP(5,9) = P(5,9) + P(0,9)*SF[4] + P(2,9)*SF[3] + P(3,9)*SF[5] - P(1,9)*SPP[0] - P(13,9)*SPP[8] + P(14,9)*SPP[2] + P(15,9)*SPP[5] + dt*(P(5,6) + P(0,6)*SF[4] + P(2,6)*SF[3] + P(3,6)*SF[5] - P(1,6)*SPP[0] - P(13,6)*SPP[8] + P(14,6)*SPP[2] + P(15,6)*SPP[5]);
nextP(6,9) = P(6,9) + P(1,9)*SF[4] - P(2,9)*SF[5] + P(3,9)*SF[3] + P(0,9)*SPP[0] + P(13,9)*SPP[4] - P(14,9)*SPP[7] - P(15,9)*SPP[1] + dt*(P(6,6) + P(1,6)*SF[4] - P(2,6)*SF[5] + P(3,6)*SF[3] + P(0,6)*SPP[0] + P(13,6)*SPP[4] - P(14,6)*SPP[7] - P(15,6)*SPP[1]);
nextP(7,9) = P(7,9) + P(4,9)*dt + dt*(P(7,6) + P(4,6)*dt);
nextP(8,9) = P(8,9) + P(5,9)*dt + dt*(P(8,6) + P(5,6)*dt);
nextP(9,9) = P(9,9) + P(6,9)*dt + dt*(P(9,6) + P(6,6)*dt);
nextP(0,10) = P(0,10) + P(1,10)*SF[9] + P(2,10)*SF[11] + P(3,10)*SF[10] + P(10,10)*SF[14] + P(11,10)*SF[15] + P(12,10)*SPP[10];
nextP(1,10) = P(1,10) + P(0,10)*SF[8] + P(2,10)*SF[7] + P(3,10)*SF[11] - P(12,10)*SF[15] + P(11,10)*SPP[10] - (P(10,10)*q0)/2;
nextP(2,10) = P(2,10) + P(0,10)*SF[6] + P(1,10)*SF[10] + P(3,10)*SF[8] + P(12,10)*SF[14] - P(10,10)*SPP[10] - (P(11,10)*q0)/2;
nextP(3,10) = P(3,10) + P(0,10)*SF[7] + P(1,10)*SF[6] + P(2,10)*SF[9] + P(10,10)*SF[15] - P(11,10)*SF[14] - (P(12,10)*q0)/2;
nextP(4,10) = P(4,10) + P(0,10)*SF[5] + P(1,10)*SF[3] - P(3,10)*SF[4] + P(2,10)*SPP[0] + P(13,10)*SPP[3] + P(14,10)*SPP[6] - P(15,10)*SPP[9];
nextP(5,10) = P(5,10) + P(0,10)*SF[4] + P(2,10)*SF[3] + P(3,10)*SF[5] - P(1,10)*SPP[0] - P(13,10)*SPP[8] + P(14,10)*SPP[2] + P(15,10)*SPP[5];
nextP(6,10) = P(6,10) + P(1,10)*SF[4] - P(2,10)*SF[5] + P(3,10)*SF[3] + P(0,10)*SPP[0] + P(13,10)*SPP[4] - P(14,10)*SPP[7] - P(15,10)*SPP[1];
nextP(7,10) = P(7,10) + P(4,10)*dt;
nextP(8,10) = P(8,10) + P(5,10)*dt;
nextP(9,10) = P(9,10) + P(6,10)*dt;
nextP(10,10) = P(10,10);
nextP(0,11) = P(0,11) + P(1,11)*SF[9] + P(2,11)*SF[11] + P(3,11)*SF[10] + P(10,11)*SF[14] + P(11,11)*SF[15] + P(12,11)*SPP[10];
nextP(1,11) = P(1,11) + P(0,11)*SF[8] + P(2,11)*SF[7] + P(3,11)*SF[11] - P(12,11)*SF[15] + P(11,11)*SPP[10] - (P(10,11)*q0)/2;
nextP(2,11) = P(2,11) + P(0,11)*SF[6] + P(1,11)*SF[10] + P(3,11)*SF[8] + P(12,11)*SF[14] - P(10,11)*SPP[10] - (P(11,11)*q0)/2;
nextP(3,11) = P(3,11) + P(0,11)*SF[7] + P(1,11)*SF[6] + P(2,11)*SF[9] + P(10,11)*SF[15] - P(11,11)*SF[14] - (P(12,11)*q0)/2;
nextP(4,11) = P(4,11) + P(0,11)*SF[5] + P(1,11)*SF[3] - P(3,11)*SF[4] + P(2,11)*SPP[0] + P(13,11)*SPP[3] + P(14,11)*SPP[6] - P(15,11)*SPP[9];
nextP(5,11) = P(5,11) + P(0,11)*SF[4] + P(2,11)*SF[3] + P(3,11)*SF[5] - P(1,11)*SPP[0] - P(13,11)*SPP[8] + P(14,11)*SPP[2] + P(15,11)*SPP[5];
nextP(6,11) = P(6,11) + P(1,11)*SF[4] - P(2,11)*SF[5] + P(3,11)*SF[3] + P(0,11)*SPP[0] + P(13,11)*SPP[4] - P(14,11)*SPP[7] - P(15,11)*SPP[1];
nextP(7,11) = P(7,11) + P(4,11)*dt;
nextP(8,11) = P(8,11) + P(5,11)*dt;
nextP(9,11) = P(9,11) + P(6,11)*dt;
nextP(10,11) = P(10,11);
nextP(11,11) = P(11,11);
nextP(0,12) = P(0,12) + P(1,12)*SF[9] + P(2,12)*SF[11] + P(3,12)*SF[10] + P(10,12)*SF[14] + P(11,12)*SF[15] + P(12,12)*SPP[10];
nextP(1,12) = P(1,12) + P(0,12)*SF[8] + P(2,12)*SF[7] + P(3,12)*SF[11] - P(12,12)*SF[15] + P(11,12)*SPP[10] - (P(10,12)*q0)/2;
nextP(2,12) = P(2,12) + P(0,12)*SF[6] + P(1,12)*SF[10] + P(3,12)*SF[8] + P(12,12)*SF[14] - P(10,12)*SPP[10] - (P(11,12)*q0)/2;
nextP(3,12) = P(3,12) + P(0,12)*SF[7] + P(1,12)*SF[6] + P(2,12)*SF[9] + P(10,12)*SF[15] - P(11,12)*SF[14] - (P(12,12)*q0)/2;
nextP(4,12) = P(4,12) + P(0,12)*SF[5] + P(1,12)*SF[3] - P(3,12)*SF[4] + P(2,12)*SPP[0] + P(13,12)*SPP[3] + P(14,12)*SPP[6] - P(15,12)*SPP[9];
nextP(5,12) = P(5,12) + P(0,12)*SF[4] + P(2,12)*SF[3] + P(3,12)*SF[5] - P(1,12)*SPP[0] - P(13,12)*SPP[8] + P(14,12)*SPP[2] + P(15,12)*SPP[5];
nextP(6,12) = P(6,12) + P(1,12)*SF[4] - P(2,12)*SF[5] + P(3,12)*SF[3] + P(0,12)*SPP[0] + P(13,12)*SPP[4] - P(14,12)*SPP[7] - P(15,12)*SPP[1];
nextP(7,12) = P(7,12) + P(4,12)*dt;
nextP(8,12) = P(8,12) + P(5,12)*dt;
nextP(9,12) = P(9,12) + P(6,12)*dt;
nextP(10,12) = P(10,12);
nextP(11,12) = P(11,12);
nextP(12,12) = P(12,12);
// add process noise that is not from the IMU
for (unsigned i = 0; i <= 9; i++) {
nextP(i,i) += process_noise(i);
}
// process noise contribution for delta angle states can be very small compared to
