2015-12-06 07:18:05 -04:00
/****************************************************************************
*
* Copyright ( c ) 2015 Estimation and Control Library ( ECL ) . All rights reserved .
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions
* are met :
*
* 1. Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* 2. Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in
* the documentation and / or other materials provided with the
* distribution .
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission .
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* " AS IS " AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT
* LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT ,
* INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES ( INCLUDING ,
* BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS
* OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT
* LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/**
* @ file covariance . cpp
* Contains functions for initialising , predicting and updating the state
* covariance matrix
*
* @ author Roman Bast < bastroman @ gmail . com >
*
*/
# include "ekf.h"
# include <math.h>
2016-01-31 04:01:44 -04:00
# include <mathlib/mathlib.h>
2015-12-06 07:18:05 -04:00
void Ekf : : initialiseCovariance ( )
{
2015-12-07 04:26:30 -04:00
for ( unsigned i = 0 ; i < _k_num_states ; i + + ) {
for ( unsigned j = 0 ; j < _k_num_states ; j + + ) {
2015-12-06 07:18:05 -04:00
P [ i ] [ j ] = 0.0f ;
}
}
// XXX use initial guess for the diagonal elements for the covariance matrix
// angle error
2015-12-07 04:26:30 -04:00
P [ 0 ] [ 0 ] = 0.001f ;
P [ 1 ] [ 1 ] = 0.001f ;
P [ 2 ] [ 2 ] = 0.001f ;
2015-12-06 07:18:05 -04:00
// velocity
2015-12-07 04:26:30 -04:00
P [ 3 ] [ 3 ] = 0.1f ;
P [ 4 ] [ 4 ] = 0.1f ;
P [ 5 ] [ 5 ] = 0.1f ;
2015-12-06 07:18:05 -04:00
// position
2015-12-07 04:26:30 -04:00
P [ 6 ] [ 6 ] = 0.1f ;
P [ 7 ] [ 7 ] = 0.1f ;
P [ 8 ] [ 8 ] = 0.1f ;
2015-12-06 07:18:05 -04:00
// gyro bias
2015-12-07 04:26:30 -04:00
P [ 9 ] [ 9 ] = 0.00001f ;
P [ 10 ] [ 10 ] = 0.00001f ;
P [ 11 ] [ 11 ] = 0.00001f ;
2015-12-06 07:18:05 -04:00
// gyro scale
P [ 12 ] [ 12 ] = 0.0001f ;
P [ 13 ] [ 13 ] = 0.0001f ;
P [ 14 ] [ 14 ] = 0.0001f ;
// accel z bias
P [ 15 ] [ 15 ] = 0.0001f ;
2016-02-15 19:42:18 -04:00
// variances for optional states
// these state variances are set to zero until the states are required, then they must be initialised
2015-12-06 07:18:05 -04:00
// earth magnetic field
2016-02-15 19:42:18 -04:00
P [ 16 ] [ 16 ] = 0.0f ;
P [ 17 ] [ 17 ] = 0.0f ;
P [ 18 ] [ 18 ] = 0.0f ;
2015-12-06 07:18:05 -04:00
// body magnetic field
2016-02-15 19:42:18 -04:00
P [ 19 ] [ 19 ] = 0.0f ;
P [ 20 ] [ 20 ] = 0.0f ;
P [ 21 ] [ 21 ] = 0.0f ;
2015-12-06 07:18:05 -04:00
// wind
2016-02-15 19:42:18 -04:00
P [ 22 ] [ 22 ] = 0.0f ;
P [ 23 ] [ 23 ] = 0.0f ;
2015-12-06 07:18:05 -04:00
}
void Ekf : : predictCovariance ( )
{
// assign intermediate state variables
float q0 = _state . quat_nominal ( 0 ) ;
float q1 = _state . quat_nominal ( 1 ) ;
float q2 = _state . quat_nominal ( 2 ) ;
float q3 = _state . quat_nominal ( 3 ) ;
float dax = _imu_sample_delayed . delta_ang ( 0 ) ;
float day = _imu_sample_delayed . delta_ang ( 1 ) ;
float daz = _imu_sample_delayed . delta_ang ( 2 ) ;
float dvx = _imu_sample_delayed . delta_vel ( 0 ) ;
float dvy = _imu_sample_delayed . delta_vel ( 1 ) ;
float dvz = _imu_sample_delayed . delta_vel ( 2 ) ;
float dax_b = _state . gyro_bias ( 0 ) ;
float day_b = _state . gyro_bias ( 1 ) ;
float daz_b = _state . gyro_bias ( 2 ) ;
float dax_s = _state . gyro_scale ( 0 ) ;
float day_s = _state . gyro_scale ( 1 ) ;
float daz_s = _state . gyro_scale ( 2 ) ;
float dvz_b = _state . accel_z_bias ;
2015-12-07 04:26:30 -04:00
float dt = _imu_sample_delayed . delta_vel_dt ;
// compute process noise
float process_noise [ _k_num_states ] = { } ;
2016-02-04 02:15:03 -04:00
float d_ang_bias_sig = dt * math : : constrain ( _params . gyro_bias_p_noise , 0.0f , 1e-4 f ) ;
float d_vel_bias_sig = dt * math : : constrain ( _params . accel_bias_p_noise , 0.0f , 1e-2 f ) ;
float d_ang_scale_sig = dt * math : : constrain ( _params . gyro_scale_p_noise , 0.0f , 1e-2 f ) ;
2016-02-15 20:05:46 -04:00
float mag_I_sig , mag_B_sig ;
// Don't continue to grow the body field variances if they are becoming too large or we are not doing 3-axis fusion as this can make the covariance matrix badly conditioned
if ( _control_status . flags . mag_3D & & ( P [ 16 ] [ 16 ] + P [ 17 ] [ 17 ] + P [ 18 ] [ 8 ] ) < 0.1f ) {
mag_I_sig = dt * math : : constrain ( _params . mag_p_noise , 0.0f , 1e-1 f ) ;
} else {
mag_I_sig = 0.0f ;
}
// Don't continue to grow the earth field variances if they is becoming too large or we are not doing 3-axis fusion as this can make the covariance matrix badly conditioned
if ( _control_status . flags . mag_3D & & ( P [ 19 ] [ 19 ] + P [ 20 ] [ 20 ] + P [ 21 ] [ 21 ] ) < 0.1f ) {
mag_B_sig = dt * math : : constrain ( _params . mag_p_noise , 0.0f , 1e-1 f ) ;
} else {
mag_B_sig = 0.0f ;
}
float wind_vel_sig ;
// Don't continue to grow wind velocity state variances if they are becoming too large or we are not using wind velocity states as this can make the covariance matrix badly conditioned
if ( _control_status . flags . wind & & ( P [ 22 ] [ 22 ] + P [ 22 ] [ 22 ] ) < 1000.0f ) {
wind_vel_sig = dt * math : : constrain ( _params . wind_vel_p_noise , 0.0f , 1.0f ) ;
} else {
wind_vel_sig = 0.0f ;
}
2015-12-07 04:26:30 -04:00
for ( unsigned i = 0 ; i < 9 ; i + + ) {
process_noise [ i ] = 0.0f ;
}
2016-01-31 04:01:44 -04:00
2015-12-07 04:26:30 -04:00
for ( unsigned i = 9 ; i < 12 ; i + + ) {
process_noise [ i ] = sq ( d_ang_bias_sig ) ;
}
2016-01-31 04:01:44 -04:00
2015-12-07 04:26:30 -04:00
for ( unsigned i = 12 ; i < 15 ; i + + ) {
process_noise [ i ] = sq ( d_ang_scale_sig ) ;
}
2016-01-31 04:01:44 -04:00
2015-12-07 04:26:30 -04:00
process_noise [ 15 ] = sq ( d_vel_bias_sig ) ;
for ( unsigned i = 16 ; i < 19 ; i + + ) {
process_noise [ i ] = sq ( mag_I_sig ) ;
}
2016-01-31 04:01:44 -04:00
2015-12-07 04:26:30 -04:00
for ( unsigned i = 19 ; i < 22 ; i + + ) {
process_noise [ i ] = sq ( mag_B_sig ) ;
}
2016-01-31 04:01:44 -04:00
2015-12-07 04:26:30 -04:00
for ( unsigned i = 22 ; i < 24 ; i + + ) {
process_noise [ i ] = sq ( wind_vel_sig ) ;
}
2015-12-06 07:18:05 -04:00
