move geo and geo_lookup from PX4 Firmware to ECL

This commit is contained in:
Daniel Agar 2018-03-22 14:10:30 -04:00
parent 1bb4c17c0e
commit cd12f049fe
25 changed files with 392 additions and 343 deletions

View File

@ -30,37 +30,31 @@
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
px4_add_module(
MODULE lib__ecl
STACK_MAIN 6000
STACK_MAX 6000
COMPILE_FLAGS
SRCS
airdata/WindEstimator.cpp
attitude_fw/ecl_controller.cpp
attitude_fw/ecl_pitch_controller.cpp
attitude_fw/ecl_roll_controller.cpp
attitude_fw/ecl_wheel_controller.cpp
attitude_fw/ecl_yaw_controller.cpp
EKF/airspeed_fusion.cpp
EKF/control.cpp
EKF/covariance.cpp
EKF/ekf.cpp
EKF/ekf_helper.cpp
EKF/estimator_interface.cpp
EKF/gps_checks.cpp
EKF/mag_fusion.cpp
EKF/optflow_fusion.cpp
EKF/sideslip_fusion.cpp
EKF/terrain_estimator.cpp
EKF/vel_pos_fusion.cpp
EKF/drag_fusion.cpp
l1/ecl_l1_pos_controller.cpp
tecs/tecs.cpp
validation/data_validator.cpp
validation/data_validator_group.cpp
DEPENDS
platforms__common
include_directories(.)
px4_add_library(ecl
airdata/WindEstimator.cpp
attitude_fw/ecl_controller.cpp
attitude_fw/ecl_pitch_controller.cpp
attitude_fw/ecl_roll_controller.cpp
attitude_fw/ecl_wheel_controller.cpp
attitude_fw/ecl_yaw_controller.cpp
EKF/airspeed_fusion.cpp
EKF/control.cpp
EKF/covariance.cpp
EKF/drag_fusion.cpp
EKF/ekf.cpp
EKF/ekf_helper.cpp
EKF/estimator_interface.cpp
EKF/gps_checks.cpp
EKF/mag_fusion.cpp
EKF/optflow_fusion.cpp
EKF/sideslip_fusion.cpp
EKF/terrain_estimator.cpp
EKF/vel_pos_fusion.cpp
geo/geo.cpp
geo_lookup/geo_mag_declination.cpp
l1/ecl_l1_pos_controller.cpp
tecs/tecs.cpp
validation/data_validator.cpp
validation/data_validator_group.cpp
)
# vim: set noet ft=cmake fenc=utf-8 ff=unix :

View File

@ -49,6 +49,9 @@ include_directories(
)
set(SRCS
../geo/geo.cpp
../geo_lookup/geo_mag_declination.cpp
../mathlib/mathlib.cpp
airspeed_fusion.cpp
control.cpp
covariance.cpp
@ -56,10 +59,8 @@ set(SRCS
ekf.cpp
ekf_helper.cpp
estimator_interface.cpp
geo.cpp
gps_checks.cpp
mag_fusion.cpp
mathlib.cpp
optflow_fusion.cpp
sideslip_fusion.cpp
terrain_estimator.cpp

View File

@ -42,7 +42,7 @@
*/
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#include <mathlib/mathlib.h>
void Ekf::fuseAirspeed()
{

View File

@ -40,6 +40,8 @@
*
*/
#include <matrix/matrix/math.hpp>
namespace estimator
{

View File

@ -41,7 +41,7 @@
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#include <mathlib/mathlib.h>
void Ekf::controlFusionModes()
{

View File

@ -40,10 +40,11 @@
*
*/
#include "../ecl.h"
#include "ekf.h"
#include <ecl.h>
#include <math.h>
#include "mathlib.h"
#include <mathlib/mathlib.h>
void Ekf::initialiseCovariance()
{
@ -753,8 +754,7 @@ void Ekf::fixCovarianceErrors()
float minAllowedStateVar = fmaxf(0.01f * maxStateVar, minStateVarTarget);
for (uint8_t stateIndex = 13; stateIndex <= 15; stateIndex++) {
P[stateIndex][stateIndex] = math::constrain(P[stateIndex][stateIndex], minAllowedStateVar,
sq(_gravity_mss * _dt_ekf_avg));
P[stateIndex][stateIndex] = math::constrain(P[stateIndex][stateIndex], minAllowedStateVar, sq(CONSTANTS_ONE_G * _dt_ekf_avg));
}
// If any one axis has fallen below the safe minimum, all delta velocity covariance terms must be reset to zero

View File

@ -38,9 +38,10 @@
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
void Ekf::fuseDrag()
{

View File

@ -39,9 +39,10 @@
* @author Paul Riseborough <p_riseborough@live.com.au>
*/
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
bool Ekf::init(uint64_t timestamp)
{
@ -359,7 +360,7 @@ void Ekf::predictState()
_state.vel += corrected_delta_vel_ef;
// compensate for acceleration due to gravity
_state.vel(2) += _gravity_mss * _imu_sample_delayed.delta_vel_dt;
_state.vel(2) += CONSTANTS_ONE_G * _imu_sample_delayed.delta_vel_dt;
// predict position states via trapezoidal integration of velocity
_state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f;
@ -485,7 +486,7 @@ void Ekf::calculateOutputStates()
Vector3f delta_vel_NED = _R_to_earth_now * delta_vel;
// corrrect for measured accceleration due to gravity
delta_vel_NED(2) += _gravity_mss * imu_new.delta_vel_dt;
delta_vel_NED(2) += CONSTANTS_ONE_G * imu_new.delta_vel_dt;
// calculate the earth frame velocity derivatives
if (imu_new.delta_vel_dt > 1e-4f) {