// the variances, therefore use algorithm to minimise numerical error
for (unsigned i = 10; i <=12; i++) {
const int index = i-10;
nextP(i,i) = kahanSummation(nextP(i,i), process_noise(i), _delta_angle_bias_var_accum(index));
}
// Don't calculate these covariance terms if IMU delta velocity bias estimation is inhibited
if (!(_params.fusion_mode & MASK_INHIBIT_ACC_BIAS) && !_accel_bias_inhibit) {
// calculate variances and upper diagonal covariances for IMU delta velocity bias states
nextP(0,13) = P(0,13) + P(1,13)*SF[9] + P(2,13)*SF[11] + P(3,13)*SF[10] + P(10,13)*SF[14] + P(11,13)*SF[15] + P(12,13)*SPP[10];
nextP(1,13) = P(1,13) + P(0,13)*SF[8] + P(2,13)*SF[7] + P(3,13)*SF[11] - P(12,13)*SF[15] + P(11,13)*SPP[10] - (P(10,13)*q0)/2;
nextP(2,13) = P(2,13) + P(0,13)*SF[6] + P(1,13)*SF[10] + P(3,13)*SF[8] + P(12,13)*SF[14] - P(10,13)*SPP[10] - (P(11,13)*q0)/2;
nextP(3,13) = P(3,13) + P(0,13)*SF[7] + P(1,13)*SF[6] + P(2,13)*SF[9] + P(10,13)*SF[15] - P(11,13)*SF[14] - (P(12,13)*q0)/2;
nextP(4,13) = P(4,13) + P(0,13)*SF[5] + P(1,13)*SF[3] - P(3,13)*SF[4] + P(2,13)*SPP[0] + P(13,13)*SPP[3] + P(14,13)*SPP[6] - P(15,13)*SPP[9];
nextP(5,13) = P(5,13) + P(0,13)*SF[4] + P(2,13)*SF[3] + P(3,13)*SF[5] - P(1,13)*SPP[0] - P(13,13)*SPP[8] + P(14,13)*SPP[2] + P(15,13)*SPP[5];
nextP(6,13) = P(6,13) + P(1,13)*SF[4] - P(2,13)*SF[5] + P(3,13)*SF[3] + P(0,13)*SPP[0] + P(13,13)*SPP[4] - P(14,13)*SPP[7] - P(15,13)*SPP[1];
nextP(7,13) = P(7,13) + P(4,13)*dt;
nextP(8,13) = P(8,13) + P(5,13)*dt;
nextP(9,13) = P(9,13) + P(6,13)*dt;
nextP(10,13) = P(10,13);
nextP(11,13) = P(11,13);
nextP(12,13) = P(12,13);
nextP(13,13) = P(13,13);
nextP(0,14) = P(0,14) + P(1,14)*SF[9] + P(2,14)*SF[11] + P(3,14)*SF[10] + P(10,14)*SF[14] + P(11,14)*SF[15] + P(12,14)*SPP[10];
nextP(1,14) = P(1,14) + P(0,14)*SF[8] + P(2,14)*SF[7] + P(3,14)*SF[11] - P(12,14)*SF[15] + P(11,14)*SPP[10] - (P(10,14)*q0)/2;
nextP(2,14) = P(2,14) + P(0,14)*SF[6] + P(1,14)*SF[10] + P(3,14)*SF[8] + P(12,14)*SF[14] - P(10,14)*SPP[10] - (P(11,14)*q0)/2;
nextP(3,14) = P(3,14) + P(0,14)*SF[7] + P(1,14)*SF[6] + P(2,14)*SF[9] + P(10,14)*SF[15] - P(11,14)*SF[14] - (P(12,14)*q0)/2;
nextP(4,14) = P(4,14) + P(0,14)*SF[5] + P(1,14)*SF[3] - P(3,14)*SF[4] + P(2,14)*SPP[0] + P(13,14)*SPP[3] + P(14,14)*SPP[6] - P(15,14)*SPP[9];
nextP(5,14) = P(5,14) + P(0,14)*SF[4] + P(2,14)*SF[3] + P(3,14)*SF[5] - P(1,14)*SPP[0] - P(13,14)*SPP[8] + P(14,14)*SPP[2] + P(15,14)*SPP[5];
nextP(6,14) = P(6,14) + P(1,14)*SF[4] - P(2,14)*SF[5] + P(3,14)*SF[3] + P(0,14)*SPP[0] + P(13,14)*SPP[4] - P(14,14)*SPP[7] - P(15,14)*SPP[1];
nextP(7,14) = P(7,14) + P(4,14)*dt;
nextP(8,14) = P(8,14) + P(5,14)*dt;
nextP(9,14) = P(9,14) + P(6,14)*dt;
nextP(10,14) = P(10,14);
nextP(11,14) = P(11,14);
nextP(12,14) = P(12,14);
nextP(13,14) = P(13,14);
nextP(14,14) = P(14,14);
nextP(0,15) = P(0,15) + P(1,15)*SF[9] + P(2,15)*SF[11] + P(3,15)*SF[10] + P(10,15)*SF[14] + P(11,15)*SF[15] + P(12,15)*SPP[10];
nextP(1,15) = P(1,15) + P(0,15)*SF[8] + P(2,15)*SF[7] + P(3,15)*SF[11] - P(12,15)*SF[15] + P(11,15)*SPP[10] - (P(10,15)*q0)/2;
nextP(2,15) = P(2,15) + P(0,15)*SF[6] + P(1,15)*SF[10] + P(3,15)*SF[8] + P(12,15)*SF[14] - P(10,15)*SPP[10] - (P(11,15)*q0)/2;
nextP(3,15) = P(3,15) + P(0,15)*SF[7] + P(1,15)*SF[6] + P(2,15)*SF[9] + P(10,15)*SF[15] - P(11,15)*SF[14] - (P(12,15)*q0)/2;
nextP(4,15) = P(4,15) + P(0,15)*SF[5] + P(1,15)*SF[3] - P(3,15)*SF[4] + P(2,15)*SPP[0] + P(13,15)*SPP[3] + P(14,15)*SPP[6] - P(15,15)*SPP[9];
nextP(5,15) = P(5,15) + P(0,15)*SF[4] + P(2,15)*SF[3] + P(3,15)*SF[5] - P(1,15)*SPP[0] - P(13,15)*SPP[8] + P(14,15)*SPP[2] + P(15,15)*SPP[5];
nextP(6,15) = P(6,15) + P(1,15)*SF[4] - P(2,15)*SF[5] + P(3,15)*SF[3] + P(0,15)*SPP[0] + P(13,15)*SPP[4] - P(14,15)*SPP[7] - P(15,15)*SPP[1];
nextP(7,15) = P(7,15) + P(4,15)*dt;
nextP(8,15) = P(8,15) + P(5,15)*dt;
nextP(9,15) = P(9,15) + P(6,15)*dt;
nextP(10,15) = P(10,15);
nextP(11,15) = P(11,15);
nextP(12,15) = P(12,15);
nextP(13,15) = P(13,15);
nextP(14,15) = P(14,15);
nextP(15,15) = P(15,15);
// add process noise that is not from the IMU
// process noise contributiton for delta velocity states can be very small compared to
// the variances, therefore use algorithm to minimise numerical error