// assign input noise
// inputs to the system are 3 delta angles and 3 delta velocities
2015-12-07 04:26:30 -04:00
float daxNoise , dayNoise , dazNoise ;
float dvxNoise , dvyNoise , dvzNoise ;
float gyro_noise = math : : constrain ( _params . gyro_noise , 1e-4 f , 1e-2 f ) ;
daxNoise = dayNoise = dazNoise = dt * gyro_noise ;
float accel_noise = math : : constrain ( _params . accel_noise , 1e-2 f , 1.0f ) ;
dvxNoise = dvyNoise = dvzNoise = dt * accel_noise ;
// predict covarinace matrix
2015-12-06 07:18:05 -04:00
// intermediate calculations
2015-12-06 09:17:46 -04:00
float SF [ 25 ] = { } ;
2015-12-06 07:18:05 -04:00
SF [ 0 ] = daz_b / 2 + dazNoise / 2 - ( daz * daz_s ) / 2 ;
SF [ 1 ] = day_b / 2 + dayNoise / 2 - ( day * day_s ) / 2 ;
SF [ 2 ] = dax_b / 2 + daxNoise / 2 - ( dax * dax_s ) / 2 ;
SF [ 3 ] = q3 / 2 - ( q0 * SF [ 0 ] ) / 2 + ( q1 * SF [ 1 ] ) / 2 - ( q2 * SF [ 2 ] ) / 2 ;
SF [ 4 ] = q0 / 2 - ( q1 * SF [ 2 ] ) / 2 - ( q2 * SF [ 1 ] ) / 2 + ( q3 * SF [ 0 ] ) / 2 ;
SF [ 5 ] = q1 / 2 + ( q0 * SF [ 2 ] ) / 2 - ( q2 * SF [ 0 ] ) / 2 - ( q3 * SF [ 1 ] ) / 2 ;
SF [ 6 ] = q3 / 2 + ( q0 * SF [ 0 ] ) / 2 - ( q1 * SF [ 1 ] ) / 2 - ( q2 * SF [ 2 ] ) / 2 ;
SF [ 7 ] = q0 / 2 - ( q1 * SF [ 2 ] ) / 2 + ( q2 * SF [ 1 ] ) / 2 - ( q3 * SF [ 0 ] ) / 2 ;
SF [ 8 ] = q0 / 2 + ( q1 * SF [ 2 ] ) / 2 - ( q2 * SF [ 1 ] ) / 2 - ( q3 * SF [ 0 ] ) / 2 ;
SF [ 9 ] = q2 / 2 + ( q0 * SF [ 1 ] ) / 2 + ( q1 * SF [ 0 ] ) / 2 + ( q3 * SF [ 2 ] ) / 2 ;
SF [ 10 ] = q2 / 2 - ( q0 * SF [ 1 ] ) / 2 - ( q1 * SF [ 0 ] ) / 2 + ( q3 * SF [ 2 ] ) / 2 ;
SF [ 11 ] = q2 / 2 + ( q0 * SF [ 1 ] ) / 2 - ( q1 * SF [ 0 ] ) / 2 - ( q3 * SF [ 2 ] ) / 2 ;
SF [ 12 ] = q1 / 2 + ( q0 * SF [ 2 ] ) / 2 + ( q2 * SF [ 0 ] ) / 2 + ( q3 * SF [ 1 ] ) / 2 ;
SF [ 13 ] = q1 / 2 - ( q0 * SF [ 2 ] ) / 2 + ( q2 * SF [ 0 ] ) / 2 - ( q3 * SF [ 1 ] ) / 2 ;
SF [ 14 ] = q3 / 2 + ( q0 * SF [ 0 ] ) / 2 + ( q1 * SF [ 1 ] ) / 2 + ( q2 * SF [ 2 ] ) / 2 ;
2015-12-06 09:17:46 -04:00
SF [ 15 ] = - sq ( q0 ) - sq ( q1 ) - sq ( q2 ) - sq ( q3 ) ;
2015-12-06 07:18:05 -04:00
SF [ 16 ] = dvz_b - dvz + dvzNoise ;
SF [ 17 ] = dvx - dvxNoise ;
SF [ 18 ] = dvy - dvyNoise ;
SF [ 19 ] = sq ( q2 ) ;
SF [ 20 ] = SF [ 19 ] - sq ( q0 ) + sq ( q1 ) - sq ( q3 ) ;
SF [ 21 ] = SF [ 19 ] + sq ( q0 ) - sq ( q1 ) - sq ( q3 ) ;
SF [ 22 ] = 2 * q0 * q1 - 2 * q2 * q3 ;
SF [ 23 ] = SF [ 19 ] - sq ( q0 ) - sq ( q1 ) + sq ( q3 ) ;
SF [ 24 ] = 2 * q1 * q2 ;
2015-12-06 09:17:46 -04:00
float SG [ 5 ] = { } ;
2015-12-06 07:18:05 -04:00
SG [ 0 ] = - sq ( q0 ) - sq ( q1 ) - sq ( q2 ) - sq ( q3 ) ;
SG [ 1 ] = sq ( q3 ) ;
SG [ 2 ] = sq ( q2 ) ;
SG [ 3 ] = sq ( q1 ) ;
SG [ 4 ] = sq ( q0 ) ;
2015-12-06 09:17:46 -04:00
float SQ [ 8 ] = { } ;
2015-12-06 07:18:05 -04:00
SQ [ 0 ] = - dvyNoise * ( 2 * q0 * q1 + 2 * q2 * q3 ) * ( SG [ 1 ] - SG [ 2 ] + SG [ 3 ] - SG [ 4 ] ) - dvzNoise *
( 2 * q0 * q1 - 2 * q2 * q3 ) * ( SG [ 1 ] - SG [ 2 ] - SG [ 3 ] + SG [ 4 ] ) - dvxNoise * ( 2 * q0 * q2 - 2 * q1 * q3 ) *
( 2 * q0 * q3 + 2 * q1 * q2 ) ;
SQ [ 1 ] = dvxNoise * ( 2 * q0 * q2 - 2 * q1 * q3 ) * ( SG [ 1 ] + SG [ 2 ] - SG [ 3 ] - SG [ 4 ] ) + dvzNoise *
( 2 * q0 * q2 + 2 * q1 * q3 ) * ( SG [ 1 ] - SG [ 2 ] - SG [ 3 ] + SG [ 4 ] ) - dvyNoise * ( 2 * q0 * q1 + 2 * q2 * q3 ) *
( 2 * q0 * q3 - 2 * q1 * q2 ) ;
SQ [ 2 ] = dvyNoise * ( 2 * q0 * q3 - 2 * q1 * q2 ) * ( SG [ 1 ] - SG [ 2 ] + SG [ 3 ] - SG [ 4 ] ) - dvxNoise *
( 2 * q0 * q3 + 2 * q1 * q2 ) * ( SG [ 1 ] + SG [ 2 ] - SG [ 3 ] - SG [ 4 ] ) - dvzNoise * ( 2 * q0 * q1 - 2 * q2 * q3 ) *
( 2 * q0 * q2 + 2 * q1 * q3 ) ;
SQ [ 3 ] = sq ( SG [ 0 ] ) ;
SQ [ 4 ] = 2 * q2 * q3 ;
SQ [ 5 ] = 2 * q1 * q3 ;
SQ [ 6 ] = 2 * q1 * q2 ;
SQ [ 7 ] = SG [ 4 ] ;
2015-12-06 09:17:46 -04:00
float SPP [ 23 ] = { } ;
2015-12-06 07:18:05 -04:00
SPP [ 0 ] = SF [ 17 ] * ( 2 * q0 * q1 + 2 * q2 * q3 ) + SF [ 18 ] * ( 2 * q0 * q2 - 2 * q1 * q3 ) ;
SPP [ 1 ] = SF [ 18 ] * ( 2 * q0 * q2 + 2 * q1 * q3 ) + SF [ 16 ] * ( SF [ 24 ] - 2 * q0 * q3 ) ;
SPP [ 2 ] = 2 * q3 * SF [ 8 ] + 2 * q1 * SF [ 11 ] - 2 * q0 * SF [ 14 ] - 2 * q2 * SF [ 13 ] ;
SPP [ 3 ] = 2 * q1 * SF [ 7 ] + 2 * q2 * SF [ 6 ] - 2 * q0 * SF [ 12 ] - 2 * q3 * SF [ 10 ] ;
SPP [ 4 ] = 2 * q0 * SF [ 6 ] - 2 * q3 * SF [ 7 ] - 2 * q1 * SF [ 10 ] + 2 * q2 * SF [ 12 ] ;
SPP [ 5 ] = 2 * q0 * SF [ 8 ] + 2 * q2 * SF [ 11 ] + 2 * q1 * SF [ 13 ] + 2 * q3 * SF [ 14 ] ;
SPP [ 6 ] = 2 * q0 * SF [ 7 ] + 2 * q3 * SF [ 6 ] + 2 * q2 * SF [ 10 ] + 2 * q1 * SF [ 12 ] ;
SPP [ 7 ] = 2 * q1 * SF [ 3 ] - 2 * q2 * SF [ 4 ] - 2 * q3 * SF [ 5 ] + 2 * q0 * SF [ 9 ] ;
SPP [ 8 ] = 2 * q0 * SF [ 5 ] - 2 * q1 * SF [ 4 ] - 2 * q2 * SF [ 3 ] + 2 * q3 * SF [ 9 ] ;
SPP [ 9 ] = SF [ 18 ] * SF [ 20 ] - SF [ 16 ] * ( 2 * q0 * q1 + 2 * q2 * q3 ) ;
SPP [ 10 ] = SF [ 17 ] * SF [ 20 ] + SF [ 16 ] * ( 2 * q0 * q2 - 2 * q1 * q3 ) ;
SPP [ 11 ] = SF [ 17 ] * SF [ 21 ] - SF [ 18 ] * ( SF [ 24 ] + 2 * q0 * q3 ) ;
SPP [ 12 ] = SF [ 17 ] * SF [ 22 ] - SF [ 16 ] * ( SF [ 24 ] + 2 * q0 * q3 ) ;
SPP [ 13 ] = 2 * q0 * SF [ 4 ] + 2 * q1 * SF [ 5 ] + 2 * q3 * SF [ 3 ] + 2 * q2 * SF [ 9 ] ;
SPP [ 14 ] = 2 * q2 * SF [ 8 ] - 2 * q0 * SF [ 11 ] - 2 * q1 * SF [ 14 ] + 2 * q3 * SF [ 13 ] ;
SPP [ 15 ] = SF [ 18 ] * SF [ 23 ] + SF [ 17 ] * ( SF [ 24 ] - 2 * q0 * q3 ) ;
SPP [ 16 ] = daz * SF [ 19 ] + daz * sq ( q0 ) + daz * sq ( q1 ) + daz * sq ( q3 ) ;
SPP [ 17 ] = day * SF [ 19 ] + day * sq ( q0 ) + day * sq ( q1 ) + day * sq ( q3 ) ;
SPP [ 18 ] = dax * SF [ 19 ] + dax * sq ( q0 ) + dax * sq ( q1 ) + dax * sq ( q3 ) ;
SPP [ 19 ] = SF [ 16 ] * SF [ 23 ] - SF [ 17 ] * ( 2 * q0 * q2 + 2 * q1 * q3 ) ;
SPP [ 20 ] = SF [ 16 ] * SF [ 21 ] - SF [ 18 ] * SF [ 22 ] ;
SPP [ 21 ] = 2 * q0 * q2 + 2 * q1 * q3 ;
SPP [ 22 ] = SF [ 15 ] ;
// covariance update
2015-12-06 09:17:46 -04:00
float nextP [ 24 ] [ 24 ] = { } ;
2015-12-06 07:18:05 -04:00
nextP [ 0 ] [ 0 ] = daxNoise * SQ [ 3 ] + SPP [ 5 ] * ( P [ 0 ] [ 0 ] * SPP [ 5 ] - P [ 1 ] [ 0 ] * SPP [ 4 ] + P [ 2 ] [ 0 ] * SPP [ 7 ] + P [ 9 ] [ 0 ] * SPP [ 22 ] +
P [ 12 ] [ 0 ] * SPP [ 18 ] ) - SPP [ 4 ] * ( P [ 0 ] [ 1 ] * SPP [ 5 ] - P [ 1 ] [ 1 ] * SPP [ 4 ] + P [ 2 ] [ 1 ] * SPP [ 7 ] + P [ 9 ] [ 1 ] * SPP [ 22 ] + P [ 12 ] [ 1 ] *
SPP [ 18 ] ) + SPP [ 7 ] * ( P [ 0 ] [ 2 ] * SPP [ 5 ] - P [ 1 ] [ 2 ] * SPP [ 4 ] + P [ 2 ] [ 2 ] * SPP [ 7 ] + P [ 9 ] [ 2 ] * SPP [ 22 ] + P [ 12 ] [ 2 ] * SPP [ 18 ] ) +