View File

@ -41,7 +41,6 @@
*/
#include "estimator_interface.h"
#include "geo.h"
class Ekf : public EstimatorInterface
{
@ -236,7 +235,6 @@ private:
static constexpr uint8_t _k_num_states{24}; ///< number of EKF states
static constexpr float _k_earth_rate{0.000072921f}; ///< earth spin rate (rad/sec)
static constexpr float _gravity_mss{9.80665f}; ///< average earth gravity at sea level (m/sec**2)
struct {
uint8_t velNE_counter; ///< number of horizontal position reset events (allow to wrap if count exceeds 255)

View File

@ -39,9 +39,10 @@
*
*/
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
#include <cstdlib>
// Reset the velocity states. If we have a recent and valid

View File

@ -42,9 +42,8 @@
#include "estimator_interface.h"
#include "../ecl.h"
#include <math.h>
#include "mathlib.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
// Accumulate imu data and store to buffer at desired rate
void EstimatorInterface::setIMUData(uint64_t time_usec, uint64_t delta_ang_dt, uint64_t delta_vel_dt,

View File

@ -39,11 +39,12 @@
*
*/
#include <matrix/matrix/math.hpp>
#include "RingBuffer.h"
#include "geo.h"
#include "common.h"
#include "mathlib.h"
#include "RingBuffer.h"
#include <geo/geo.h>
#include <matrix/matrix/math.hpp>
#include <mathlib/mathlib.h>
using namespace estimator;
@ -416,7 +417,7 @@ protected:
// Used by the multi-rotor specific drag force fusion
uint8_t _drag_sample_count{0}; // number of drag specific force samples assumulated at the filter prediction rate
float _drag_sample_time_dt{0.0f}; // time integral across all samples used to form _drag_down_sampled (sec)
float _air_density{1.225f}; // air density (kg/m**3)
float _air_density{CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C}; // air density (kg/m**3)
// Output Predictor
outputSample _output_sample_delayed{}; // filter output on the delayed time horizon

View File

@ -39,10 +39,11 @@
*
*/
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#include "geo.h"
#include <ecl.h>
#include <geo_lookup/geo_mag_declination.h>
#include <mathlib/mathlib.h>
// GPS pre-flight check bit locations
#define MASK_GPS_NSATS (1<<0)

View File

@ -39,9 +39,10 @@
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
void Ekf::fuseMag()
{

View File

@ -41,7 +41,8 @@
*/
#include "ekf.h"
#include "mathlib.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
void Ekf::fuseOptFlow()
{

View File

@ -39,9 +39,10 @@
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
void Ekf::fuseSideslip()
{

View File

@ -40,7 +40,8 @@
*/
#include "ekf.h"
#include "mathlib.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
bool Ekf::initHagl()
{

View File

@ -42,7 +42,8 @@
*/
#include "ekf.h"
#include "mathlib.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
void Ekf::fuseVelPosHeight()
{

2
ecl.h
View File

@ -51,6 +51,8 @@
#else
#define ecl_absolute_time() (0)
#define ecl_elapsed_time (0)
#define ECL_INFO printf
#define ECL_WARN printf
#define ECL_ERR printf