for (unsigned i = 13; i <= 15; i++) {
const int index = i-13;
nextP(i,i) = kahanSummation(nextP(i,i), process_noise(i), _delta_vel_bias_var_accum(index));
}
} else {
// Inhibit delta velocity bias learning by zeroing the covariance terms
nextP.uncorrelateCovarianceSetVariance<3>(13, 0.0f);
_delta_vel_bias_var_accum.setZero();
}
// Don't do covariance prediction on magnetic field states unless we are using 3-axis fusion
if (_control_status.flags.mag_3D) {
// calculate variances and upper diagonal covariances for earth and body magnetic field states
nextP(0,16) = P(0,16) + P(1,16)*SF[9] + P(2,16)*SF[11] + P(3,16)*SF[10] + P(10,16)*SF[14] + P(11,16)*SF[15] + P(12,16)*SPP[10];
nextP(1,16) = P(1,16) + P(0,16)*SF[8] + P(2,16)*SF[7] + P(3,16)*SF[11] - P(12,16)*SF[15] + P(11,16)*SPP[10] - (P(10,16)*q0)/2;
nextP(2,16) = P(2,16) + P(0,16)*SF[6] + P(1,16)*SF[10] + P(3,16)*SF[8] + P(12,16)*SF[14] - P(10,16)*SPP[10] - (P(11,16)*q0)/2;
nextP(3,16) = P(3,16) + P(0,16)*SF[7] + P(1,16)*SF[6] + P(2,16)*SF[9] + P(10,16)*SF[15] - P(11,16)*SF[14] - (P(12,16)*q0)/2;
nextP(4,16) = P(4,16) + P(0,16)*SF[5] + P(1,16)*SF[3] - P(3,16)*SF[4] + P(2,16)*SPP[0] + P(13,16)*SPP[3] + P(14,16)*SPP[6] - P(15,16)*SPP[9];
nextP(5,16) = P(5,16) + P(0,16)*SF[4] + P(2,16)*SF[3] + P(3,16)*SF[5] - P(1,16)*SPP[0] - P(13,16)*SPP[8] + P(14,16)*SPP[2] + P(15,16)*SPP[5];
nextP(6,16) = P(6,16) + P(1,16)*SF[4] - P(2,16)*SF[5] + P(3,16)*SF[3] + P(0,16)*SPP[0] + P(13,16)*SPP[4] - P(14,16)*SPP[7] - P(15,16)*SPP[1];
nextP(7,16) = P(7,16) + P(4,16)*dt;
nextP(8,16) = P(8,16) + P(5,16)*dt;
nextP(9,16) = P(9,16) + P(6,16)*dt;
nextP(10,16) = P(10,16);
nextP(11,16) = P(11,16);
nextP(12,16) = P(12,16);
nextP(13,16) = P(13,16);
nextP(14,16) = P(14,16);
nextP(15,16) = P(15,16);
nextP(16,16) = P(16,16);
nextP(0,17) = P(0,17) + P(1,17)*SF[9] + P(2,17)*SF[11] + P(3,17)*SF[10] + P(10,17)*SF[14] + P(11,17)*SF[15] + P(12,17)*SPP[10];
nextP(1,17) = P(1,17) + P(0,17)*SF[8] + P(2,17)*SF[7] + P(3,17)*SF[11] - P(12,17)*SF[15] + P(11,17)*SPP[10] - (P(10,17)*q0)/2;
nextP(2,17) = P(2,17) + P(0,17)*SF[6] + P(1,17)*SF[10] + P(3,17)*SF[8] + P(12,17)*SF[14] - P(10,17)*SPP[10] - (P(11,17)*q0)/2;
nextP(3,17) = P(3,17) + P(0,17)*SF[7] + P(1,17)*SF[6] + P(2,17)*SF[9] + P(10,17)*SF[15] - P(11,17)*SF[14] - (P(12,17)*q0)/2;
nextP(4,17) = P(4,17) + P(0,17)*SF[5] + P(1,17)*SF[3] - P(3,17)*SF[4] + P(2,17)*SPP[0] + P(13,17)*SPP[3] + P(14,17)*SPP[6] - P(15,17)*SPP[9];
nextP(5,17) = P(5,17) + P(0,17)*SF[4] + P(2,17)*SF[3] + P(3,17)*SF[5] - P(1,17)*SPP[0] - P(13,17)*SPP[8] + P(14,17)*SPP[2] + P(15,17)*SPP[5];
nextP(6,17) = P(6,17) + P(1,17)*SF[4] - P(2,17)*SF[5] + P(3,17)*SF[3] + P(0,17)*SPP[0] + P(13,17)*SPP[4] - P(14,17)*SPP[7] - P(15,17)*SPP[1];
nextP(7,17) = P(7,17) + P(4,17)*dt;
nextP(8,17) = P(8,17) + P(5,17)*dt;
nextP(9,17) = P(9,17) + P(6,17)*dt;
nextP(10,17) = P(10,17);
nextP(11,17) = P(11,17);
nextP(12,17) = P(12,17);
nextP(13,17) = P(13,17);
nextP(14,17) = P(14,17);
nextP(15,17) = P(15,17);
nextP(16,17) = P(16,17);
nextP(17,17) = P(17,17);
nextP(0,18) = P(0,18) + P(1,18)*SF[9] + P(2,18)*SF[11] + P(3,18)*SF[10] + P(10,18)*SF[14] + P(11,18)*SF[15] + P(12,18)*SPP[10];
nextP(1,18) = P(1,18) + P(0,18)*SF[8] + P(2,18)*SF[7] + P(3,18)*SF[11] - P(12,18)*SF[15] + P(11,18)*SPP[10] - (P(10,18)*q0)/2;
nextP(2,18) = P(2,18) + P(0,18)*SF[6] + P(1,18)*SF[10] + P(3,18)*SF[8] + P(12,18)*SF[14] - P(10,18)*SPP[10] - (P(11,18)*q0)/2;
nextP(3,18) = P(3,18) + P(0,18)*SF[7] + P(1,18)*SF[6] + P(2,18)*SF[9] + P(10,18)*SF[15] - P(11,18)*SF[14] - (P(12,18)*q0)/2;
nextP(4,18) = P(4,18) + P(0,18)*SF[5] + P(1,18)*SF[3] - P(3,18)*SF[4] + P(2,18)*SPP[0] + P(13,18)*SPP[3] + P(14,18)*SPP[6] - P(15,18)*SPP[9];
nextP(5,18) = P(5,18) + P(0,18)*SF[4] + P(2,18)*SF[3] + P(3,18)*SF[5] - P(1,18)*SPP[0] - P(13,18)*SPP[8] + P(14,18)*SPP[2] + P(15,18)*SPP[5];
nextP(6,18) = P(6,18) + P(1,18)*SF[4] - P(2,18)*SF[5] + P(3,18)*SF[3] + P(0,18)*SPP[0] + P(13,18)*SPP[4] - P(14,18)*SPP[7] - P(15,18)*SPP[1];
nextP(7,18) = P(7,18) + P(4,18)*dt;
nextP(8,18) = P(8,18) + P(5,18)*dt;
nextP(9,18) = P(9,18) + P(6,18)*dt;
nextP(10,18) = P(10,18);
nextP(11,18) = P(11,18);
nextP(12,18) = P(12,18);
nextP(13,18) = P(13,18);
nextP(14,18) = P(14,18);