SPP [ 22 ] * ( P [ 0 ] [ 9 ] * SPP [ 5 ] - P [ 1 ] [ 9 ] * SPP [ 4 ] + P [ 2 ] [ 9 ] * SPP [ 7 ] + P [ 9 ] [ 9 ] * SPP [ 22 ] + P [ 12 ] [ 9 ] * SPP [ 18 ] ) +
SPP [ 18 ] * ( P [ 0 ] [ 12 ] * SPP [ 5 ] - P [ 1 ] [ 12 ] * SPP [ 4 ] + P [ 2 ] [ 12 ] * SPP [ 7 ] + P [ 9 ] [ 12 ] * SPP [ 22 ] + P [ 12 ] [ 12 ] * SPP [ 18 ] ) ;
nextP [ 0 ] [ 1 ] = SPP [ 6 ] * ( P [ 0 ] [ 1 ] * SPP [ 5 ] - P [ 1 ] [ 1 ] * SPP [ 4 ] + P [ 2 ] [ 1 ] * SPP [ 7 ] + P [ 9 ] [ 1 ] * SPP [ 22 ] + P [ 12 ] [ 1 ] * SPP [ 18 ] )
- SPP [ 2 ] * ( P [ 0 ] [ 0 ] * SPP [ 5 ] - P [ 1 ] [ 0 ] * SPP [ 4 ] + P [ 2 ] [ 0 ] * SPP [ 7 ] + P [ 9 ] [ 0 ] * SPP [ 22 ] + P [ 12 ] [ 0 ] * SPP [ 18 ] ) -
SPP [ 8 ] * ( P [ 0 ] [ 2 ] * SPP [ 5 ] - P [ 1 ] [ 2 ] * SPP [ 4 ] + P [ 2 ] [ 2 ] * SPP [ 7 ] + P [ 9 ] [ 2 ] * SPP [ 22 ] + P [ 12 ] [ 2 ] * SPP [ 18 ] ) + SPP [ 22 ] *
( P [ 0 ] [ 10 ] * SPP [ 5 ] - P [ 1 ] [ 10 ] * SPP [ 4 ] + P [ 2 ] [ 10 ] * SPP [ 7 ] + P [ 9 ] [ 10 ] * SPP [ 22 ] + P [ 12 ] [ 10 ] * SPP [ 18 ] ) + SPP [ 17 ] *
( P [ 0 ] [ 13 ] * SPP [ 5 ] - P [ 1 ] [ 13 ] * SPP [ 4 ] + P [ 2 ] [ 13 ] * SPP [ 7 ] + P [ 9 ] [ 13 ] * SPP [ 22 ] + P [ 12 ] [ 13 ] * SPP [ 18 ] ) ;
nextP [ 1 ] [ 1 ] = dayNoise * SQ [ 3 ] - SPP [ 2 ] * ( P [ 1 ] [ 0 ] * SPP [ 6 ] - P [ 0 ] [ 0 ] * SPP [ 2 ] - P [ 2 ] [ 0 ] * SPP [ 8 ] + P [ 10 ] [ 0 ] * SPP [ 22 ] +
P [ 13 ] [ 0 ] * SPP [ 17 ] ) + SPP [ 6 ] * ( P [ 1 ] [ 1 ] * SPP [ 6 ] - P [ 0 ] [ 1 ] * SPP [ 2 ] - P [ 2 ] [ 1 ] * SPP [ 8 ] + P [ 10 ] [ 1 ] * SPP [ 22 ] + P [ 13 ] [ 1 ] *
SPP [ 17 ] ) - SPP [ 8 ] * ( P [ 1 ] [ 2 ] * SPP [ 6 ] - P [ 0 ] [ 2 ] * SPP [ 2 ] - P [ 2 ] [ 2 ] * SPP [ 8 ] + P [ 10 ] [ 2 ] * SPP [ 22 ] + P [ 13 ] [ 2 ] * SPP [ 17 ] ) +
SPP [ 22 ] * ( P [ 1 ] [ 10 ] * SPP [ 6 ] - P [ 0 ] [ 10 ] * SPP [ 2 ] - P [ 2 ] [ 10 ] * SPP [ 8 ] + P [ 10 ] [ 10 ] * SPP [ 22 ] + P [ 13 ] [ 10 ] * SPP [ 17 ] ) +
SPP [ 17 ] * ( P [ 1 ] [ 13 ] * SPP [ 6 ] - P [ 0 ] [ 13 ] * SPP [ 2 ] - P [ 2 ] [ 13 ] * SPP [ 8 ] + P [ 10 ] [ 13 ] * SPP [ 22 ] + P [ 13 ] [ 13 ] * SPP [ 17 ] ) ;
nextP [ 0 ] [ 2 ] = SPP [ 14 ] * ( P [ 0 ] [ 0 ] * SPP [ 5 ] - P [ 1 ] [ 0 ] * SPP [ 4 ] + P [ 2 ] [ 0 ] * SPP [ 7 ] + P [ 9 ] [ 0 ] * SPP [ 22 ] + P [ 12 ] [ 0 ] *
SPP [ 18 ] ) - SPP [ 3 ] * ( P [ 0 ] [ 1 ] * SPP [ 5 ] - P [ 1 ] [ 1 ] * SPP [ 4 ] + P [ 2 ] [ 1 ] * SPP [ 7 ] + P [ 9 ] [ 1 ] * SPP [ 22 ] + P [ 12 ] [ 1 ] * SPP [ 18 ] ) +
SPP [ 13 ] * ( P [ 0 ] [ 2 ] * SPP [ 5 ] - P [ 1 ] [ 2 ] * SPP [ 4 ] + P [ 2 ] [ 2 ] * SPP [ 7 ] + P [ 9 ] [ 2 ] * SPP [ 22 ] + P [ 12 ] [ 2 ] * SPP [ 18 ] ) +
SPP [ 22 ] * ( P [ 0 ] [ 11 ] * SPP [ 5 ] - P [ 1 ] [ 11 ] * SPP [ 4 ] + P [ 2 ] [ 11 ] * SPP [ 7 ] + P [ 9 ] [ 11 ] * SPP [ 22 ] + P [ 12 ] [ 11 ] * SPP [ 18 ] ) +
SPP [ 16 ] * ( P [ 0 ] [ 14 ] * SPP [ 5 ] - P [ 1 ] [ 14 ] * SPP [ 4 ] + P [ 2 ] [ 14 ] * SPP [ 7 ] + P [ 9 ] [ 14 ] * SPP [ 22 ] + P [ 12 ] [ 14 ] * SPP [ 18 ] ) ;
nextP [ 1 ] [ 2 ] = SPP [ 14 ] * ( P [ 1 ] [ 0 ] * SPP [ 6 ] - P [ 0 ] [ 0 ] * SPP [ 2 ] - P [ 2 ] [ 0 ] * SPP [ 8 ] + P [ 10 ] [ 0 ] * SPP [ 22 ] + P [ 13 ] [ 0 ] *
SPP [ 17 ] ) - SPP [ 3 ] * ( P [ 1 ] [ 1 ] * SPP [ 6 ] - P [ 0 ] [ 1 ] * SPP [ 2 ] - P [ 2 ] [ 1 ] * SPP [ 8 ] + P [ 10 ] [ 1 ] * SPP [ 22 ] + P [ 13 ] [ 1 ] * SPP [ 17 ] ) +
SPP [ 13 ] * ( P [ 1 ] [ 2 ] * SPP [ 6 ] - P [ 0 ] [ 2 ] * SPP [ 2 ] - P [ 2 ] [ 2 ] * SPP [ 8 ] + P [ 10 ] [ 2 ] * SPP [ 22 ] + P [ 13 ] [ 2 ] * SPP [ 17 ] ) +
SPP [ 22 ] * ( P [ 1 ] [ 11 ] * SPP [ 6 ] - P [ 0 ] [ 11 ] * SPP [ 2 ] - P [ 2 ] [ 11 ] * SPP [ 8 ] + P [ 10 ] [ 11 ] * SPP [ 22 ] + P [ 13 ] [ 11 ] * SPP [ 17 ] ) +
SPP [ 16 ] * ( P [ 1 ] [ 14 ] * SPP [ 6 ] - P [ 0 ] [ 14 ] * SPP [ 2 ] - P [ 2 ] [ 14 ] * SPP [ 8 ] + P [ 10 ] [ 14 ] * SPP [ 22 ] + P [ 13 ] [ 14 ] * SPP [ 17 ] ) ;
nextP [ 2 ] [ 2 ] = dazNoise * SQ [ 3 ] - SPP [ 3 ] * ( P [ 0 ] [ 1 ] * SPP [ 14 ] - P [ 1 ] [ 1 ] * SPP [ 3 ] + P [ 2 ] [ 1 ] * SPP [ 13 ] + P [ 11 ] [ 1 ] * SPP [ 22 ]
+ P [ 14 ] [ 1 ] * SPP [ 16 ] ) + SPP [ 14 ] * ( P [ 0 ] [ 0 ] * SPP [ 14 ] - P [ 1 ] [ 0 ] * SPP [ 3 ] + P [ 2 ] [ 0 ] * SPP [ 13 ] + P [ 11 ] [ 0 ] * SPP [ 22 ] +
P [ 14 ] [ 0 ] * SPP [ 16 ] ) + SPP [ 13 ] * ( P [ 0 ] [ 2 ] * SPP [ 14 ] - P [ 1 ] [ 2 ] * SPP [ 3 ] + P [ 2 ] [ 2 ] * SPP [ 13 ] + P [ 11 ] [ 2 ] * SPP [ 22 ] +
P [ 14 ] [ 2 ] * SPP [ 16 ] ) + SPP [ 22 ] * ( P [ 0 ] [ 11 ] * SPP [ 14 ] - P [ 1 ] [ 11 ] * SPP [ 3 ] + P [ 2 ] [ 11 ] * SPP [ 13 ] + P [ 11 ] [ 11 ] * SPP [ 22 ] +
P [ 14 ] [ 11 ] * SPP [ 16 ] ) + SPP [ 16 ] * ( P [ 0 ] [ 14 ] * SPP [ 14 ] - P [ 1 ] [ 14 ] * SPP [ 3 ] + P [ 2 ] [ 14 ] * SPP [ 13 ] + P [ 11 ] [ 14 ] * SPP [ 22 ] +
P [ 14 ] [ 14 ] * SPP [ 16 ] ) ;
nextP [ 0 ] [ 3 ] = P [ 0 ] [ 3 ] * SPP [ 5 ] - P [ 1 ] [ 3 ] * SPP [ 4 ] + P [ 2 ] [ 3 ] * SPP [ 7 ] + P [ 9 ] [ 3 ] * SPP [ 22 ] + P [ 12 ] [ 3 ] * SPP [ 18 ] +
SPP [ 1 ] * ( P [ 0 ] [ 0 ] * SPP [ 5 ] - P [ 1 ] [ 0 ] * SPP [ 4 ] + P [ 2 ] [ 0 ] * SPP [ 7 ] + P [ 9 ] [ 0 ] * SPP [ 22 ] + P [ 12 ] [ 0 ] * SPP [ 18 ] ) + SPP [ 19 ] *
( P [ 0 ] [ 1 ] * SPP [ 5 ] - P [ 1 ] [ 1 ] * SPP [ 4 ] + P [ 2 ] [ 1 ] * SPP [ 7 ] + P [ 9 ] [ 1 ] * SPP [ 22 ] + P [ 12 ] [ 1 ] * SPP [ 18 ] ) + SPP [ 15 ] *
( P [ 0 ] [ 2 ] * SPP [ 5 ] - P [ 1 ] [ 2 ] * SPP [ 4 ] + P [ 2 ] [ 2 ] * SPP [ 7 ] + P [ 9 ] [ 2 ] * SPP [ 22 ] + P [ 12 ] [ 2 ] * SPP [ 18 ] ) - SPP [ 21 ] *
( P [ 0 ] [ 15 ] * SPP [ 5 ] - P [ 1 ] [ 15 ] * SPP [ 4 ] + P [ 2 ] [ 15 ] * SPP [ 7 ] + P [ 9 ] [ 15 ] * SPP [ 22 ] + P [ 12 ] [ 15 ] * SPP [ 18 ] ) ;
nextP [ 1 ] [ 3 ] = P [ 1 ] [ 3 ] * SPP [ 6 ] - P [ 0 ] [ 3 ] * SPP [ 2 ] - P [ 2 ] [ 3 ] * SPP [ 8 ] + P [ 10 ] [ 3 ] * SPP [ 22 ] + P [ 13 ] [ 3 ] * SPP [ 17 ] +
SPP [ 1 ] * ( P [ 1 ] [ 0 ] * SPP [ 6 ] - P [ 0 ] [ 0 ] * SPP [ 2 ] - P [ 2 ] [ 0 ] * SPP [ 8 ] + P [ 10 ] [ 0 ] * SPP [ 22 ] + P [ 13 ] [ 0 ] * SPP [ 17 ] ) +
SPP [ 19 ] * ( P [ 1 ] [ 1 ] * SPP [ 6 ] - P [ 0 ] [ 1 ] * SPP [ 2 ] - P [ 2 ] [ 1 ] * SPP [ 8 ] + P [ 10 ] [ 1 ] * SPP [ 22 ] + P [ 13 ] [ 1 ] * SPP [ 17 ] ) +
SPP [ 15 ] * ( P [ 1 ] [ 2 ] * SPP [ 6 ] - P [ 0 ] [ 2 ] * SPP [ 2 ] - P [ 2 ] [ 2 ] * SPP [ 8 ] + P [ 10 ] [ 2 ] * SPP [ 22 ] + P [ 13 ] [ 2 ] * SPP [ 17 ] ) -
SPP [ 21 ] * ( P [ 1 ] [ 15 ] * SPP [ 6 ] - P [ 0 ] [ 15 ] * SPP [ 2 ] - P [ 2 ] [ 15 ] * SPP [ 8 ] + P [ 10 ] [ 15 ] * SPP [ 22 ] + P [ 13 ] [ 15 ] * SPP [ 17 ] ) ;
nextP [ 2 ] [ 3 ] = P [ 0 ] [ 3 ] * SPP [ 14 ] - P [ 1 ] [ 3 ] * SPP [ 3 ] + P [ 2 ] [ 3 ] * SPP [ 13 ] + P [ 11 ] [ 3 ] * SPP [ 22 ] + P [ 14 ] [ 3 ] * SPP [ 16 ] +