View File

@ -41,155 +41,19 @@
* @author Lorenz Meier <lm@inf.ethz.ch>
* @author Anton Babushkin <anton.babushkin@me.com>
*/
#ifdef POSIX_SHARED
#include "ecl.h"
#include <stdio.h>
#include <math.h>
#include <stdbool.h>
#include <string.h>
#include <float.h>
/****************************************************************************
*
* Copyright (c) 2014 MAV GEO Library (MAVGEO). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name MAVGEO nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file geo_mag_declination.c
*
* Calculation / lookup table for earth magnetic field declination.
*
* Lookup table from Scott Ferguson <scottfromscott@gmail.com>
*
* XXX Lookup table currently too coarse in resolution (only full degrees)
* and lat/lon res - needs extension medium term.
*
*/
#include <stdint.h>
#include "geo.h"
#include <ecl.h>
/** set this always to the sampling in degrees for the table below */
#define SAMPLING_RES 10.0f
#define SAMPLING_MIN_LAT -60.0f
#define SAMPLING_MAX_LAT 60.0f
#define SAMPLING_MIN_LON -180.0f
#define SAMPLING_MAX_LON 180.0f
static const int8_t declination_table[13][37] = \
{
{ 46, 45, 44, 42, 41, 40, 38, 36, 33, 28, 23, 16, 10, 4, -1, -5, -9, -14, -19, -26, -33, -40, -48, -55, -61, -66, -71, -74, -75, -72, -61, -25, 22, 40, 45, 47, 46 },
{ 30, 30, 30, 30, 29, 29, 29, 29, 27, 24, 18, 11, 3, -3, -9, -12, -15, -17, -21, -26, -32, -39, -45, -51, -55, -57, -56, -53, -44, -31, -14, 0, 13, 21, 26, 29, 30 },
{ 21, 22, 22, 22, 22, 22, 22, 22, 21, 18, 13, 5, -3, -11, -17, -20, -21, -22, -23, -25, -29, -35, -40, -44, -45, -44, -40, -32, -22, -12, -3, 3, 9, 14, 18, 20, 21 },
{ 16, 17, 17, 17, 17, 17, 16, 16, 16, 13, 8, 0, -9, -16, -21, -24, -25, -25, -23, -20, -21, -24, -28, -31, -31, -29, -24, -17, -9, -3, 0, 4, 7, 10, 13, 15, 16 },
{ 12, 13, 13, 13, 13, 13, 12, 12, 11, 9, 3, -4, -12, -19, -23, -24, -24, -22, -17, -12, -9, -10, -13, -17, -18, -16, -13, -8, -3, 0, 1, 3, 6, 8, 10, 12, 12 },
{ 10, 10, 10, 10, 10, 10, 10, 9, 9, 6, 0, -6, -14, -20, -22, -22, -19, -15, -10, -6, -2, -2, -4, -7, -8, -8, -7, -4, 0, 1, 1, 2, 4, 6, 8, 10, 10 },
{ 9, 9, 9, 9, 9, 9, 8, 8, 7, 4, -1, -8, -15, -19, -20, -18, -14, -9, -5, -2, 0, 1, 0, -2, -3, -4, -3, -2, 0, 0, 0, 1, 3, 5, 7, 8, 9 },
{ 8, 8, 8, 9, 9, 9, 8, 8, 6, 2, -3, -9, -15, -18, -17, -14, -10, -6, -2, 0, 1, 2, 2, 0, -1, -1, -2, -1, 0, 0, 0, 0, 1, 3, 5, 7, 8 },
{ 8, 9, 9, 10, 10, 10, 10, 8, 5, 0, -5, -11, -15, -16, -15, -12, -8, -4, -1, 0, 2, 3, 2, 1, 0, 0, 0, 0, 0, -1, -2, -2, -1, 0, 3, 6, 8 },
{ 6, 9, 10, 11, 12, 12, 11, 9, 5, 0, -7, -12, -15, -15, -13, -10, -7, -3, 0, 1, 2, 3, 3, 3, 2, 1, 0, 0, -1, -3, -4, -5, -5, -2, 0, 3, 6 },
{ 5, 8, 11, 13, 15, 15, 14, 11, 5, -1, -9, -14, -17, -16, -14, -11, -7, -3, 0, 1, 3, 4, 5, 5, 5, 4, 3, 1, -1, -4, -7, -8, -8, -6, -2, 1, 5 },
{ 4, 8, 12, 15, 17, 18, 16, 12, 5, -3, -12, -18, -20, -19, -16, -13, -8, -4, -1, 1, 4, 6, 8, 9, 9, 9, 7, 3, -1, -6, -10, -12, -11, -9, -5, 0, 4 },
{ 3, 9, 14, 17, 20, 21, 19, 14, 4, -8, -19, -25, -26, -25, -21, -17, -12, -7, -2, 1, 5, 9, 13, 15, 16, 16, 13, 7, 0, -7, -12, -15, -14, -11, -6, -1, 3 },
};
static float get_lookup_table_val(unsigned lat, unsigned lon);
float get_mag_declination(float lat, float lon)
{
/*
* If the values exceed valid ranges, return zero as default
* as we have no way of knowing what the closest real value
* would be.
*/
if (lat < -90.0f || lat > 90.0f ||
lon < -180.0f || lon > 180.0f) {
return 0.0f;
}
/* round down to nearest sampling resolution */
int min_lat = (int)(lat / SAMPLING_RES) * SAMPLING_RES;
int min_lon = (int)(lon / SAMPLING_RES) * SAMPLING_RES;
/* for the rare case of hitting the bounds exactly
* the rounding logic wouldn't fit, so enforce it.
*/
/* limit to table bounds - required for maxima even when table spans full globe range */
if (lat <= SAMPLING_MIN_LAT) {
min_lat = SAMPLING_MIN_LAT;
}
if (lat >= SAMPLING_MAX_LAT) {
min_lat = (int)(lat / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES;
}
if (lon <= SAMPLING_MIN_LON) {
min_lon = SAMPLING_MIN_LON;
}
if (lon >= SAMPLING_MAX_LON) {
min_lon = (int)(lon / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES;
}
/* find index of nearest low sampling point */
unsigned min_lat_index = (-(SAMPLING_MIN_LAT) + min_lat) / SAMPLING_RES;
unsigned min_lon_index = (-(SAMPLING_MIN_LON) + min_lon) / SAMPLING_RES;
float declination_sw = get_lookup_table_val(min_lat_index, min_lon_index);
float declination_se = get_lookup_table_val(min_lat_index, min_lon_index + 1);
float declination_ne = get_lookup_table_val(min_lat_index + 1, min_lon_index + 1);
float declination_nw = get_lookup_table_val(min_lat_index + 1, min_lon_index);
/* perform bilinear interpolation on the four grid corners */
float declination_min = ((lon - min_lon) / SAMPLING_RES) * (declination_se - declination_sw) + declination_sw;
float declination_max = ((lon - min_lon) / SAMPLING_RES) * (declination_ne - declination_nw) + declination_nw;