nextP(15,18) = P(15,18);
nextP(16,18) = P(16,18);
nextP(17,18) = P(17,18);
nextP(18,18) = P(18,18);
nextP(0,19) = P(0,19) + P(1,19)*SF[9] + P(2,19)*SF[11] + P(3,19)*SF[10] + P(10,19)*SF[14] + P(11,19)*SF[15] + P(12,19)*SPP[10];
nextP(1,19) = P(1,19) + P(0,19)*SF[8] + P(2,19)*SF[7] + P(3,19)*SF[11] - P(12,19)*SF[15] + P(11,19)*SPP[10] - (P(10,19)*q0)/2;
nextP(2,19) = P(2,19) + P(0,19)*SF[6] + P(1,19)*SF[10] + P(3,19)*SF[8] + P(12,19)*SF[14] - P(10,19)*SPP[10] - (P(11,19)*q0)/2;
nextP(3,19) = P(3,19) + P(0,19)*SF[7] + P(1,19)*SF[6] + P(2,19)*SF[9] + P(10,19)*SF[15] - P(11,19)*SF[14] - (P(12,19)*q0)/2;
nextP(4,19) = P(4,19) + P(0,19)*SF[5] + P(1,19)*SF[3] - P(3,19)*SF[4] + P(2,19)*SPP[0] + P(13,19)*SPP[3] + P(14,19)*SPP[6] - P(15,19)*SPP[9];
nextP(5,19) = P(5,19) + P(0,19)*SF[4] + P(2,19)*SF[3] + P(3,19)*SF[5] - P(1,19)*SPP[0] - P(13,19)*SPP[8] + P(14,19)*SPP[2] + P(15,19)*SPP[5];
nextP(6,19) = P(6,19) + P(1,19)*SF[4] - P(2,19)*SF[5] + P(3,19)*SF[3] + P(0,19)*SPP[0] + P(13,19)*SPP[4] - P(14,19)*SPP[7] - P(15,19)*SPP[1];
nextP(7,19) = P(7,19) + P(4,19)*dt;
nextP(8,19) = P(8,19) + P(5,19)*dt;
nextP(9,19) = P(9,19) + P(6,19)*dt;
nextP(10,19) = P(10,19);
nextP(11,19) = P(11,19);
nextP(12,19) = P(12,19);
nextP(13,19) = P(13,19);
nextP(14,19) = P(14,19);
nextP(15,19) = P(15,19);
nextP(16,19) = P(16,19);
nextP(17,19) = P(17,19);
nextP(18,19) = P(18,19);
nextP(19,19) = P(19,19);
nextP(0,20) = P(0,20) + P(1,20)*SF[9] + P(2,20)*SF[11] + P(3,20)*SF[10] + P(10,20)*SF[14] + P(11,20)*SF[15] + P(12,20)*SPP[10];
nextP(1,20) = P(1,20) + P(0,20)*SF[8] + P(2,20)*SF[7] + P(3,20)*SF[11] - P(12,20)*SF[15] + P(11,20)*SPP[10] - (P(10,20)*q0)/2;
nextP(2,20) = P(2,20) + P(0,20)*SF[6] + P(1,20)*SF[10] + P(3,20)*SF[8] + P(12,20)*SF[14] - P(10,20)*SPP[10] - (P(11,20)*q0)/2;
nextP(3,20) = P(3,20) + P(0,20)*SF[7] + P(1,20)*SF[6] + P(2,20)*SF[9] + P(10,20)*SF[15] - P(11,20)*SF[14] - (P(12,20)*q0)/2;
nextP(4,20) = P(4,20) + P(0,20)*SF[5] + P(1,20)*SF[3] - P(3,20)*SF[4] + P(2,20)*SPP[0] + P(13,20)*SPP[3] + P(14,20)*SPP[6] - P(15,20)*SPP[9];
nextP(5,20) = P(5,20) + P(0,20)*SF[4] + P(2,20)*SF[3] + P(3,20)*SF[5] - P(1,20)*SPP[0] - P(13,20)*SPP[8] + P(14,20)*SPP[2] + P(15,20)*SPP[5];
nextP(6,20) = P(6,20) + P(1,20)*SF[4] - P(2,20)*SF[5] + P(3,20)*SF[3] + P(0,20)*SPP[0] + P(13,20)*SPP[4] - P(14,20)*SPP[7] - P(15,20)*SPP[1];
nextP(7,20) = P(7,20) + P(4,20)*dt;
nextP(8,20) = P(8,20) + P(5,20)*dt;
nextP(9,20) = P(9,20) + P(6,20)*dt;
nextP(10,20) = P(10,20);
nextP(11,20) = P(11,20);
nextP(12,20) = P(12,20);
nextP(13,20) = P(13,20);
nextP(14,20) = P(14,20);
nextP(15,20) = P(15,20);
nextP(16,20) = P(16,20);
nextP(17,20) = P(17,20);
nextP(18,20) = P(18,20);
nextP(19,20) = P(19,20);
nextP(20,20) = P(20,20);
nextP(0,21) = P(0,21) + P(1,21)*SF[9] + P(2,21)*SF[11] + P(3,21)*SF[10] + P(10,21)*SF[14] + P(11,21)*SF[15] + P(12,21)*SPP[10];
nextP(1,21) = P(1,21) + P(0,21)*SF[8] + P(2,21)*SF[7] + P(3,21)*SF[11] - P(12,21)*SF[15] + P(11,21)*SPP[10] - (P(10,21)*q0)/2;
nextP(2,21) = P(2,21) + P(0,21)*SF[6] + P(1,21)*SF[10] + P(3,21)*SF[8] + P(12,21)*SF[14] - P(10,21)*SPP[10] - (P(11,21)*q0)/2;
nextP(3,21) = P(3,21) + P(0,21)*SF[7] + P(1,21)*SF[6] + P(2,21)*SF[9] + P(10,21)*SF[15] - P(11,21)*SF[14] - (P(12,21)*q0)/2;
nextP(4,21) = P(4,21) + P(0,21)*SF[5] + P(1,21)*SF[3] - P(3,21)*SF[4] + P(2,21)*SPP[0] + P(13,21)*SPP[3] + P(14,21)*SPP[6] - P(15,21)*SPP[9];
nextP(5,21) = P(5,21) + P(0,21)*SF[4] + P(2,21)*SF[3] + P(3,21)*SF[5] - P(1,21)*SPP[0] - P(13,21)*SPP[8] + P(14,21)*SPP[2] + P(15,21)*SPP[5];
nextP(6,21) = P(6,21) + P(1,21)*SF[4] - P(2,21)*SF[5] + P(3,21)*SF[3] + P(0,21)*SPP[0] + P(13,21)*SPP[4] - P(14,21)*SPP[7] - P(15,21)*SPP[1];
nextP(7,21) = P(7,21) + P(4,21)*dt;
nextP(8,21) = P(8,21) + P(5,21)*dt;
nextP(9,21) = P(9,21) + P(6,21)*dt;
nextP(10,21) = P(10,21);
nextP(11,21) = P(11,21);
nextP(12,21) = P(12,21);
nextP(13,21) = P(13,21);
nextP(14,21) = P(14,21);
nextP(15,21) = P(15,21);
nextP(16,21) = P(16,21);
nextP(17,21) = P(17,21);
nextP(18,21) = P(18,21);
nextP(19,21) = P(19,21);
nextP(20,21) = P(20,21);
nextP(21,21) = P(21,21);
// add process noise that is not from the IMU
for (unsigned i = 16; i <= 21; i++) {
nextP(i,i) += process_noise(i);
}
}