SPP [ 1 ] * ( P [ 0 ] [ 0 ] * SPP [ 14 ] - P [ 1 ] [ 0 ] * SPP [ 3 ] + P [ 2 ] [ 0 ] * SPP [ 13 ] + P [ 11 ] [ 0 ] * SPP [ 22 ] + P [ 14 ] [ 0 ] * SPP [ 16 ] ) +
SPP [ 19 ] * ( P [ 0 ] [ 1 ] * SPP [ 14 ] - P [ 1 ] [ 1 ] * SPP [ 3 ] + P [ 2 ] [ 1 ] * SPP [ 13 ] + P [ 11 ] [ 1 ] * SPP [ 22 ] + P [ 14 ] [ 1 ] * SPP [ 16 ] ) +
SPP [ 15 ] * ( P [ 0 ] [ 2 ] * SPP [ 14 ] - P [ 1 ] [ 2 ] * SPP [ 3 ] + P [ 2 ] [ 2 ] * SPP [ 13 ] + P [ 11 ] [ 2 ] * SPP [ 22 ] + P [ 14 ] [ 2 ] * SPP [ 16 ] ) -
SPP [ 21 ] * ( P [ 0 ] [ 15 ] * SPP [ 14 ] - P [ 1 ] [ 15 ] * SPP [ 3 ] + P [ 2 ] [ 15 ] * SPP [ 13 ] + P [ 11 ] [ 15 ] * SPP [ 22 ] + P [ 14 ] [ 15 ] * SPP [ 16 ] ) ;
nextP [ 3 ] [ 3 ] = P [ 3 ] [ 3 ] + P [ 0 ] [ 3 ] * SPP [ 1 ] + P [ 1 ] [ 3 ] * SPP [ 19 ] + P [ 2 ] [ 3 ] * SPP [ 15 ] - P [ 15 ] [ 3 ] * SPP [ 21 ] + dvyNoise * sq (
SQ [ 6 ] - 2 * q0 * q3 ) + dvzNoise * sq ( SQ [ 5 ] + 2 * q0 * q2 ) + SPP [ 1 ] * ( P [ 3 ] [ 0 ] + P [ 0 ] [ 0 ] * SPP [ 1 ] + P [ 1 ] [ 0 ] * SPP [ 19 ] +
P [ 2 ] [ 0 ] * SPP [ 15 ] - P [ 15 ] [ 0 ] * SPP [ 21 ] ) + SPP [ 19 ] * ( P [ 3 ] [ 1 ] + P [ 0 ] [ 1 ] * SPP [ 1 ] + P [ 1 ] [ 1 ] * SPP [ 19 ] + P [ 2 ] [ 1 ] * SPP [ 15 ]
- P [ 15 ] [ 1 ] * SPP [ 21 ] ) + SPP [ 15 ] * ( P [ 3 ] [ 2 ] + P [ 0 ] [ 2 ] * SPP [ 1 ] + P [ 1 ] [ 2 ] * SPP [ 19 ] + P [ 2 ] [ 2 ] * SPP [ 15 ] - P [ 15 ] [ 2 ] *
SPP [ 21 ] ) - SPP [ 21 ] * ( P [ 3 ] [ 15 ] + P [ 0 ] [ 15 ] * SPP [ 1 ] + P [ 1 ] [ 15 ] * SPP [ 19 ] + P [ 2 ] [ 15 ] * SPP [ 15 ] - P [ 15 ] [ 15 ] * SPP [ 21 ] ) +
dvxNoise * sq ( SG [ 1 ] + SG [ 2 ] - SG [ 3 ] - SQ [ 7 ] ) ;
nextP [ 0 ] [ 4 ] = P [ 0 ] [ 4 ] * SPP [ 5 ] - P [ 1 ] [ 4 ] * SPP [ 4 ] + P [ 2 ] [ 4 ] * SPP [ 7 ] + P [ 9 ] [ 4 ] * SPP [ 22 ] + P [ 12 ] [ 4 ] * SPP [ 18 ] +
SF [ 22 ] * ( P [ 0 ] [ 15 ] * SPP [ 5 ] - P [ 1 ] [ 15 ] * SPP [ 4 ] + P [ 2 ] [ 15 ] * SPP [ 7 ] + P [ 9 ] [ 15 ] * SPP [ 22 ] + P [ 12 ] [ 15 ] * SPP [ 18 ] ) +
SPP [ 12 ] * ( P [ 0 ] [ 1 ] * SPP [ 5 ] - P [ 1 ] [ 1 ] * SPP [ 4 ] + P [ 2 ] [ 1 ] * SPP [ 7 ] + P [ 9 ] [ 1 ] * SPP [ 22 ] + P [ 12 ] [ 1 ] * SPP [ 18 ] ) +
SPP [ 20 ] * ( P [ 0 ] [ 0 ] * SPP [ 5 ] - P [ 1 ] [ 0 ] * SPP [ 4 ] + P [ 2 ] [ 0 ] * SPP [ 7 ] + P [ 9 ] [ 0 ] * SPP [ 22 ] + P [ 12 ] [ 0 ] * SPP [ 18 ] ) +
SPP [ 11 ] * ( P [ 0 ] [ 2 ] * SPP [ 5 ] - P [ 1 ] [ 2 ] * SPP [ 4 ] + P [ 2 ] [ 2 ] * SPP [ 7 ] + P [ 9 ] [ 2 ] * SPP [ 22 ] + P [ 12 ] [ 2 ] * SPP [ 18 ] ) ;
nextP [ 1 ] [ 4 ] = P [ 1 ] [ 4 ] * SPP [ 6 ] - P [ 0 ] [ 4 ] * SPP [ 2 ] - P [ 2 ] [ 4 ] * SPP [ 8 ] + P [ 10 ] [ 4 ] * SPP [ 22 ] + P [ 13 ] [ 4 ] * SPP [ 17 ] +
SF [ 22 ] * ( P [ 1 ] [ 15 ] * SPP [ 6 ] - P [ 0 ] [ 15 ] * SPP [ 2 ] - P [ 2 ] [ 15 ] * SPP [ 8 ] + P [ 10 ] [ 15 ] * SPP [ 22 ] + P [ 13 ] [ 15 ] * SPP [ 17 ] ) +
SPP [ 12 ] * ( P [ 1 ] [ 1 ] * SPP [ 6 ] - P [ 0 ] [ 1 ] * SPP [ 2 ] - P [ 2 ] [ 1 ] * SPP [ 8 ] + P [ 10 ] [ 1 ] * SPP [ 22 ] + P [ 13 ] [ 1 ] * SPP [ 17 ] ) +
SPP [ 20 ] * ( P [ 1 ] [ 0 ] * SPP [ 6 ] - P [ 0 ] [ 0 ] * SPP [ 2 ] - P [ 2 ] [ 0 ] * SPP [ 8 ] + P [ 10 ] [ 0 ] * SPP [ 22 ] + P [ 13 ] [ 0 ] * SPP [ 17 ] ) +
SPP [ 11 ] * ( P [ 1 ] [ 2 ] * SPP [ 6 ] - P [ 0 ] [ 2 ] * SPP [ 2 ] - P [ 2 ] [ 2 ] * SPP [ 8 ] + P [ 10 ] [ 2 ] * SPP [ 22 ] + P [ 13 ] [ 2 ] * SPP [ 17 ] ) ;
nextP [ 2 ] [ 4 ] = P [ 0 ] [ 4 ] * SPP [ 14 ] - P [ 1 ] [ 4 ] * SPP [ 3 ] + P [ 2 ] [ 4 ] * SPP [ 13 ] + P [ 11 ] [ 4 ] * SPP [ 22 ] + P [ 14 ] [ 4 ] * SPP [ 16 ] +
SF [ 22 ] * ( P [ 0 ] [ 15 ] * SPP [ 14 ] - P [ 1 ] [ 15 ] * SPP [ 3 ] + P [ 2 ] [ 15 ] * SPP [ 13 ] + P [ 11 ] [ 15 ] * SPP [ 22 ] + P [ 14 ] [ 15 ] * SPP [ 16 ] ) +
SPP [ 12 ] * ( P [ 0 ] [ 1 ] * SPP [ 14 ] - P [ 1 ] [ 1 ] * SPP [ 3 ] + P [ 2 ] [ 1 ] * SPP [ 13 ] + P [ 11 ] [ 1 ] * SPP [ 22 ] + P [ 14 ] [ 1 ] * SPP [ 16 ] ) +
SPP [ 20 ] * ( P [ 0 ] [ 0 ] * SPP [ 14 ] - P [ 1 ] [ 0 ] * SPP [ 3 ] + P [ 2 ] [ 0 ] * SPP [ 13 ] + P [ 11 ] [ 0 ] * SPP [ 22 ] + P [ 14 ] [ 0 ] * SPP [ 16 ] ) +
SPP [ 11 ] * ( P [ 0 ] [ 2 ] * SPP [ 14 ] - P [ 1 ] [ 2 ] * SPP [ 3 ] + P [ 2 ] [ 2 ] * SPP [ 13 ] + P [ 11 ] [ 2 ] * SPP [ 22 ] + P [ 14 ] [ 2 ] * SPP [ 16 ] ) ;
nextP [ 3 ] [ 4 ] = P [ 3 ] [ 4 ] + SQ [ 2 ] + P [ 0 ] [ 4 ] * SPP [ 1 ] + P [ 1 ] [ 4 ] * SPP [ 19 ] + P [ 2 ] [ 4 ] * SPP [ 15 ] - P [ 15 ] [ 4 ] * SPP [ 21 ] +
SF [ 22 ] * ( P [ 3 ] [ 15 ] + P [ 0 ] [ 15 ] * SPP [ 1 ] + P [ 1 ] [ 15 ] * SPP [ 19 ] + P [ 2 ] [ 15 ] * SPP [ 15 ] - P [ 15 ] [ 15 ] * SPP [ 21 ] ) + SPP [ 12 ] *
( P [ 3 ] [ 1 ] + P [ 0 ] [ 1 ] * SPP [ 1 ] + P [ 1 ] [ 1 ] * SPP [ 19 ] + P [ 2 ] [ 1 ] * SPP [ 15 ] - P [ 15 ] [ 1 ] * SPP [ 21 ] ) + SPP [ 20 ] *
( P [ 3 ] [ 0 ] + P [ 0 ] [ 0 ] * SPP [ 1 ] + P [ 1 ] [ 0 ] * SPP [ 19 ] + P [ 2 ] [ 0 ] * SPP [ 15 ] - P [ 15 ] [ 0 ] * SPP [ 21 ] ) + SPP [ 11 ] *
( P [ 3 ] [ 2 ] + P [ 0 ] [ 2 ] * SPP [ 1 ] + P [ 1 ] [ 2 ] * SPP [ 19 ] + P [ 2 ] [ 2 ] * SPP [ 15 ] - P [ 15 ] [ 2 ] * SPP [ 21 ] ) ;
nextP [ 4 ] [ 4 ] = P [ 4 ] [ 4 ] + P [ 15 ] [ 4 ] * SF [ 22 ] + P [ 0 ] [ 4 ] * SPP [ 20 ] + P [ 1 ] [ 4 ] * SPP [ 12 ] + P [ 2 ] [ 4 ] * SPP [ 11 ] + dvxNoise * sq (
SQ [ 6 ] + 2 * q0 * q3 ) + dvzNoise * sq ( SQ [ 4 ] - 2 * q0 * q1 ) + SF [ 22 ] * ( P [ 4 ] [ 15 ] + P [ 15 ] [ 15 ] * SF [ 22 ] + P [ 0 ] [ 15 ] * SPP [ 20 ]
+ P [ 1 ] [ 15 ] * SPP [ 12 ] + P [ 2 ] [ 15 ] * SPP [ 11 ] ) + SPP [ 12 ] * ( P [ 4 ] [ 1 ] + P [ 15 ] [ 1 ] * SF [ 22 ] + P [ 0 ] [ 1 ] * SPP [ 20 ] + P [ 1 ] [ 1 ] *
SPP [ 12 ] + P [ 2 ] [ 1 ] * SPP [ 11 ] ) + SPP [ 20 ] * ( P [ 4 ] [ 0 ] + P [ 15 ] [ 0 ] * SF [ 22 ] + P [ 0 ] [ 0 ] * SPP [ 20 ] + P [ 1 ] [ 0 ] * SPP [ 12 ] + P [ 2 ] [ 0 ]
* SPP [ 11 ] ) + SPP [ 11 ] * ( P [ 4 ] [ 2 ] + P [ 15 ] [ 2 ] * SF [ 22 ] + P [ 0 ] [ 2 ] * SPP [ 20 ] + P [ 1 ] [ 2 ] * SPP [ 12 ] + P [ 2 ] [ 2 ] * SPP [ 11 ] ) +
dvyNoise * sq ( SG [ 1 ] - SG [ 2 ] + SG [ 3 ] - SQ [ 7 ] ) ;
nextP [ 0 ] [ 5 ] = P [ 0 ] [ 5 ] * SPP [ 5 ] - P [ 1 ] [ 5 ] * SPP [ 4 ] + P [ 2 ] [ 5 ] * SPP [ 7 ] + P [ 9 ] [ 5 ] * SPP [ 22 ] + P [ 12 ] [ 5 ] * SPP [ 18 ] +
SF [ 20 ] * ( P [ 0 ] [ 15 ] * SPP [ 5 ] - P [ 1 ] [ 15 ] * SPP [ 4 ] + P [ 2 ] [ 15 ] * SPP [ 7 ] + P [ 9 ] [ 15 ] * SPP [ 22 ] + P [ 12 ] [ 15 ] * SPP [ 18 ] ) -
SPP [ 9 ] * ( P [ 0 ] [ 0 ] * SPP [ 5 ] - P [ 1 ] [ 0 ] * SPP [ 4 ] + P [ 2 ] [ 0 ] * SPP [ 7 ] + P [ 9 ] [ 0 ] * SPP [ 22 ] + P [ 12 ] [ 0 ] * SPP [ 18 ] ) + SPP [ 0 ] *
( P [ 0 ] [ 2 ] * SPP [ 5 ] - P [ 1 ] [ 2 ] * SPP [ 4 ] + P [ 2 ] [ 2 ] * SPP [ 7 ] + P [ 9 ] [ 2 ] * SPP [ 22 ] + P [ 12 ] [ 2 ] * SPP [ 18 ] ) + SPP [ 10 ] *
( P [ 0 ] [ 1 ] * SPP [ 5 ] - P [ 1 ] [ 1 ] * SPP [ 4 ] + P [ 2 ] [ 1 ] * SPP [ 7 ] + P [ 9 ] [ 1 ] * SPP [ 22 ] + P [ 12 ] [ 1 ] * SPP [ 18 ] ) ;