return ((lat - min_lat) / SAMPLING_RES) * (declination_max - declination_min) + declination_min;
}
float get_lookup_table_val(unsigned lat_index, unsigned lon_index)
{
return declination_table[lat_index][lon_index];
}
#include <mathlib/mathlib.h>
#include <cfloat>
/*
* Azimuthal Equidistant Projection
* formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html
*/
static struct map_projection_reference_s mp_ref = {0.0, 0.0, 0.0, 0.0, false, 0};
static struct map_projection_reference_s mp_ref = {};
static struct globallocal_converter_reference_s gl_ref = {0.0f, false};
bool map_projection_global_initialized()
@ -212,18 +76,18 @@ uint64_t map_projection_timestamp(const struct map_projection_reference_s *ref)
return ref->timestamp;
}
int map_projection_global_init(double lat_0, double lon_0,
uint64_t timestamp) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
// lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
int map_projection_global_init(double lat_0, double lon_0, uint64_t timestamp)
{
return map_projection_init_timestamped(&mp_ref, lat_0, lon_0, timestamp);
}
int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0,
uint64_t timestamp) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
// lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0, uint64_t timestamp)
{
ref->lat_rad = lat_0 * M_DEG_TO_RAD;
ref->lon_rad = lon_0 * M_DEG_TO_RAD;
ref->lat_rad = math::radians(lat_0);
ref->lon_rad = math::radians(lon_0);
ref->sin_lat = sin(ref->lat_rad);
ref->cos_lat = cos(ref->lat_rad);
@ -233,13 +97,18 @@ int map_projection_init_timestamped(struct map_projection_reference_s *ref, doub
return 0;
}
//lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567
int map_projection_init(struct map_projection_reference_s *ref, double lat_0, double lon_0)
{
return map_projection_init_timestamped(ref, lat_0, lon_0, ecl_absolute_time());
}
int map_projection_global_reference(double *ref_lat_rad, double *ref_lon_rad)
{
return map_projection_reference(&mp_ref, ref_lat_rad, ref_lon_rad);
}
int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad,
double *ref_lon_rad)
int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, double *ref_lon_rad)
{
if (!map_projection_initialized(ref)) {
return -1;
@ -254,18 +123,16 @@ int map_projection_reference(const struct map_projection_reference_s *ref, doubl
int map_projection_global_project(double lat, double lon, float *x, float *y)
{
return map_projection_project(&mp_ref, lat, lon, x, y);
}
int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x,
float *y)
int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, float *y)
{
if (!map_projection_initialized(ref)) {
return -1;
}
double lat_rad = lat * M_DEG_TO_RAD;
double lon_rad = lon * M_DEG_TO_RAD;
double lat_rad = math::radians(lat);
double lon_rad = math::radians(lon);
double sin_lat = sin(lat_rad);
double cos_lat = cos(lat_rad);
@ -294,15 +161,14 @@ int map_projection_global_reproject(float x, float y, double *lat, double *lon)
return map_projection_reproject(&mp_ref, x, y, lat, lon);
}
int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat,
double *lon)
int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, double *lon)
{
if (!map_projection_initialized(ref)) {
return -1;
}
double x_rad = x / CONSTANTS_RADIUS_OF_EARTH;
double y_rad = y / CONSTANTS_RADIUS_OF_EARTH;
double x_rad = (double)x / CONSTANTS_RADIUS_OF_EARTH;
double y_rad = (double)y / CONSTANTS_RADIUS_OF_EARTH;
double c = sqrtf(x_rad * x_rad + y_rad * y_rad);
double sin_c = sin(c);
double cos_c = cos(c);
@ -332,11 +198,11 @@ int map_projection_global_getref(double *lat_0, double *lon_0)
}
if (lat_0 != nullptr) {
*lat_0 = M_RAD_TO_DEG * mp_ref.lat_rad;
*lat_0 = math::degrees(mp_ref.lat_rad);
}
if (lon_0 != nullptr) {
*lon_0 = M_RAD_TO_DEG * mp_ref.lon_rad;
*lon_0 = math::degrees(mp_ref.lon_rad);
}
return 0;
@ -421,7 +287,7 @@ float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_n
}
void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist,
double *lat_target, double *lon_target)
double *lat_target, double *lon_target)
{
if (fabsf(dist) < FLT_EPSILON) {
*lat_target = lat_A;
@ -439,28 +305,28 @@ void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B
}
void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist,
double *lat_target, double *lon_target)
double *lat_target, double *lon_target)
{
bearing = _wrap_2pi(bearing);
double radius_ratio = (double)(fabs(dist) / CONSTANTS_RADIUS_OF_EARTH);
double radius_ratio = fabs((double)dist) / CONSTANTS_RADIUS_OF_EARTH;
double lat_start_rad = lat_start * M_DEG_TO_RAD;
double lon_start_rad = lon_start * M_DEG_TO_RAD;
double lat_start_rad = math::radians(lat_start);
double lon_start_rad = math::radians(lon_start);
*lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos((
double)bearing));
*lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos((double)bearing));
*lon_target = lon_start_rad + atan2(sin((double)bearing) * sin(radius_ratio) * cos(lat_start_rad),