// Don't do covariance prediction on wind states unless we are using them
if (_control_status.flags.wind) {
// calculate variances and upper diagonal covariances for wind states
nextP(0,22) = P(0,22) + P(1,22)*SF[9] + P(2,22)*SF[11] + P(3,22)*SF[10] + P(10,22)*SF[14] + P(11,22)*SF[15] + P(12,22)*SPP[10];
nextP(1,22) = P(1,22) + P(0,22)*SF[8] + P(2,22)*SF[7] + P(3,22)*SF[11] - P(12,22)*SF[15] + P(11,22)*SPP[10] - (P(10,22)*q0)/2;
nextP(2,22) = P(2,22) + P(0,22)*SF[6] + P(1,22)*SF[10] + P(3,22)*SF[8] + P(12,22)*SF[14] - P(10,22)*SPP[10] - (P(11,22)*q0)/2;
nextP(3,22) = P(3,22) + P(0,22)*SF[7] + P(1,22)*SF[6] + P(2,22)*SF[9] + P(10,22)*SF[15] - P(11,22)*SF[14] - (P(12,22)*q0)/2;
nextP(4,22) = P(4,22) + P(0,22)*SF[5] + P(1,22)*SF[3] - P(3,22)*SF[4] + P(2,22)*SPP[0] + P(13,22)*SPP[3] + P(14,22)*SPP[6] - P(15,22)*SPP[9];
nextP(5,22) = P(5,22) + P(0,22)*SF[4] + P(2,22)*SF[3] + P(3,22)*SF[5] - P(1,22)*SPP[0] - P(13,22)*SPP[8] + P(14,22)*SPP[2] + P(15,22)*SPP[5];
nextP(6,22) = P(6,22) + P(1,22)*SF[4] - P(2,22)*SF[5] + P(3,22)*SF[3] + P(0,22)*SPP[0] + P(13,22)*SPP[4] - P(14,22)*SPP[7] - P(15,22)*SPP[1];
nextP(7,22) = P(7,22) + P(4,22)*dt;
nextP(8,22) = P(8,22) + P(5,22)*dt;
nextP(9,22) = P(9,22) + P(6,22)*dt;
nextP(10,22) = P(10,22);
nextP(11,22) = P(11,22);
nextP(12,22) = P(12,22);
nextP(13,22) = P(13,22);
nextP(14,22) = P(14,22);
nextP(15,22) = P(15,22);
nextP(16,22) = P(16,22);
nextP(17,22) = P(17,22);
nextP(18,22) = P(18,22);
nextP(19,22) = P(19,22);
nextP(20,22) = P(20,22);
nextP(21,22) = P(21,22);
nextP(22,22) = P(22,22);
nextP(0,23) = P(0,23) + P(1,23)*SF[9] + P(2,23)*SF[11] + P(3,23)*SF[10] + P(10,23)*SF[14] + P(11,23)*SF[15] + P(12,23)*SPP[10];
nextP(1,23) = P(1,23) + P(0,23)*SF[8] + P(2,23)*SF[7] + P(3,23)*SF[11] - P(12,23)*SF[15] + P(11,23)*SPP[10] - (P(10,23)*q0)/2;
nextP(2,23) = P(2,23) + P(0,23)*SF[6] + P(1,23)*SF[10] + P(3,23)*SF[8] + P(12,23)*SF[14] - P(10,23)*SPP[10] - (P(11,23)*q0)/2;
nextP(3,23) = P(3,23) + P(0,23)*SF[7] + P(1,23)*SF[6] + P(2,23)*SF[9] + P(10,23)*SF[15] - P(11,23)*SF[14] - (P(12,23)*q0)/2;
nextP(4,23) = P(4,23) + P(0,23)*SF[5] + P(1,23)*SF[3] - P(3,23)*SF[4] + P(2,23)*SPP[0] + P(13,23)*SPP[3] + P(14,23)*SPP[6] - P(15,23)*SPP[9];
nextP(5,23) = P(5,23) + P(0,23)*SF[4] + P(2,23)*SF[3] + P(3,23)*SF[5] - P(1,23)*SPP[0] - P(13,23)*SPP[8] + P(14,23)*SPP[2] + P(15,23)*SPP[5];
nextP(6,23) = P(6,23) + P(1,23)*SF[4] - P(2,23)*SF[5] + P(3,23)*SF[3] + P(0,23)*SPP[0] + P(13,23)*SPP[4] - P(14,23)*SPP[7] - P(15,23)*SPP[1];
nextP(7,23) = P(7,23) + P(4,23)*dt;
nextP(8,23) = P(8,23) + P(5,23)*dt;
nextP(9,23) = P(9,23) + P(6,23)*dt;
nextP(10,23) = P(10,23);
nextP(11,23) = P(11,23);
nextP(12,23) = P(12,23);
nextP(13,23) = P(13,23);
nextP(14,23) = P(14,23);
nextP(15,23) = P(15,23);
nextP(16,23) = P(16,23);
nextP(17,23) = P(17,23);
nextP(18,23) = P(18,23);
nextP(19,23) = P(19,23);
nextP(20,23) = P(20,23);
nextP(21,23) = P(21,23);
nextP(22,23) = P(22,23);
nextP(23,23) = P(23,23);
// add process noise that is not from the IMU
for (unsigned i = 22; i <= 23; i++) {
nextP(i,i) += process_noise(i);
}
}
// stop position covariance growth if our total position variance reaches 100m
// this can happen if we lose gps for some time
if ((P(7,7) + P(8,8)) > 1e4f) {
for (uint8_t i = 7; i <= 8; i++) {
for (uint8_t j = 0; j < _k_num_states; j++) {
nextP(i,j) = P(i,j);
nextP(j,i) = P(j,i);
}
}
}
// covariance matrix is symmetrical, so copy upper half to lower half
for (unsigned row = 1; row < _k_num_states; row++) {
for (unsigned column = 0 ; column < row; column++) {
P(row,column) = P(column,row) = nextP(column,row);
}
}
// copy variances (diagonals)
for (unsigned i = 0; i < _k_num_states; i++) {
P(i,i) = nextP(i,i);
}
// fix gross errors in the covariance matrix and ensure rows and
// columns for un-used states are zero
fixCovarianceErrors(false);
}
void Ekf::fixCovarianceErrors(bool force_symmetry)
{
// NOTE: This limiting is a last resort and should not be relied on
// TODO: Split covariance prediction into separate F*P*transpose(F) and Q contributions
// and set corresponding entries in Q to zero when states exceed 50% of the limit
// Covariance diagonal limits. Use same values for states which