nextP [ 1 ] [ 5 ] = P [ 1 ] [ 5 ] * SPP [ 6 ] - P [ 0 ] [ 5 ] * SPP [ 2 ] - P [ 2 ] [ 5 ] * SPP [ 8 ] + P [ 10 ] [ 5 ] * SPP [ 22 ] + P [ 13 ] [ 5 ] * SPP [ 17 ] +
SF [ 20 ] * ( P [ 1 ] [ 15 ] * SPP [ 6 ] - P [ 0 ] [ 15 ] * SPP [ 2 ] - P [ 2 ] [ 15 ] * SPP [ 8 ] + P [ 10 ] [ 15 ] * SPP [ 22 ] + P [ 13 ] [ 15 ] * SPP [ 17 ] ) -
SPP [ 9 ] * ( P [ 1 ] [ 0 ] * SPP [ 6 ] - P [ 0 ] [ 0 ] * SPP [ 2 ] - P [ 2 ] [ 0 ] * SPP [ 8 ] + P [ 10 ] [ 0 ] * SPP [ 22 ] + P [ 13 ] [ 0 ] * SPP [ 17 ] ) + SPP [ 0 ] *
( P [ 1 ] [ 2 ] * SPP [ 6 ] - P [ 0 ] [ 2 ] * SPP [ 2 ] - P [ 2 ] [ 2 ] * SPP [ 8 ] + P [ 10 ] [ 2 ] * SPP [ 22 ] + P [ 13 ] [ 2 ] * SPP [ 17 ] ) + SPP [ 10 ] *
( P [ 1 ] [ 1 ] * SPP [ 6 ] - P [ 0 ] [ 1 ] * SPP [ 2 ] - P [ 2 ] [ 1 ] * SPP [ 8 ] + P [ 10 ] [ 1 ] * SPP [ 22 ] + P [ 13 ] [ 1 ] * SPP [ 17 ] ) ;
nextP [ 2 ] [ 5 ] = P [ 0 ] [ 5 ] * SPP [ 14 ] - P [ 1 ] [ 5 ] * SPP [ 3 ] + P [ 2 ] [ 5 ] * SPP [ 13 ] + P [ 11 ] [ 5 ] * SPP [ 22 ] + P [ 14 ] [ 5 ] * SPP [ 16 ] +
SF [ 20 ] * ( P [ 0 ] [ 15 ] * SPP [ 14 ] - P [ 1 ] [ 15 ] * SPP [ 3 ] + P [ 2 ] [ 15 ] * SPP [ 13 ] + P [ 11 ] [ 15 ] * SPP [ 22 ] + P [ 14 ] [ 15 ] * SPP [ 16 ] ) -
SPP [ 9 ] * ( P [ 0 ] [ 0 ] * SPP [ 14 ] - P [ 1 ] [ 0 ] * SPP [ 3 ] + P [ 2 ] [ 0 ] * SPP [ 13 ] + P [ 11 ] [ 0 ] * SPP [ 22 ] + P [ 14 ] [ 0 ] * SPP [ 16 ] ) +
SPP [ 0 ] * ( P [ 0 ] [ 2 ] * SPP [ 14 ] - P [ 1 ] [ 2 ] * SPP [ 3 ] + P [ 2 ] [ 2 ] * SPP [ 13 ] + P [ 11 ] [ 2 ] * SPP [ 22 ] + P [ 14 ] [ 2 ] * SPP [ 16 ] ) +
SPP [ 10 ] * ( P [ 0 ] [ 1 ] * SPP [ 14 ] - P [ 1 ] [ 1 ] * SPP [ 3 ] + P [ 2 ] [ 1 ] * SPP [ 13 ] + P [ 11 ] [ 1 ] * SPP [ 22 ] + P [ 14 ] [ 1 ] * SPP [ 16 ] ) ;
nextP [ 3 ] [ 5 ] = P [ 3 ] [ 5 ] + SQ [ 1 ] + P [ 0 ] [ 5 ] * SPP [ 1 ] + P [ 1 ] [ 5 ] * SPP [ 19 ] + P [ 2 ] [ 5 ] * SPP [ 15 ] - P [ 15 ] [ 5 ] * SPP [ 21 ] +
SF [ 20 ] * ( P [ 3 ] [ 15 ] + P [ 0 ] [ 15 ] * SPP [ 1 ] + P [ 1 ] [ 15 ] * SPP [ 19 ] + P [ 2 ] [ 15 ] * SPP [ 15 ] - P [ 15 ] [ 15 ] * SPP [ 21 ] ) - SPP [ 9 ] *
( P [ 3 ] [ 0 ] + P [ 0 ] [ 0 ] * SPP [ 1 ] + P [ 1 ] [ 0 ] * SPP [ 19 ] + P [ 2 ] [ 0 ] * SPP [ 15 ] - P [ 15 ] [ 0 ] * SPP [ 21 ] ) + SPP [ 0 ] *
( P [ 3 ] [ 2 ] + P [ 0 ] [ 2 ] * SPP [ 1 ] + P [ 1 ] [ 2 ] * SPP [ 19 ] + P [ 2 ] [ 2 ] * SPP [ 15 ] - P [ 15 ] [ 2 ] * SPP [ 21 ] ) + SPP [ 10 ] *
( P [ 3 ] [ 1 ] + P [ 0 ] [ 1 ] * SPP [ 1 ] + P [ 1 ] [ 1 ] * SPP [ 19 ] + P [ 2 ] [ 1 ] * SPP [ 15 ] - P [ 15 ] [ 1 ] * SPP [ 21 ] ) ;
nextP [ 4 ] [ 5 ] = P [ 4 ] [ 5 ] + SQ [ 0 ] + P [ 15 ] [ 5 ] * SF [ 22 ] + P [ 0 ] [ 5 ] * SPP [ 20 ] + P [ 1 ] [ 5 ] * SPP [ 12 ] + P [ 2 ] [ 5 ] * SPP [ 11 ] +
SF [ 20 ] * ( P [ 4 ] [ 15 ] + P [ 15 ] [ 15 ] * SF [ 22 ] + P [ 0 ] [ 15 ] * SPP [ 20 ] + P [ 1 ] [ 15 ] * SPP [ 12 ] + P [ 2 ] [ 15 ] * SPP [ 11 ] ) - SPP [ 9 ] *
( P [ 4 ] [ 0 ] + P [ 15 ] [ 0 ] * SF [ 22 ] + P [ 0 ] [ 0 ] * SPP [ 20 ] + P [ 1 ] [ 0 ] * SPP [ 12 ] + P [ 2 ] [ 0 ] * SPP [ 11 ] ) + SPP [ 0 ] *
( P [ 4 ] [ 2 ] + P [ 15 ] [ 2 ] * SF [ 22 ] + P [ 0 ] [ 2 ] * SPP [ 20 ] + P [ 1 ] [ 2 ] * SPP [ 12 ] + P [ 2 ] [ 2 ] * SPP [ 11 ] ) + SPP [ 10 ] *
( P [ 4 ] [ 1 ] + P [ 15 ] [ 1 ] * SF [ 22 ] + P [ 0 ] [ 1 ] * SPP [ 20 ] + P [ 1 ] [ 1 ] * SPP [ 12 ] + P [ 2 ] [ 1 ] * SPP [ 11 ] ) ;
nextP [ 5 ] [ 5 ] = P [ 5 ] [ 5 ] + P [ 15 ] [ 5 ] * SF [ 20 ] - P [ 0 ] [ 5 ] * SPP [ 9 ] + P [ 1 ] [ 5 ] * SPP [ 10 ] + P [ 2 ] [ 5 ] * SPP [ 0 ] + dvxNoise * sq (
SQ [ 5 ] - 2 * q0 * q2 ) + dvyNoise * sq ( SQ [ 4 ] + 2 * q0 * q1 ) + SF [ 20 ] * ( P [ 5 ] [ 15 ] + P [ 15 ] [ 15 ] * SF [ 20 ] - P [ 0 ] [ 15 ] * SPP [ 9 ]
+ P [ 1 ] [ 15 ] * SPP [ 10 ] + P [ 2 ] [ 15 ] * SPP [ 0 ] ) - SPP [ 9 ] * ( P [ 5 ] [ 0 ] + P [ 15 ] [ 0 ] * SF [ 20 ] - P [ 0 ] [ 0 ] * SPP [ 9 ] + P [ 1 ] [ 0 ] * SPP [ 10 ]
+ P [ 2 ] [ 0 ] * SPP [ 0 ] ) + SPP [ 0 ] * ( P [ 5 ] [ 2 ] + P [ 15 ] [ 2 ] * SF [ 20 ] - P [ 0 ] [ 2 ] * SPP [ 9 ] + P [ 1 ] [ 2 ] * SPP [ 10 ] + P [ 2 ] [ 2 ] * SPP [ 0 ] ) +
SPP [ 10 ] * ( P [ 5 ] [ 1 ] + P [ 15 ] [ 1 ] * SF [ 20 ] - P [ 0 ] [ 1 ] * SPP [ 9 ] + P [ 1 ] [ 1 ] * SPP [ 10 ] + P [ 2 ] [ 1 ] * SPP [ 0 ] ) + dvzNoise * sq (
SG [ 1 ] - SG [ 2 ] - SG [ 3 ] + SQ [ 7 ] ) ;
nextP [ 0 ] [ 6 ] = P [ 0 ] [ 6 ] * SPP [ 5 ] - P [ 1 ] [ 6 ] * SPP [ 4 ] + P [ 2 ] [ 6 ] * SPP [ 7 ] + P [ 9 ] [ 6 ] * SPP [ 22 ] + P [ 12 ] [ 6 ] * SPP [ 18 ] + dt *
( P [ 0 ] [ 3 ] * SPP [ 5 ] - P [ 1 ] [ 3 ] * SPP [ 4 ] + P [ 2 ] [ 3 ] * SPP [ 7 ] + P [ 9 ] [ 3 ] * SPP [ 22 ] + P [ 12 ] [ 3 ] * SPP [ 18 ] ) ;
nextP [ 1 ] [ 6 ] = P [ 1 ] [ 6 ] * SPP [ 6 ] - P [ 0 ] [ 6 ] * SPP [ 2 ] - P [ 2 ] [ 6 ] * SPP [ 8 ] + P [ 10 ] [ 6 ] * SPP [ 22 ] + P [ 13 ] [ 6 ] * SPP [ 17 ] + dt *
( P [ 1 ] [ 3 ] * SPP [ 6 ] - P [ 0 ] [ 3 ] * SPP [ 2 ] - P [ 2 ] [ 3 ] * SPP [ 8 ] + P [ 10 ] [ 3 ] * SPP [ 22 ] + P [ 13 ] [ 3 ] * SPP [ 17 ] ) ;
nextP [ 2 ] [ 6 ] = P [ 0 ] [ 6 ] * SPP [ 14 ] - P [ 1 ] [ 6 ] * SPP [ 3 ] + P [ 2 ] [ 6 ] * SPP [ 13 ] + P [ 11 ] [ 6 ] * SPP [ 22 ] + P [ 14 ] [ 6 ] * SPP [ 16 ] +
dt * ( P [ 0 ] [ 3 ] * SPP [ 14 ] - P [ 1 ] [ 3 ] * SPP [ 3 ] + P [ 2 ] [ 3 ] * SPP [ 13 ] + P [ 11 ] [ 3 ] * SPP [ 22 ] + P [ 14 ] [ 3 ] * SPP [ 16 ] ) ;
nextP [ 3 ] [ 6 ] = P [ 3 ] [ 6 ] + P [ 0 ] [ 6 ] * SPP [ 1 ] + P [ 1 ] [ 6 ] * SPP [ 19 ] + P [ 2 ] [ 6 ] * SPP [ 15 ] - P [ 15 ] [ 6 ] * SPP [ 21 ] + dt *
( P [ 3 ] [ 3 ] + P [ 0 ] [ 3 ] * SPP [ 1 ] + P [ 1 ] [ 3 ] * SPP [ 19 ] + P [ 2 ] [ 3 ] * SPP [ 15 ] - P [ 15 ] [ 3 ] * SPP [ 21 ] ) ;
nextP [ 4 ] [ 6 ] = P [ 4 ] [ 6 ] + P [ 15 ] [ 6 ] * SF [ 22 ] + P [ 0 ] [ 6 ] * SPP [ 20 ] + P [ 1 ] [ 6 ] * SPP [ 12 ] + P [ 2 ] [ 6 ] * SPP [ 11 ] + dt *
( P [ 4 ] [ 3 ] + P [ 15 ] [ 3 ] * SF [ 22 ] + P [ 0 ] [ 3 ] * SPP [ 20 ] + P [ 1 ] [ 3 ] * SPP [ 12 ] + P [ 2 ] [ 3 ] * SPP [ 11 ] ) ;
nextP [ 5 ] [ 6 ] = P [ 5 ] [ 6 ] + P [ 15 ] [ 6 ] * SF [ 20 ] - P [ 0 ] [ 6 ] * SPP [ 9 ] + P [ 1 ] [ 6 ] * SPP [ 10 ] + P [ 2 ] [ 6 ] * SPP [ 0 ] + dt *
( P [ 5 ] [ 3 ] + P [ 15 ] [ 3 ] * SF [ 20 ] - P [ 0 ] [ 3 ] * SPP [ 9 ] + P [ 1 ] [ 3 ] * SPP [ 10 ] + P [ 2 ] [ 3 ] * SPP [ 0 ] ) ;
nextP [ 6 ] [ 6 ] = P [ 6 ] [ 6 ] + P [ 3 ] [ 6 ] * dt + dt * ( P [ 6 ] [ 3 ] + P [ 3 ] [ 3 ] * dt ) ;
nextP [ 0 ] [ 7 ] = P [ 0 ] [ 7 ] * SPP [ 5 ] - P [ 1 ] [ 7 ] * SPP [ 4 ] + P [ 2 ] [ 7 ] * SPP [ 7 ] + P [ 9 ] [ 7 ] * SPP [ 22 ] + P [ 12 ] [ 7 ] * SPP [ 18 ] + dt *
( P [ 0 ] [ 4 ] * SPP [ 5 ] - P [ 1 ] [ 4 ] * SPP [ 4 ] + P [ 2 ] [ 4 ] * SPP [ 7 ] + P [ 9 ] [ 4 ] * SPP [ 22 ] + P [ 12 ] [ 4 ] * SPP [ 18 ] ) ;