cos(radius_ratio) - sin(lat_start_rad) * sin(*lat_target));
*lat_target *= M_RAD_TO_DEG;
*lon_target *= M_RAD_TO_DEG;
*lat_target = math::degrees(*lat_target);
*lon_target = math::degrees(*lon_target);
}
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
{
double lat_now_rad = lat_now * M_DEG_TO_RAD;
double lon_now_rad = lon_now * M_DEG_TO_RAD;
double lat_next_rad = lat_next * M_DEG_TO_RAD;
double lon_next_rad = lon_next * M_DEG_TO_RAD;
double lat_now_rad = math::radians(lat_now);
double lon_now_rad = math::radians(lon_now);
double lat_next_rad = math::radians(lat_next);
double lon_next_rad = math::radians(lon_next);
double d_lon = lon_next_rad - lon_now_rad;
@ -473,13 +339,13 @@ float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_ne
return theta;
}
void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n,
float *v_e)
void
get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
{
double lat_now_rad = lat_now * M_DEG_TO_RAD;
double lon_now_rad = lon_now * M_DEG_TO_RAD;
double lat_next_rad = lat_next * M_DEG_TO_RAD;
double lon_next_rad = lon_next * M_DEG_TO_RAD;
double lat_now_rad = math::radians(lat_now);
double lon_now_rad = math::radians(lon_now);
double lat_next_rad = math::radians(lat_next);
double lon_next_rad = math::radians(lon_next);
double d_lon = lon_next_rad - lon_now_rad;
@ -489,13 +355,13 @@ void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next
*v_e = CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad);
}
void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next,
float *v_n, float *v_e)
void
get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
{
double lat_now_rad = lat_now * M_DEG_TO_RAD;
double lon_now_rad = lon_now * M_DEG_TO_RAD;
double lat_next_rad = lat_next * M_DEG_TO_RAD;
double lon_next_rad = lon_next * M_DEG_TO_RAD;
double lat_now_rad = math::radians(lat_now);
double lon_now_rad = math::radians(lon_now);
double lat_next_rad = math::radians(lat_next);
double lon_next_rad = math::radians(lon_next);
double d_lat = lat_next_rad - lat_now_rad;
double d_lon = lon_next_rad - lon_now_rad;
@ -505,73 +371,64 @@ void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat
*v_e = CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad);
}
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res,
double *lon_res)
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, double *lon_res)
{
double lat_now_rad = lat_now * M_DEG_TO_RAD;
double lon_now_rad = lon_now * M_DEG_TO_RAD;
double lat_now_rad = math::radians(lat_now);
double lon_now_rad = math::radians(lon_now);
*lat_res = (lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH) * M_RAD_TO_DEG;
*lon_res = (lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad))) * M_RAD_TO_DEG;
*lat_res = math::degrees(lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH);
*lon_res = math::degrees(lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad)));
}
// Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>
int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_start, double lon_start, double lat_end, double lon_end)
double lat_start, double lon_start, double lat_end, double lon_end)
{
// This function returns the distance to the nearest point on the track line. Distance is positive if current
// position is right of the track and negative if left of the track as seen from a point on the track line
// headed towards the end point.
// This function returns the distance to the nearest point on the track line. Distance is positive if current
// position is right of the track and negative if left of the track as seen from a point on the track line
// headed towards the end point.
float dist_to_end;
float bearing_end;
float bearing_track;
float bearing_diff;
int return_value = ERROR; // Set error flag, cleared when valid result calculated.
int return_value = -1; // Set error flag, cleared when valid result calculated.
crosstrack_error->past_end = false;
crosstrack_error->distance = 0.0f;
crosstrack_error->bearing = 0.0f;
dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
// Return error if arguments are bad
if (dist_to_end < 0.1f) {
return ERROR;
return -1;
}
bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end);
bearing_diff = bearing_track - bearing_end;
bearing_diff = _wrap_pi(bearing_diff);
float bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
float bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end);
float bearing_diff = _wrap_pi(bearing_track - bearing_end);
// Return past_end = true if past end point of line
if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) {
crosstrack_error->past_end = true;
return_value = OK;
return_value = 0;
return return_value;
}
crosstrack_error->distance = (dist_to_end) * sinf(bearing_diff);
if (sin(bearing_diff) >= 0) {
if (sinf(bearing_diff) >= 0) {
crosstrack_error->bearing = _wrap_pi(bearing_track - M_PI_2_F);
} else {
crosstrack_error->bearing = _wrap_pi(bearing_track + M_PI_2_F);