// belong to the same group (e.g. vel_x, vel_y, vel_z)
float P_lim[8] = {};
P_lim[0] = 1.0f; // quaternion max var
P_lim[1] = 1e6f; // velocity max var
P_lim[2] = 1e6f; // positiion max var
P_lim[3] = 1.0f; // gyro bias max var
P_lim[4] = 1.0f; // delta velocity z bias max var
P_lim[5] = 1.0f; // earth mag field max var
P_lim[6] = 1.0f; // body mag field max var
P_lim[7] = 1e6f; // wind max var
for (int i = 0; i <= 3; i++) {
// quaternion states
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[0]);
}
for (int i = 4; i <= 6; i++) {
// NED velocity states
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[1]);
}
for (int i = 7; i <= 9; i++) {
// NED position states
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[2]);
}
for (int i = 10; i <= 12; i++) {
// gyro bias states
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[3]);
}
// force symmetry on the quaternion, velocity and position state covariances
if (force_symmetry) {
P.makeRowColSymmetric<13>(0);
}
// the following states are optional and are deactivated when not required
// by ensuring the corresponding covariance matrix values are kept at zero
// accelerometer bias states
if ((_params.fusion_mode & MASK_INHIBIT_ACC_BIAS) || _accel_bias_inhibit) {
P.uncorrelateCovarianceSetVariance<3>(13, 0.0f);
} else {
// Find the maximum delta velocity bias state variance and request a covariance reset if any variance is below the safe minimum
const float minSafeStateVar = 1e-9f;
float maxStateVar = minSafeStateVar;
bool resetRequired = false;
2017-08-23 22:18:48 -03:00
for (uint8_t stateIndex = 13; stateIndex <= 15; stateIndex++) {
if (P(stateIndex,stateIndex) > maxStateVar) {
maxStateVar = P(stateIndex,stateIndex);
2017-08-23 22:18:48 -03:00
} else if (P(stateIndex,stateIndex) < minSafeStateVar) {
2017-08-23 22:18:48 -03:00
resetRequired = true;
}
}
// To ensure stability of the covariance matrix operations, the ratio of a max and min variance must
// not exceed 100 and the minimum variance must not fall below the target minimum
// Also limit variance to a maximum equivalent to a 0.1g uncertainty
const float minStateVarTarget = 5E-8f;
float minAllowedStateVar = fmaxf(0.01f * maxStateVar, minStateVarTarget);
2017-08-23 22:18:48 -03:00
for (uint8_t stateIndex = 13; stateIndex <= 15; stateIndex++) {
P(stateIndex,stateIndex) = math::constrain(P(stateIndex,stateIndex), minAllowedStateVar, sq(0.1f * CONSTANTS_ONE_G * _dt_ekf_avg));
}
// If any one axis has fallen below the safe minimum, all delta velocity covariance terms must be reset to zero
if (resetRequired) {
P.uncorrelateCovariance<3>(13);
}
// Run additional checks to see if the delta velocity bias has hit limits in a direction that is clearly wrong
// calculate accel bias term aligned with the gravity vector
float dVel_bias_lim = 0.9f * _params.acc_bias_lim * _dt_ekf_avg;
float down_dvel_bias = 0.0f;
2017-08-23 22:18:48 -03:00
for (uint8_t axis_index = 0; axis_index < 3; axis_index++) {
2019-10-29 06:58:51 -03:00
down_dvel_bias += _state.delta_vel_bias(axis_index) * _R_to_earth(2, axis_index);
}
// check that the vertical component of accel bias is consistent with both the vertical position and velocity innovation
bool bad_acc_bias = (fabsf(down_dvel_bias) > dVel_bias_lim
2019-10-29 06:58:51 -03:00
&& ( (down_dvel_bias * _gps_vel_innov(2) < 0.0f && _control_status.flags.gps)
|| (down_dvel_bias * _ev_vel_innov(2) < 0.0f && _control_status.flags.ev_vel) )
&& down_dvel_bias * _gps_pos_innov(2) < 0.0f);
// record the pass/fail
if (!bad_acc_bias) {
_fault_status.flags.bad_acc_bias = false;
_time_acc_bias_check = _time_last_imu;
} else {
_fault_status.flags.bad_acc_bias = true;
}
// if we have failed for 7 seconds continuously, reset the accel bias covariances to fix bad conditioning of
// the covariance matrix but preserve the variances (diagonals) to allow bias learning to continue
if (_time_last_imu - _time_acc_bias_check > (uint64_t)7e6) {
P.uncorrelateCovariance<3>(13);
_time_acc_bias_check = _time_last_imu;
_fault_status.flags.bad_acc_bias = false;
2019-12-09 04:23:24 -04:00
ECL_WARN_TIMESTAMPED("invalid accel bias - resetting covariance");
} else if (force_symmetry) {
// ensure the covariance values are symmetrical