nextP [ 1 ] [ 7 ] = P [ 1 ] [ 7 ] * SPP [ 6 ] - P [ 0 ] [ 7 ] * SPP [ 2 ] - P [ 2 ] [ 7 ] * SPP [ 8 ] + P [ 10 ] [ 7 ] * SPP [ 22 ] + P [ 13 ] [ 7 ] * SPP [ 17 ] + dt *
( P [ 1 ] [ 4 ] * SPP [ 6 ] - P [ 0 ] [ 4 ] * SPP [ 2 ] - P [ 2 ] [ 4 ] * SPP [ 8 ] + P [ 10 ] [ 4 ] * SPP [ 22 ] + P [ 13 ] [ 4 ] * SPP [ 17 ] ) ;
nextP [ 2 ] [ 7 ] = P [ 0 ] [ 7 ] * SPP [ 14 ] - P [ 1 ] [ 7 ] * SPP [ 3 ] + P [ 2 ] [ 7 ] * SPP [ 13 ] + P [ 11 ] [ 7 ] * SPP [ 22 ] + P [ 14 ] [ 7 ] * SPP [ 16 ] +
dt * ( P [ 0 ] [ 4 ] * SPP [ 14 ] - P [ 1 ] [ 4 ] * SPP [ 3 ] + P [ 2 ] [ 4 ] * SPP [ 13 ] + P [ 11 ] [ 4 ] * SPP [ 22 ] + P [ 14 ] [ 4 ] * SPP [ 16 ] ) ;
nextP [ 3 ] [ 7 ] = P [ 3 ] [ 7 ] + P [ 0 ] [ 7 ] * SPP [ 1 ] + P [ 1 ] [ 7 ] * SPP [ 19 ] + P [ 2 ] [ 7 ] * SPP [ 15 ] - P [ 15 ] [ 7 ] * SPP [ 21 ] + dt *
( P [ 3 ] [ 4 ] + P [ 0 ] [ 4 ] * SPP [ 1 ] + P [ 1 ] [ 4 ] * SPP [ 19 ] + P [ 2 ] [ 4 ] * SPP [ 15 ] - P [ 15 ] [ 4 ] * SPP [ 21 ] ) ;
nextP [ 4 ] [ 7 ] = P [ 4 ] [ 7 ] + P [ 15 ] [ 7 ] * SF [ 22 ] + P [ 0 ] [ 7 ] * SPP [ 20 ] + P [ 1 ] [ 7 ] * SPP [ 12 ] + P [ 2 ] [ 7 ] * SPP [ 11 ] + dt *
( P [ 4 ] [ 4 ] + P [ 15 ] [ 4 ] * SF [ 22 ] + P [ 0 ] [ 4 ] * SPP [ 20 ] + P [ 1 ] [ 4 ] * SPP [ 12 ] + P [ 2 ] [ 4 ] * SPP [ 11 ] ) ;
nextP [ 5 ] [ 7 ] = P [ 5 ] [ 7 ] + P [ 15 ] [ 7 ] * SF [ 20 ] - P [ 0 ] [ 7 ] * SPP [ 9 ] + P [ 1 ] [ 7 ] * SPP [ 10 ] + P [ 2 ] [ 7 ] * SPP [ 0 ] + dt *
( P [ 5 ] [ 4 ] + P [ 15 ] [ 4 ] * SF [ 20 ] - P [ 0 ] [ 4 ] * SPP [ 9 ] + P [ 1 ] [ 4 ] * SPP [ 10 ] + P [ 2 ] [ 4 ] * SPP [ 0 ] ) ;
nextP [ 6 ] [ 7 ] = P [ 6 ] [ 7 ] + P [ 3 ] [ 7 ] * dt + dt * ( P [ 6 ] [ 4 ] + P [ 3 ] [ 4 ] * dt ) ;
nextP [ 7 ] [ 7 ] = P [ 7 ] [ 7 ] + P [ 4 ] [ 7 ] * dt + dt * ( P [ 7 ] [ 4 ] + P [ 4 ] [ 4 ] * dt ) ;
nextP [ 0 ] [ 8 ] = P [ 0 ] [ 8 ] * SPP [ 5 ] - P [ 1 ] [ 8 ] * SPP [ 4 ] + P [ 2 ] [ 8 ] * SPP [ 7 ] + P [ 9 ] [ 8 ] * SPP [ 22 ] + P [ 12 ] [ 8 ] * SPP [ 18 ] + dt *
( P [ 0 ] [ 5 ] * SPP [ 5 ] - P [ 1 ] [ 5 ] * SPP [ 4 ] + P [ 2 ] [ 5 ] * SPP [ 7 ] + P [ 9 ] [ 5 ] * SPP [ 22 ] + P [ 12 ] [ 5 ] * SPP [ 18 ] ) ;
nextP [ 1 ] [ 8 ] = P [ 1 ] [ 8 ] * SPP [ 6 ] - P [ 0 ] [ 8 ] * SPP [ 2 ] - P [ 2 ] [ 8 ] * SPP [ 8 ] + P [ 10 ] [ 8 ] * SPP [ 22 ] + P [ 13 ] [ 8 ] * SPP [ 17 ] + dt *
( P [ 1 ] [ 5 ] * SPP [ 6 ] - P [ 0 ] [ 5 ] * SPP [ 2 ] - P [ 2 ] [ 5 ] * SPP [ 8 ] + P [ 10 ] [ 5 ] * SPP [ 22 ] + P [ 13 ] [ 5 ] * SPP [ 17 ] ) ;
nextP [ 2 ] [ 8 ] = P [ 0 ] [ 8 ] * SPP [ 14 ] - P [ 1 ] [ 8 ] * SPP [ 3 ] + P [ 2 ] [ 8 ] * SPP [ 13 ] + P [ 11 ] [ 8 ] * SPP [ 22 ] + P [ 14 ] [ 8 ] * SPP [ 16 ] +
dt * ( P [ 0 ] [ 5 ] * SPP [ 14 ] - P [ 1 ] [ 5 ] * SPP [ 3 ] + P [ 2 ] [ 5 ] * SPP [ 13 ] + P [ 11 ] [ 5 ] * SPP [ 22 ] + P [ 14 ] [ 5 ] * SPP [ 16 ] ) ;
nextP [ 3 ] [ 8 ] = P [ 3 ] [ 8 ] + P [ 0 ] [ 8 ] * SPP [ 1 ] + P [ 1 ] [ 8 ] * SPP [ 19 ] + P [ 2 ] [ 8 ] * SPP [ 15 ] - P [ 15 ] [ 8 ] * SPP [ 21 ] + dt *
( P [ 3 ] [ 5 ] + P [ 0 ] [ 5 ] * SPP [ 1 ] + P [ 1 ] [ 5 ] * SPP [ 19 ] + P [ 2 ] [ 5 ] * SPP [ 15 ] - P [ 15 ] [ 5 ] * SPP [ 21 ] ) ;
nextP [ 4 ] [ 8 ] = P [ 4 ] [ 8 ] + P [ 15 ] [ 8 ] * SF [ 22 ] + P [ 0 ] [ 8 ] * SPP [ 20 ] + P [ 1 ] [ 8 ] * SPP [ 12 ] + P [ 2 ] [ 8 ] * SPP [ 11 ] + dt *
( P [ 4 ] [ 5 ] + P [ 15 ] [ 5 ] * SF [ 22 ] + P [ 0 ] [ 5 ] * SPP [ 20 ] + P [ 1 ] [ 5 ] * SPP [ 12 ] + P [ 2 ] [ 5 ] * SPP [ 11 ] ) ;
nextP [ 5 ] [ 8 ] = P [ 5 ] [ 8 ] + P [ 15 ] [ 8 ] * SF [ 20 ] - P [ 0 ] [ 8 ] * SPP [ 9 ] + P [ 1 ] [ 8 ] * SPP [ 10 ] + P [ 2 ] [ 8 ] * SPP [ 0 ] + dt *
( P [ 5 ] [ 5 ] + P [ 15 ] [ 5 ] * SF [ 20 ] - P [ 0 ] [ 5 ] * SPP [ 9 ] + P [ 1 ] [ 5 ] * SPP [ 10 ] + P [ 2 ] [ 5 ] * SPP [ 0 ] ) ;
nextP [ 6 ] [ 8 ] = P [ 6 ] [ 8 ] + P [ 3 ] [ 8 ] * dt + dt * ( P [ 6 ] [ 5 ] + P [ 3 ] [ 5 ] * dt ) ;
nextP [ 7 ] [ 8 ] = P [ 7 ] [ 8 ] + P [ 4 ] [ 8 ] * dt + dt * ( P [ 7 ] [ 5 ] + P [ 4 ] [ 5 ] * dt ) ;
nextP [ 8 ] [ 8 ] = P [ 8 ] [ 8 ] + P [ 5 ] [ 8 ] * dt + dt * ( P [ 8 ] [ 5 ] + P [ 5 ] [ 5 ] * dt ) ;
nextP [ 0 ] [ 9 ] = P [ 0 ] [ 9 ] * SPP [ 5 ] - P [ 1 ] [ 9 ] * SPP [ 4 ] + P [ 2 ] [ 9 ] * SPP [ 7 ] + P [ 9 ] [ 9 ] * SPP [ 22 ] + P [ 12 ] [ 9 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 9 ] = P [ 1 ] [ 9 ] * SPP [ 6 ] - P [ 0 ] [ 9 ] * SPP [ 2 ] - P [ 2 ] [ 9 ] * SPP [ 8 ] + P [ 10 ] [ 9 ] * SPP [ 22 ] + P [ 13 ] [ 9 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 9 ] = P [ 0 ] [ 9 ] * SPP [ 14 ] - P [ 1 ] [ 9 ] * SPP [ 3 ] + P [ 2 ] [ 9 ] * SPP [ 13 ] + P [ 11 ] [ 9 ] * SPP [ 22 ] + P [ 14 ] [ 9 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 9 ] = P [ 3 ] [ 9 ] + P [ 0 ] [ 9 ] * SPP [ 1 ] + P [ 1 ] [ 9 ] * SPP [ 19 ] + P [ 2 ] [ 9 ] * SPP [ 15 ] - P [ 15 ] [ 9 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 9 ] = P [ 4 ] [ 9 ] + P [ 15 ] [ 9 ] * SF [ 22 ] + P [ 0 ] [ 9 ] * SPP [ 20 ] + P [ 1 ] [ 9 ] * SPP [ 12 ] + P [ 2 ] [ 9 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 9 ] = P [ 5 ] [ 9 ] + P [ 15 ] [ 9 ] * SF [ 20 ] - P [ 0 ] [ 9 ] * SPP [ 9 ] + P [ 1 ] [ 9 ] * SPP [ 10 ] + P [ 2 ] [ 9 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 9 ] = P [ 6 ] [ 9 ] + P [ 3 ] [ 9 ] * dt ;
nextP [ 7 ] [ 9 ] = P [ 7 ] [ 9 ] + P [ 4 ] [ 9 ] * dt ;
nextP [ 8 ] [ 9 ] = P [ 8 ] [ 9 ] + P [ 5 ] [ 9 ] * dt ;
nextP [ 9 ] [ 9 ] = P [ 9 ] [ 9 ] ;
nextP [ 0 ] [ 10 ] = P [ 0 ] [ 10 ] * SPP [ 5 ] - P [ 1 ] [ 10 ] * SPP [ 4 ] + P [ 2 ] [ 10 ] * SPP [ 7 ] + P [ 9 ] [ 10 ] * SPP [ 22 ] + P [ 12 ] [ 10 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 10 ] = P [ 1 ] [ 10 ] * SPP [ 6 ] - P [ 0 ] [ 10 ] * SPP [ 2 ] - P [ 2 ] [ 10 ] * SPP [ 8 ] + P [ 10 ] [ 10 ] * SPP [ 22 ] + P [ 13 ] [ 10 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 10 ] = P [ 0 ] [ 10 ] * SPP [ 14 ] - P [ 1 ] [ 10 ] * SPP [ 3 ] + P [ 2 ] [ 10 ] * SPP [ 13 ] + P [ 11 ] [ 10 ] * SPP [ 22 ] + P [ 14 ] [ 10 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 10 ] = P [ 3 ] [ 10 ] + P [ 0 ] [ 10 ] * SPP [ 1 ] + P [ 1 ] [ 10 ] * SPP [ 19 ] + P [ 2 ] [ 10 ] * SPP [ 15 ] - P [ 15 ] [ 10 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 10 ] = P [ 4 ] [ 10 ] + P [ 15 ] [ 10 ] * SF [ 22 ] + P [ 0 ] [ 10 ] * SPP [ 20 ] + P [ 1 ] [ 10 ] * SPP [ 12 ] + P [ 2 ] [ 10 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 10 ] = P [ 5 ] [ 10 ] + P [ 15 ] [ 10 ] * SF [ 20 ] - P [ 0 ] [ 10 ] * SPP [ 9 ] + P [ 1 ] [ 10 ] * SPP [ 10 ] + P [ 2 ] [ 10 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 10 ] = P [ 6 ] [ 10 ] + P [ 3 ] [ 10 ] * dt ;