}
return_value = OK;
return_value = 0;
return return_value;
}
int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_center, double lon_center,
float radius, float arc_start_bearing, float arc_sweep)
double lat_center, double lon_center,
float radius, float arc_start_bearing, float arc_sweep)
{
// This function returns the distance to the nearest point on the track arc. Distance is positive if current
// position is right of the arc and negative if left of the arc as seen from the closest point on the arc and
@ -579,42 +436,49 @@ int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_
// Determine if the current position is inside or outside the sector between the line from the center
// to the arc start and the line from the center to the arc end
float bearing_sector_start;
float bearing_sector_end;
float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
bool in_sector;
float bearing_sector_start;
float bearing_sector_end;
float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
bool in_sector;
int return_value = ERROR; // Set error flag, cleared when valid result calculated.
int return_value = -1; // Set error flag, cleared when valid result calculated.
crosstrack_error->past_end = false;
crosstrack_error->distance = 0.0f;
crosstrack_error->bearing = 0.0f;
// Return error if arguments are bad
if (radius < 0.1f) { return return_value; }
if (radius < 0.1f) {
return return_value;
}
if (arc_sweep >= 0.0f) {
bearing_sector_start = arc_start_bearing;
bearing_sector_end = arc_start_bearing + arc_sweep;
if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= M_TWOPI_F; }
if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= (2 * M_PI_F); }
} else {
bearing_sector_end = arc_start_bearing;
bearing_sector_start = arc_start_bearing - arc_sweep;
if (bearing_sector_start < 0.0f) { bearing_sector_start += M_TWOPI_F; }
if (bearing_sector_start < 0.0f) { bearing_sector_start += (2 * M_PI_F); }
}
in_sector = false;
// Case where sector does not span zero
if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start
&& bearing_now <= bearing_sector_end) { in_sector = true; }
&& bearing_now <= bearing_sector_end) {
in_sector = true;
}
// Case where sector does span zero
if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start
|| bearing_now < bearing_sector_end)) { in_sector = true; }
|| bearing_now < bearing_sector_end)) {
in_sector = true;
}
// If in the sector then calculate distance and bearing to closest point
if (in_sector) {
@ -639,10 +503,10 @@ int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_
// calculate the position of the start and end points. We should not be doing this often
// as this function generally will not be called repeatedly when we are out of the sector.
double start_disp_x = (double)radius * sin(arc_start_bearing);
double start_disp_y = (double)radius * cos(arc_start_bearing);
double end_disp_x = (double)radius * sin(_wrap_pi((double)(arc_start_bearing + arc_sweep)));
double end_disp_y = (double)radius * cos(_wrap_pi((double)(arc_start_bearing + arc_sweep)));
double start_disp_x = (double)radius * sin((double)arc_start_bearing);
double start_disp_y = (double)radius * cos((double)arc_start_bearing);
double end_disp_x = (double)radius * sin((double)_wrap_pi((double)(arc_start_bearing + arc_sweep)));
double end_disp_y = (double)radius * cos((double)_wrap_pi((double)(arc_start_bearing + arc_sweep)));
double lon_start = lon_now + start_disp_x / 111111.0;
double lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0;
double lon_end = lon_now + end_disp_x / 111111.0;
@ -660,11 +524,10 @@ int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_
crosstrack_error->distance = dist_to_end;
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
}
}
crosstrack_error->bearing = _wrap_pi((double)crosstrack_error->bearing);
return_value = OK;
return_value = 0;
return return_value;
}
@ -692,7 +555,6 @@ float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float a
return sqrtf(dxy * dxy + dz * dz);
}
float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now,
float x_next, float y_next, float z_next,
float *dist_xy, float *dist_z)
@ -717,7 +579,7 @@ float _wrap_pi(float bearing)
int c = 0;
while (bearing >= M_PI_F) {
bearing -= M_TWOPI_F;
bearing -= (2 * M_PI_F);
if (c++ > 3) {
return NAN;
@ -727,7 +589,7 @@ float _wrap_pi(float bearing)
c = 0;
while (bearing < -M_PI_F) {
bearing += M_TWOPI_F;
bearing += (2 * M_PI_F);
if (c++ > 3) {
return NAN;
@ -746,8 +608,8 @@ float _wrap_2pi(float bearing)
int c = 0;
while (bearing >= M_TWOPI_F) {
bearing -= M_TWOPI_F;
while (bearing >= (2 * M_PI_F)) {
bearing -= (2 * M_PI_F);
if (c++ > 3) {
return NAN;
@ -757,7 +619,7 @@ float _wrap_2pi(float bearing)
c = 0;
while (bearing < 0.0f) {
bearing += M_TWOPI_F;
bearing += (2 * M_PI_F);
if (c++ > 3) {
return NAN;
@ -826,4 +688,3 @@ float _wrap_360(float bearing)
return bearing;
}
#endif //POSIX_SHARED