P.makeRowColSymmetric<3>(13);
}
}
// magnetic field states
if (!_control_status.flags.mag_3D) {
zeroMagCov();
} else {
// constrain variances
for (int i = 16; i <= 18; i++) {
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[5]);
}
for (int i = 19; i <= 21; i++) {
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[6]);
}
// force symmetry
if (force_symmetry) {
P.makeRowColSymmetric<3>(16);
P.makeRowColSymmetric<3>(19);
}
2019-12-09 03:49:33 -04:00
}
// wind velocity states
if (!_control_status.flags.wind) {
P.uncorrelateCovarianceSetVariance<2>(22, 0.0f);
} else {
// constrain variances
for (int i = 22; i <= 23; i++) {
P(i,i) = math::constrain(P(i,i), 0.0f, P_lim[7]);
}
// force symmetry
if (force_symmetry) {
P.makeRowColSymmetric<2>(22);
}
}
}
[ekf] controlMagFusion refactor and mag field strength check (#662) * ekf_control: Inhibit mag fusion when field magnitude is large Move mag inhibition check in separate function * ekf_control: pull out of functionalities out of controlMagFusion - yaw abd mag bias observability checks - mag 3D conditions - load mag covariances - set and clear mag control modes * ekf_control: refactor mag heading/3D start/stop. Move mag declination, mag 3d and mag heading fusion out of the main function * ekf_control: extract mag yaw reset and mag declination fusion requirements * ekf_control: use WMM in isStronMagneticField for mag fusion inhibition - Correct units of WMM strength table * ekf_control: extract mag_state_only functionality of AUTOFW (VTOL custom) Also split inAirYawReset from onGroundYawReset * ekf_control: extract mag automatic selection - transform if-else into switch-case for parameter fusion type selection * ekf_control: extract run3DMagAndDeclFusion, reorganize functions, fix flag naming in Test script * ekf_control: do not run mag fusion if tilt is not aligned. Reset some variables on ground even if mag fusion is not running yet. It could be that it runs later so we need to make sure that those variables are properly set. * ekf_control: move controlMagFusion and related functions to mag_control.cpp * ekf control: check for validity of mag strength from WMM and falls back to average earth mag field with larger gate if not valid * ekf control: remove evyaw check for mag inhibition * ekf control: change nested ternary operator into if-else if * Ekf: create AlphaFilter template class for simple low-pass filtering 0.1/0.9 type low-pass filters are commonly used to smooth data, this class is meant to abstract the computation of this filter * ekf control: reset heading using mag_lpf data to avoid resetting on an outlier fixes ecl issue #525 * ekf control: replace mag_states_only flag with mag_field_disturbed and add parameter to enable or disable mag field strength check * ekf control: remove AUTOFW mag fusion type as not needed This was implemented for VTOL but did not solve the problem and should not be used anymore * ekf control: use start/stop mag functions everywhere instead of setting the flag * ekf control: Run mag fusion depending on yaw_align instead of tilt_align as there is no reason to fuse mag when the ekf isn't aligned * AlphaFilter: add test for float and Vector3f
2019-11-08 11:02:59 -04:00
void Ekf::resetMagRelatedCovariances()
2017-08-23 22:18:48 -03:00
{
// set the quaternion covariance terms to zero
2019-12-09 03:49:33 -04:00
P.uncorrelateCovarianceSetVariance<2>(0, 0.0f);
P.uncorrelateCovarianceSetVariance<2>(2, 0.0f);
// reset the field state variance to the observation variance
2019-12-09 03:49:33 -04:00
P.uncorrelateCovarianceSetVariance<3>(16, sq(_params.mag_noise));
P.uncorrelateCovarianceSetVariance<3>(19, sq(_params.mag_noise));
// save covariance data for re-use when auto-switching between heading and 3-axis fusion