nextP [ 7 ] [ 10 ] = P [ 7 ] [ 10 ] + P [ 4 ] [ 10 ] * dt ;
nextP [ 8 ] [ 10 ] = P [ 8 ] [ 10 ] + P [ 5 ] [ 10 ] * dt ;
nextP [ 9 ] [ 10 ] = P [ 9 ] [ 10 ] ;
nextP [ 10 ] [ 10 ] = P [ 10 ] [ 10 ] ;
nextP [ 0 ] [ 11 ] = P [ 0 ] [ 11 ] * SPP [ 5 ] - P [ 1 ] [ 11 ] * SPP [ 4 ] + P [ 2 ] [ 11 ] * SPP [ 7 ] + P [ 9 ] [ 11 ] * SPP [ 22 ] + P [ 12 ] [ 11 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 11 ] = P [ 1 ] [ 11 ] * SPP [ 6 ] - P [ 0 ] [ 11 ] * SPP [ 2 ] - P [ 2 ] [ 11 ] * SPP [ 8 ] + P [ 10 ] [ 11 ] * SPP [ 22 ] + P [ 13 ] [ 11 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 11 ] = P [ 0 ] [ 11 ] * SPP [ 14 ] - P [ 1 ] [ 11 ] * SPP [ 3 ] + P [ 2 ] [ 11 ] * SPP [ 13 ] + P [ 11 ] [ 11 ] * SPP [ 22 ] + P [ 14 ] [ 11 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 11 ] = P [ 3 ] [ 11 ] + P [ 0 ] [ 11 ] * SPP [ 1 ] + P [ 1 ] [ 11 ] * SPP [ 19 ] + P [ 2 ] [ 11 ] * SPP [ 15 ] - P [ 15 ] [ 11 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 11 ] = P [ 4 ] [ 11 ] + P [ 15 ] [ 11 ] * SF [ 22 ] + P [ 0 ] [ 11 ] * SPP [ 20 ] + P [ 1 ] [ 11 ] * SPP [ 12 ] + P [ 2 ] [ 11 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 11 ] = P [ 5 ] [ 11 ] + P [ 15 ] [ 11 ] * SF [ 20 ] - P [ 0 ] [ 11 ] * SPP [ 9 ] + P [ 1 ] [ 11 ] * SPP [ 10 ] + P [ 2 ] [ 11 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 11 ] = P [ 6 ] [ 11 ] + P [ 3 ] [ 11 ] * dt ;
nextP [ 7 ] [ 11 ] = P [ 7 ] [ 11 ] + P [ 4 ] [ 11 ] * dt ;
nextP [ 8 ] [ 11 ] = P [ 8 ] [ 11 ] + P [ 5 ] [ 11 ] * dt ;
nextP [ 9 ] [ 11 ] = P [ 9 ] [ 11 ] ;
nextP [ 10 ] [ 11 ] = P [ 10 ] [ 11 ] ;
nextP [ 11 ] [ 11 ] = P [ 11 ] [ 11 ] ;
nextP [ 0 ] [ 12 ] = P [ 0 ] [ 12 ] * SPP [ 5 ] - P [ 1 ] [ 12 ] * SPP [ 4 ] + P [ 2 ] [ 12 ] * SPP [ 7 ] + P [ 9 ] [ 12 ] * SPP [ 22 ] + P [ 12 ] [ 12 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 12 ] = P [ 1 ] [ 12 ] * SPP [ 6 ] - P [ 0 ] [ 12 ] * SPP [ 2 ] - P [ 2 ] [ 12 ] * SPP [ 8 ] + P [ 10 ] [ 12 ] * SPP [ 22 ] + P [ 13 ] [ 12 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 12 ] = P [ 0 ] [ 12 ] * SPP [ 14 ] - P [ 1 ] [ 12 ] * SPP [ 3 ] + P [ 2 ] [ 12 ] * SPP [ 13 ] + P [ 11 ] [ 12 ] * SPP [ 22 ] + P [ 14 ] [ 12 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 12 ] = P [ 3 ] [ 12 ] + P [ 0 ] [ 12 ] * SPP [ 1 ] + P [ 1 ] [ 12 ] * SPP [ 19 ] + P [ 2 ] [ 12 ] * SPP [ 15 ] - P [ 15 ] [ 12 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 12 ] = P [ 4 ] [ 12 ] + P [ 15 ] [ 12 ] * SF [ 22 ] + P [ 0 ] [ 12 ] * SPP [ 20 ] + P [ 1 ] [ 12 ] * SPP [ 12 ] + P [ 2 ] [ 12 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 12 ] = P [ 5 ] [ 12 ] + P [ 15 ] [ 12 ] * SF [ 20 ] - P [ 0 ] [ 12 ] * SPP [ 9 ] + P [ 1 ] [ 12 ] * SPP [ 10 ] + P [ 2 ] [ 12 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 12 ] = P [ 6 ] [ 12 ] + P [ 3 ] [ 12 ] * dt ;
nextP [ 7 ] [ 12 ] = P [ 7 ] [ 12 ] + P [ 4 ] [ 12 ] * dt ;
nextP [ 8 ] [ 12 ] = P [ 8 ] [ 12 ] + P [ 5 ] [ 12 ] * dt ;
nextP [ 9 ] [ 12 ] = P [ 9 ] [ 12 ] ;
nextP [ 10 ] [ 12 ] = P [ 10 ] [ 12 ] ;
nextP [ 11 ] [ 12 ] = P [ 11 ] [ 12 ] ;
nextP [ 12 ] [ 12 ] = P [ 12 ] [ 12 ] ;
nextP [ 0 ] [ 13 ] = P [ 0 ] [ 13 ] * SPP [ 5 ] - P [ 1 ] [ 13 ] * SPP [ 4 ] + P [ 2 ] [ 13 ] * SPP [ 7 ] + P [ 9 ] [ 13 ] * SPP [ 22 ] + P [ 12 ] [ 13 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 13 ] = P [ 1 ] [ 13 ] * SPP [ 6 ] - P [ 0 ] [ 13 ] * SPP [ 2 ] - P [ 2 ] [ 13 ] * SPP [ 8 ] + P [ 10 ] [ 13 ] * SPP [ 22 ] + P [ 13 ] [ 13 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 13 ] = P [ 0 ] [ 13 ] * SPP [ 14 ] - P [ 1 ] [ 13 ] * SPP [ 3 ] + P [ 2 ] [ 13 ] * SPP [ 13 ] + P [ 11 ] [ 13 ] * SPP [ 22 ] + P [ 14 ] [ 13 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 13 ] = P [ 3 ] [ 13 ] + P [ 0 ] [ 13 ] * SPP [ 1 ] + P [ 1 ] [ 13 ] * SPP [ 19 ] + P [ 2 ] [ 13 ] * SPP [ 15 ] - P [ 15 ] [ 13 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 13 ] = P [ 4 ] [ 13 ] + P [ 15 ] [ 13 ] * SF [ 22 ] + P [ 0 ] [ 13 ] * SPP [ 20 ] + P [ 1 ] [ 13 ] * SPP [ 12 ] + P [ 2 ] [ 13 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 13 ] = P [ 5 ] [ 13 ] + P [ 15 ] [ 13 ] * SF [ 20 ] - P [ 0 ] [ 13 ] * SPP [ 9 ] + P [ 1 ] [ 13 ] * SPP [ 10 ] + P [ 2 ] [ 13 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 13 ] = P [ 6 ] [ 13 ] + P [ 3 ] [ 13 ] * dt ;
nextP [ 7 ] [ 13 ] = P [ 7 ] [ 13 ] + P [ 4 ] [ 13 ] * dt ;
nextP [ 8 ] [ 13 ] = P [ 8 ] [ 13 ] + P [ 5 ] [ 13 ] * dt ;
nextP [ 9 ] [ 13 ] = P [ 9 ] [ 13 ] ;
nextP [ 10 ] [ 13 ] = P [ 10 ] [ 13 ] ;
nextP [ 11 ] [ 13 ] = P [ 11 ] [ 13 ] ;
nextP [ 12 ] [ 13 ] = P [ 12 ] [ 13 ] ;
nextP [ 13 ] [ 13 ] = P [ 13 ] [ 13 ] ;
nextP [ 0 ] [ 14 ] = P [ 0 ] [ 14 ] * SPP [ 5 ] - P [ 1 ] [ 14 ] * SPP [ 4 ] + P [ 2 ] [ 14 ] * SPP [ 7 ] + P [ 9 ] [ 14 ] * SPP [ 22 ] + P [ 12 ] [ 14 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 14 ] = P [ 1 ] [ 14 ] * SPP [ 6 ] - P [ 0 ] [ 14 ] * SPP [ 2 ] - P [ 2 ] [ 14 ] * SPP [ 8 ] + P [ 10 ] [ 14 ] * SPP [ 22 ] + P [ 13 ] [ 14 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 14 ] = P [ 0 ] [ 14 ] * SPP [ 14 ] - P [ 1 ] [ 14 ] * SPP [ 3 ] + P [ 2 ] [ 14 ] * SPP [ 13 ] + P [ 11 ] [ 14 ] * SPP [ 22 ] + P [ 14 ] [ 14 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 14 ] = P [ 3 ] [ 14 ] + P [ 0 ] [ 14 ] * SPP [ 1 ] + P [ 1 ] [ 14 ] * SPP [ 19 ] + P [ 2 ] [ 14 ] * SPP [ 15 ] - P [ 15 ] [ 14 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 14 ] = P [ 4 ] [ 14 ] + P [ 15 ] [ 14 ] * SF [ 22 ] + P [ 0 ] [ 14 ] * SPP [ 20 ] + P [ 1 ] [ 14 ] * SPP [ 12 ] + P [ 2 ] [ 14 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 14 ] = P [ 5 ] [ 14 ] + P [ 15 ] [ 14 ] * SF [ 20 ] - P [ 0 ] [ 14 ] * SPP [ 9 ] + P [ 1 ] [ 14 ] * SPP [ 10 ] + P [ 2 ] [ 14 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 14 ] = P [ 6 ] [ 14 ] + P [ 3 ] [ 14 ] * dt ;
nextP [ 7 ] [ 14 ] = P [ 7 ] [ 14 ] + P [ 4 ] [ 14 ] * dt ;
nextP [ 8 ] [ 14 ] = P [ 8 ] [ 14 ] + P [ 5 ] [ 14 ] * dt ;
nextP [ 9 ] [ 14 ] = P [ 9 ] [ 14 ] ;
nextP [ 10 ] [ 14 ] = P [ 10 ] [ 14 ] ;
nextP [ 11 ] [ 14 ] = P [ 11 ] [ 14 ] ;
nextP [ 12 ] [ 14 ] = P [ 12 ] [ 14 ] ;
nextP [ 13 ] [ 14 ] = P [ 13 ] [ 14 ] ;
nextP [ 14 ] [ 14 ] = P [ 14 ] [ 14 ] ;