View File

@ -42,23 +42,18 @@
* @author Anton Babushkin <anton.babushkin@me.com>
* Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>
*/
#ifndef GEO_H
#define GEO_H
#ifdef POSIX_SHARED
#pragma once
#include <stdbool.h>
#include "mathlib.h"
#include <stdint.h>
#define CONSTANTS_ONE_G 9.80665f /* m/s^2 */
#define CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C 1.225f /* kg/m^3 */
#define CONSTANTS_AIR_GAS_CONST 287.1f /* J/(kg * K) */
#define CONSTANTS_ABSOLUTE_NULL_CELSIUS -273.15f /* °C */
#define CONSTANTS_RADIUS_OF_EARTH 6371000 /* meters (m) */
#define M_TWOPI_F 6.28318530717958647692f
#define M_PI_2_F 1.57079632679489661923f
#define M_RAD_TO_DEG 57.29577951308232087679f
#define M_DEG_TO_RAD 0.01745329251994329576f
#define OK 0
#define ERROR -1
// XXX remove
struct crosstrack_error_s {
bool past_end; // Flag indicating we are past the end of the line/arc segment
@ -68,12 +63,12 @@ struct crosstrack_error_s {
/* lat/lon are in radians */
struct map_projection_reference_s {
uint64_t timestamp;
double lat_rad;
double lon_rad;
double sin_lat;
double cos_lat;
bool init_done;
uint64_t timestamp;
};
struct globallocal_converter_reference_s {
@ -81,6 +76,8 @@ struct globallocal_converter_reference_s {
bool init_done;
};
__BEGIN_DECLS
/**
* Checks if global projection was initialized
* @return true if map was initialized before, false else
@ -115,9 +112,17 @@ int map_projection_global_reference(double *ref_lat_rad, double *ref_lon_rad);
* Writes the reference values of the projection given by the argument to ref_lat and ref_lon
* @return 0 if map_projection_init was called before, -1 else
*/
int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad,
double *ref_lon_rad);
int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, double *ref_lon_rad);
/**
* Initializes the global map transformation.
*
* Initializes the transformation between the geographic coordinate system and
* the azimuthal equidistant plane
* @param lat in degrees (47.1234567°, not 471234567°)
* @param lon in degrees (8.1234567°, not 81234567°)
*/
int map_projection_global_init(double lat_0, double lon_0, uint64_t timestamp);
/**
* Initializes the map transformation given by the argument.
@ -127,8 +132,7 @@ int map_projection_reference(const struct map_projection_reference_s *ref, doubl
* @param lat in degrees (47.1234567°, not 471234567°)
* @param lon in degrees (8.1234567°, not 81234567°)
*/
int map_projection_init_timestamped(struct map_projection_reference_s *ref,
double lat_0, double lon_0, uint64_t timestamp);
int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0, uint64_t timestamp);
/**
* Initializes the map transformation given by the argument and sets the timestamp to now.
@ -151,7 +155,6 @@ int map_projection_init(struct map_projection_reference_s *ref, double lat_0, do
*/
int map_projection_global_project(double lat, double lon, float *x, float *y);
/* Transforms a point in the geographic coordinate system to the local
* azimuthal equidistant plane using the projection given by the argument
* @param x north
@ -160,8 +163,7 @@ int map_projection_global_project(double lat, double lon, float *x, float *y);
* @param lon in degrees (8.1234567°, not 81234567°)
* @return 0 if map_projection_init was called before, -1 else
*/
int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x,
float *y);
int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, float *y);
/**
* Transforms a point in the local azimuthal equidistant plane to the
@ -185,8 +187,7 @@ int map_projection_global_reproject(float x, float y, double *lat, double *lon);
* @param lon in degrees (8.1234567°, not 81234567°)
* @return 0 if map_projection_init was called before, -1 else
*/
int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat,
double *lon);
int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, double *lon);
/**
* Get reference position of the global map projection
@ -229,7 +230,6 @@ int globallocalconverter_getref(double *lat_0, double *lon_0, float *alt_0);
*/
float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next);
/**
* Creates a new waypoint C on the line of two given waypoints (A, B) at certain distance
* from waypoint A
@ -243,7 +243,7 @@ float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_n
* @param lon_target longitude of target waypoint C in degrees (47.1234567°, not 471234567°)
*/
void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist,
double *lat_target, double *lon_target);
double *lat_target, double *lon_target);
/**
* Creates a waypoint from given waypoint, distance and bearing
@ -257,7 +257,7 @@ void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B
* @param lon_target longitude of target waypoint in degrees (47.1234567°, not 471234567°)
*/
void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist,
double *lat_target, double *lon_target);
double *lat_target, double *lon_target);
/**
* Returns the bearing to the next waypoint in radians.
@ -269,21 +269,18 @@ void waypoint_from_heading_and_distance(double lat_start, double lon_start, floa
*/
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next);
void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n,
float *v_e);
void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e);
void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next,
float *v_n, float *v_e);
void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e);
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res,
double *lon_res);
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, double *lon_res);
int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_start, double lon_start, double lat_end, double lon_end);
double lat_start, double lon_start, double lat_end, double lon_end);
int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_center, double lon_center,
float radius, float arc_start_bearing, float arc_sweep);
double lat_center, double lon_center,
float radius, float arc_start_bearing, float arc_sweep);
/*
* Calculate distance in global frame
@ -303,8 +300,5 @@ float _wrap_180(float bearing);
float _wrap_360(float bearing);
float _wrap_pi(float bearing);
float _wrap_2pi(float bearing);
float get_mag_declination(float lat, float lon);
#else
#include <lib/geo/geo.h>
#endif //POSIX_SHARED
#endif //GEO_H
__END_DECLS