[ekf] controlMagFusion refactor and mag field strength check (#662) * ekf_control: Inhibit mag fusion when field magnitude is large Move mag inhibition check in separate function * ekf_control: pull out of functionalities out of controlMagFusion - yaw abd mag bias observability checks - mag 3D conditions - load mag covariances - set and clear mag control modes * ekf_control: refactor mag heading/3D start/stop. Move mag declination, mag 3d and mag heading fusion out of the main function * ekf_control: extract mag yaw reset and mag declination fusion requirements * ekf_control: use WMM in isStronMagneticField for mag fusion inhibition - Correct units of WMM strength table * ekf_control: extract mag_state_only functionality of AUTOFW (VTOL custom) Also split inAirYawReset from onGroundYawReset * ekf_control: extract mag automatic selection - transform if-else into switch-case for parameter fusion type selection * ekf_control: extract run3DMagAndDeclFusion, reorganize functions, fix flag naming in Test script * ekf_control: do not run mag fusion if tilt is not aligned. Reset some variables on ground even if mag fusion is not running yet. It could be that it runs later so we need to make sure that those variables are properly set. * ekf_control: move controlMagFusion and related functions to mag_control.cpp * ekf control: check for validity of mag strength from WMM and falls back to average earth mag field with larger gate if not valid * ekf control: remove evyaw check for mag inhibition * ekf control: change nested ternary operator into if-else if * Ekf: create AlphaFilter template class for simple low-pass filtering 0.1/0.9 type low-pass filters are commonly used to smooth data, this class is meant to abstract the computation of this filter * ekf control: reset heading using mag_lpf data to avoid resetting on an outlier fixes ecl issue #525 * ekf control: replace mag_states_only flag with mag_field_disturbed and add parameter to enable or disable mag field strength check * ekf control: remove AUTOFW mag fusion type as not needed This was implemented for VTOL but did not solve the problem and should not be used anymore * ekf control: use start/stop mag functions everywhere instead of setting the flag * ekf control: Run mag fusion depending on yaw_align instead of tilt_align as there is no reason to fuse mag when the ekf isn't aligned * AlphaFilter: add test for float and Vector3f
2019-11-08 11:02:59 -04:00
saveMagCovData();
}
void Ekf::clearMagCov()
{
zeroMagCov();
_mag_decl_cov_reset = false;
}
void Ekf::zeroMagCov()
{
2019-12-09 03:49:33 -04:00
P.uncorrelateCovarianceSetVariance<3>(16, 0.0f);
P.uncorrelateCovarianceSetVariance<3>(19, 0.0f);
}
void Ekf::resetWindCovariance()
{
if (_tas_data_ready && (_imu_sample_delayed.time_us - _airspeed_sample_delayed.time_us < (uint64_t)5e5)) {
// Derived using EKF/matlab/scripts/Inertial Nav EKF/wind_cov.py
// TODO: explicitly include the sideslip angle in the derivation
Eulerf euler321(_state.quat_nominal);
const float euler_yaw = euler321(2);
const float R_TAS = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) * math::constrain(_airspeed_sample_delayed.eas2tas, 0.9f, 10.0f));
const float initial_sideslip_uncertainty = math::radians(15.0f);
const float initial_wind_var_body_y = sq(_airspeed_sample_delayed.true_airspeed * sinf(initial_sideslip_uncertainty));
const float R_yaw = sq(math::radians(10.0f));
// rotate wind velocity into earth frame aligned with vehicle yaw
const float Wx = _state.wind_vel(0) * cosf(euler_yaw) + _state.wind_vel(1) * sinf(euler_yaw);
const float Wy = -_state.wind_vel(0) * sinf(euler_yaw) + _state.wind_vel(1) * cosf(euler_yaw);
// it is safer to remove all existing correlations to other states at this time
P.uncorrelateCovarianceSetVariance<2>(22, 0.0f);
P(22,22) = R_TAS*sq(cosf(euler_yaw)) + R_yaw*sq(-Wx*sinf(euler_yaw) - Wy*cosf(euler_yaw)) + initial_wind_var_body_y*sq(sinf(euler_yaw));
P(22,23) = R_TAS*sinf(euler_yaw)*cosf(euler_yaw) + R_yaw*(-Wx*sinf(euler_yaw) - Wy*cosf(euler_yaw))*(Wx*cosf(euler_yaw) - Wy*sinf(euler_yaw)) - initial_wind_var_body_y*sinf(euler_yaw)*cosf(euler_yaw);
P(23,22) = P(22,23);
P(23,23) = R_TAS*sq(sinf(euler_yaw)) + R_yaw*sq(Wx*cosf(euler_yaw) - Wy*sinf(euler_yaw)) + initial_wind_var_body_y*sq(cosf(euler_yaw));
// Now add the variance due to uncertainty in vehicle velocity that was used to calculate the initial wind speed
P(22,22) += P(4,4);
P(23,23) += P(5,5);
} else {
// without airspeed, start with a small initial uncertainty to improve the initial estimate
P.uncorrelateCovarianceSetVariance<2>(22, 1.0f);
}
}