View File

@ -0,0 +1,135 @@
/****************************************************************************
*
* Copyright (c) 2014 MAV GEO Library (MAVGEO). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name MAVGEO nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file geo_mag_declination.c
*
* Calculation / lookup table for Earth's magnetic field declination.
*
* Lookup table from Scott Ferguson <scottfromscott@gmail.com> and
* Stephan Brown <stephan.brown.07@gmail.com>
*
* XXX Lookup table currently too coarse in resolution (only full degrees)
* and lat/lon res - needs extension medium term.
*
*/
#include <stdint.h>
#include "geo_mag_declination.h"
/** set this always to the sampling in degrees for the table below */
#define SAMPLING_RES 10.0f
#define SAMPLING_MIN_LAT -60.0f
#define SAMPLING_MAX_LAT 60.0f
#define SAMPLING_MIN_LON -180.0f
#define SAMPLING_MAX_LON 180.0f
#define constrain(val, min, max) (val < min) ? min : ((val > max) ? max : val)
static const int8_t declination_table[13][37] = \
{
{ 47, 45, 44, 43, 41, 40, 38, 36, 33, 28, 23, 16, 10, 4, -1, -5, -9, -14, -19, -26, -33, -41, -48, -55, -61, -67, -71, -74, -75, -72, -61, -23, 23, 41, 46, 47, 47 },
{ 30, 30, 30, 30, 30, 29, 29, 29, 27, 23, 18, 11, 3, -3, -9, -12, -15, -17, -21, -26, -32, -39, -46, -51, -55, -57, -56, -52, -44, -31, -14, 1, 13, 21, 26, 29, 30 },
{ 22, 22, 22, 22, 22, 22, 22, 22, 21, 18, 13, 5, -3, -11, -17, -20, -21, -22, -23, -25, -29, -35, -40, -44, -45, -44, -39, -31, -21, -11, -3, 3, 9, 14, 18, 20, 22 },
{ 16, 17, 17, 17, 17, 16, 16, 16, 15, 13, 8, 0, -9, -17, -22, -24, -25, -24, -22, -20, -21, -24, -29, -31, -31, -28, -23, -16, -9, -3, 0, 4, 7, 10, 13, 15, 16 },
{ 12, 13, 13, 13, 13, 13, 12, 12, 11, 9, 3, -4, -13, -19, -23, -24, -24, -21, -17, -12, -9, -10, -14, -17, -18, -16, -12, -8, -3, 0, 1, 3, 5, 8, 10, 12, 12 },
{ 10, 10, 10, 10, 10, 10, 10, 9, 8, 5, 0, -7, -15, -20, -22, -22, -19, -15, -10, -5, -2, -1, -4, -7, -8, -8, -6, -3, 0, 0, 1, 2, 4, 6, 8, 10, 10 },
{ 9, 9, 9, 9, 9, 9, 8, 8, 7, 3, -2, -9, -15, -19, -20, -17, -13, -9, -5, -2, 0, 1, 0, -2, -3, -4, -3, -2, 0, 0, 0, 1, 2, 5, 7, 8, 9 },
{ 8, 8, 8, 9, 9, 9, 8, 7, 5, 1, -3, -10, -15, -17, -17, -14, -10, -5, -2, 0, 1, 2, 2, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 3, 5, 7, 8 },
{ 8, 8, 9, 9, 10, 10, 9, 8, 5, 0, -5, -11, -15, -16, -15, -11, -7, -3, -1, 0, 2, 3, 3, 1, 0, 0, 0, 0, 0, -1, -2, -3, -2, 0, 3, 6, 8 },
{ 6, 8, 10, 11, 12, 12, 11, 9, 5, 0, -7, -12, -15, -15, -13, -10, -6, -3, 0, 1, 3, 4, 4, 3, 2, 1, 1, 0, -1, -3, -5, -6, -5, -3, 0, 3, 6 },
{ 5, 8, 11, 13, 14, 15, 13, 10, 5, -1, -9, -14, -16, -16, -13, -10, -6, -3, 0, 2, 3, 5, 5, 5, 5, 4, 3, 1, -1, -4, -7, -9, -8, -6, -2, 1, 5 },
{ 3, 8, 12, 15, 17, 17, 16, 12, 5, -3, -12, -18, -20, -19, -16, -12, -8, -4, 0, 2, 4, 7, 8, 9, 10, 9, 7, 3, -1, -6, -10, -12, -11, -9, -5, 0, 3 },
{ 3, 8, 13, 16, 19, 20, 19, 14, 4, -7, -18, -24, -26, -24, -21, -16, -11, -6, -2, 2, 6, 10, 13, 15, 17, 16, 13, 7, 0, -7, -13, -15, -14, -11, -6, -1, 3 },
};
static float get_lookup_table_val(unsigned lat, unsigned lon);
static unsigned get_lookup_table_index(float *val, float min, float max);
unsigned get_lookup_table_index(float *val, float min, float max)
{
/* for the rare case of hitting the bounds exactly
* the rounding logic wouldn't fit, so enforce it.
*/
/* limit to table bounds - required for maxima even when table spans full globe range */
if (*val < min) {
*val = min;
}
/* limit to (table bounds - 1) because bilinear interpolation requires checking (index + 1) */
if (*val > max) {
*val = max - SAMPLING_RES;
}
return (-(min) + *val) / SAMPLING_RES;
}
float get_mag_declination(float lat, float lon)
{
/*
* If the values exceed valid ranges, return zero as default
* as we have no way of knowing what the closest real value
* would be.
*/
if (lat < -90.0f || lat > 90.0f ||
lon < -180.0f || lon > 180.0f) {
return 0.0f;
}
/* round down to nearest sampling resolution */
float min_lat = (int)(lat / SAMPLING_RES) * SAMPLING_RES;
float min_lon = (int)(lon / SAMPLING_RES) * SAMPLING_RES;
/* find index of nearest low sampling point */
unsigned min_lat_index = get_lookup_table_index(&min_lat, SAMPLING_MIN_LAT, SAMPLING_MAX_LAT);
unsigned min_lon_index = get_lookup_table_index(&min_lon, SAMPLING_MIN_LON, SAMPLING_MAX_LON);
float declination_sw = get_lookup_table_val(min_lat_index, min_lon_index);
float declination_se = get_lookup_table_val(min_lat_index, min_lon_index + 1);
float declination_ne = get_lookup_table_val(min_lat_index + 1, min_lon_index + 1);
float declination_nw = get_lookup_table_val(min_lat_index + 1, min_lon_index);
/* perform bilinear interpolation on the four grid corners */
float lat_scale = constrain((lat - min_lat) / SAMPLING_RES, 0.0f, 1.0f);
float lon_scale = constrain((lon - min_lon) / SAMPLING_RES, 0.0f, 1.0f);
float declination_min = lon_scale * (declination_se - declination_sw) + declination_sw;
float declination_max = lon_scale * (declination_ne - declination_nw) + declination_nw;
return lat_scale * (declination_max - declination_min) + declination_min;
}
float get_lookup_table_val(unsigned lat_index, unsigned lon_index)
{
return declination_table[lat_index][lon_index];
}

View File

@ -0,0 +1,47 @@
/****************************************************************************
*
* Copyright (c) 2014 MAV GEO Library (MAVGEO). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name MAVGEO nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file geo_mag_declination.h
*
* Calculation / lookup table for earth magnetic field declination.
*
*/
#pragma once
__BEGIN_DECLS
float get_mag_declination(float lat, float lon);
__END_DECLS

View File

@ -43,12 +43,18 @@
#ifdef POSIX_SHARED
// #include <Eigen/Dense>
// #include <algorithm>
#ifndef M_PI_F
#define M_PI_F 3.14159265358979323846f
#endif
#ifndef M_PI
#define M_PI (3.14159265358979323846f)
#endif
#ifndef M_PI_2_F
#define M_PI_2_F (M_PI / 2.0f)
#endif
namespace math
{
// using namespace Eigen;