nextP [ 0 ] [ 15 ] = P [ 0 ] [ 15 ] * SPP [ 5 ] - P [ 1 ] [ 15 ] * SPP [ 4 ] + P [ 2 ] [ 15 ] * SPP [ 7 ] + P [ 9 ] [ 15 ] * SPP [ 22 ] + P [ 12 ] [ 15 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 15 ] = P [ 1 ] [ 15 ] * SPP [ 6 ] - P [ 0 ] [ 15 ] * SPP [ 2 ] - P [ 2 ] [ 15 ] * SPP [ 8 ] + P [ 10 ] [ 15 ] * SPP [ 22 ] + P [ 13 ] [ 15 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 15 ] = P [ 0 ] [ 15 ] * SPP [ 14 ] - P [ 1 ] [ 15 ] * SPP [ 3 ] + P [ 2 ] [ 15 ] * SPP [ 13 ] + P [ 11 ] [ 15 ] * SPP [ 22 ] + P [ 14 ] [ 15 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 15 ] = P [ 3 ] [ 15 ] + P [ 0 ] [ 15 ] * SPP [ 1 ] + P [ 1 ] [ 15 ] * SPP [ 19 ] + P [ 2 ] [ 15 ] * SPP [ 15 ] - P [ 15 ] [ 15 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 15 ] = P [ 4 ] [ 15 ] + P [ 15 ] [ 15 ] * SF [ 22 ] + P [ 0 ] [ 15 ] * SPP [ 20 ] + P [ 1 ] [ 15 ] * SPP [ 12 ] + P [ 2 ] [ 15 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 15 ] = P [ 5 ] [ 15 ] + P [ 15 ] [ 15 ] * SF [ 20 ] - P [ 0 ] [ 15 ] * SPP [ 9 ] + P [ 1 ] [ 15 ] * SPP [ 10 ] + P [ 2 ] [ 15 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 15 ] = P [ 6 ] [ 15 ] + P [ 3 ] [ 15 ] * dt ;
nextP [ 7 ] [ 15 ] = P [ 7 ] [ 15 ] + P [ 4 ] [ 15 ] * dt ;
nextP [ 8 ] [ 15 ] = P [ 8 ] [ 15 ] + P [ 5 ] [ 15 ] * dt ;
nextP [ 9 ] [ 15 ] = P [ 9 ] [ 15 ] ;
nextP [ 10 ] [ 15 ] = P [ 10 ] [ 15 ] ;
nextP [ 11 ] [ 15 ] = P [ 11 ] [ 15 ] ;
nextP [ 12 ] [ 15 ] = P [ 12 ] [ 15 ] ;
nextP [ 13 ] [ 15 ] = P [ 13 ] [ 15 ] ;
nextP [ 14 ] [ 15 ] = P [ 14 ] [ 15 ] ;
nextP [ 15 ] [ 15 ] = P [ 15 ] [ 15 ] ;
nextP [ 0 ] [ 16 ] = P [ 0 ] [ 16 ] * SPP [ 5 ] - P [ 1 ] [ 16 ] * SPP [ 4 ] + P [ 2 ] [ 16 ] * SPP [ 7 ] + P [ 9 ] [ 16 ] * SPP [ 22 ] + P [ 12 ] [ 16 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 16 ] = P [ 1 ] [ 16 ] * SPP [ 6 ] - P [ 0 ] [ 16 ] * SPP [ 2 ] - P [ 2 ] [ 16 ] * SPP [ 8 ] + P [ 10 ] [ 16 ] * SPP [ 22 ] + P [ 13 ] [ 16 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 16 ] = P [ 0 ] [ 16 ] * SPP [ 14 ] - P [ 1 ] [ 16 ] * SPP [ 3 ] + P [ 2 ] [ 16 ] * SPP [ 13 ] + P [ 11 ] [ 16 ] * SPP [ 22 ] + P [ 14 ] [ 16 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 16 ] = P [ 3 ] [ 16 ] + P [ 0 ] [ 16 ] * SPP [ 1 ] + P [ 1 ] [ 16 ] * SPP [ 19 ] + P [ 2 ] [ 16 ] * SPP [ 15 ] - P [ 15 ] [ 16 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 16 ] = P [ 4 ] [ 16 ] + P [ 15 ] [ 16 ] * SF [ 22 ] + P [ 0 ] [ 16 ] * SPP [ 20 ] + P [ 1 ] [ 16 ] * SPP [ 12 ] + P [ 2 ] [ 16 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 16 ] = P [ 5 ] [ 16 ] + P [ 15 ] [ 16 ] * SF [ 20 ] - P [ 0 ] [ 16 ] * SPP [ 9 ] + P [ 1 ] [ 16 ] * SPP [ 10 ] + P [ 2 ] [ 16 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 16 ] = P [ 6 ] [ 16 ] + P [ 3 ] [ 16 ] * dt ;
nextP [ 7 ] [ 16 ] = P [ 7 ] [ 16 ] + P [ 4 ] [ 16 ] * dt ;
nextP [ 8 ] [ 16 ] = P [ 8 ] [ 16 ] + P [ 5 ] [ 16 ] * dt ;
nextP [ 9 ] [ 16 ] = P [ 9 ] [ 16 ] ;
nextP [ 10 ] [ 16 ] = P [ 10 ] [ 16 ] ;
nextP [ 11 ] [ 16 ] = P [ 11 ] [ 16 ] ;
nextP [ 12 ] [ 16 ] = P [ 12 ] [ 16 ] ;
nextP [ 13 ] [ 16 ] = P [ 13 ] [ 16 ] ;
nextP [ 14 ] [ 16 ] = P [ 14 ] [ 16 ] ;
nextP [ 15 ] [ 16 ] = P [ 15 ] [ 16 ] ;
nextP [ 16 ] [ 16 ] = P [ 16 ] [ 16 ] ;
nextP [ 0 ] [ 17 ] = P [ 0 ] [ 17 ] * SPP [ 5 ] - P [ 1 ] [ 17 ] * SPP [ 4 ] + P [ 2 ] [ 17 ] * SPP [ 7 ] + P [ 9 ] [ 17 ] * SPP [ 22 ] + P [ 12 ] [ 17 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 17 ] = P [ 1 ] [ 17 ] * SPP [ 6 ] - P [ 0 ] [ 17 ] * SPP [ 2 ] - P [ 2 ] [ 17 ] * SPP [ 8 ] + P [ 10 ] [ 17 ] * SPP [ 22 ] + P [ 13 ] [ 17 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 17 ] = P [ 0 ] [ 17 ] * SPP [ 14 ] - P [ 1 ] [ 17 ] * SPP [ 3 ] + P [ 2 ] [ 17 ] * SPP [ 13 ] + P [ 11 ] [ 17 ] * SPP [ 22 ] + P [ 14 ] [ 17 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 17 ] = P [ 3 ] [ 17 ] + P [ 0 ] [ 17 ] * SPP [ 1 ] + P [ 1 ] [ 17 ] * SPP [ 19 ] + P [ 2 ] [ 17 ] * SPP [ 15 ] - P [ 15 ] [ 17 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 17 ] = P [ 4 ] [ 17 ] + P [ 15 ] [ 17 ] * SF [ 22 ] + P [ 0 ] [ 17 ] * SPP [ 20 ] + P [ 1 ] [ 17 ] * SPP [ 12 ] + P [ 2 ] [ 17 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 17 ] = P [ 5 ] [ 17 ] + P [ 15 ] [ 17 ] * SF [ 20 ] - P [ 0 ] [ 17 ] * SPP [ 9 ] + P [ 1 ] [ 17 ] * SPP [ 10 ] + P [ 2 ] [ 17 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 17 ] = P [ 6 ] [ 17 ] + P [ 3 ] [ 17 ] * dt ;
nextP [ 7 ] [ 17 ] = P [ 7 ] [ 17 ] + P [ 4 ] [ 17 ] * dt ;
nextP [ 8 ] [ 17 ] = P [ 8 ] [ 17 ] + P [ 5 ] [ 17 ] * dt ;
nextP [ 9 ] [ 17 ] = P [ 9 ] [ 17 ] ;
nextP [ 10 ] [ 17 ] = P [ 10 ] [ 17 ] ;
nextP [ 11 ] [ 17 ] = P [ 11 ] [ 17 ] ;
nextP [ 12 ] [ 17 ] = P [ 12 ] [ 17 ] ;
nextP [ 13 ] [ 17 ] = P [ 13 ] [ 17 ] ;
nextP [ 14 ] [ 17 ] = P [ 14 ] [ 17 ] ;
nextP [ 15 ] [ 17 ] = P [ 15 ] [ 17 ] ;
nextP [ 16 ] [ 17 ] = P [ 16 ] [ 17 ] ;
nextP [ 17 ] [ 17 ] = P [ 17 ] [ 17 ] ;
nextP [ 0 ] [ 18 ] = P [ 0 ] [ 18 ] * SPP [ 5 ] - P [ 1 ] [ 18 ] * SPP [ 4 ] + P [ 2 ] [ 18 ] * SPP [ 7 ] + P [ 9 ] [ 18 ] * SPP [ 22 ] + P [ 12 ] [ 18 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 18 ] = P [ 1 ] [ 18 ] * SPP [ 6 ] - P [ 0 ] [ 18 ] * SPP [ 2 ] - P [ 2 ] [ 18 ] * SPP [ 8 ] + P [ 10 ] [ 18 ] * SPP [ 22 ] + P [ 13 ] [ 18 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 18 ] = P [ 0 ] [ 18 ] * SPP [ 14 ] - P [ 1 ] [ 18 ] * SPP [ 3 ] + P [ 2 ] [ 18 ] * SPP [ 13 ] + P [ 11 ] [ 18 ] * SPP [ 22 ] + P [ 14 ] [ 18 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 18 ] = P [ 3 ] [ 18 ] + P [ 0 ] [ 18 ] * SPP [ 1 ] + P [ 1 ] [ 18 ] * SPP [ 19 ] + P [ 2 ] [ 18 ] * SPP [ 15 ] - P [ 15 ] [ 18 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 18 ] = P [ 4 ] [ 18 ] + P [ 15 ] [ 18 ] * SF [ 22 ] + P [ 0 ] [ 18 ] * SPP [ 20 ] + P [ 1 ] [ 18 ] * SPP [ 12 ] + P [ 2 ] [ 18 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 18 ] = P [ 5 ] [ 18 ] + P [ 15 ] [ 18 ] * SF [ 20 ] - P [ 0 ] [ 18 ] * SPP [ 9 ] + P [ 1 ] [ 18 ] * SPP [ 10 ] + P [ 2 ] [ 18 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 18 ] = P [ 6 ] [ 18 ] + P [ 3 ] [ 18 ] * dt ;
nextP [ 7 ] [ 18 ] = P [ 7 ] [ 18 ] + P [ 4 ] [ 18 ] * dt ;
nextP [ 8 ] [ 18 ] = P [ 8 ] [ 18 ] + P [ 5 ] [ 18 ] * dt ;
nextP [ 9 ] [ 18 ] = P [ 9 ] [ 18 ] ;
nextP [ 10 ] [ 18 ] = P [ 10 ] [ 18 ] ;
nextP [ 11 ] [ 18 ] = P [ 11 ] [ 18 ] ;
nextP [ 12 ] [ 18 ] = P [ 12 ] [ 18 ] ;
nextP [ 13 ] [ 18 ] = P [ 13 ] [ 18 ] ;
nextP [ 14 ] [ 18 ] = P [ 14 ] [ 18 ] ;
nextP [ 15 ] [ 18 ] = P [ 15 ] [ 18 ] ;
nextP [ 16 ] [ 18 ] = P [ 16 ] [ 18 ] ;
nextP [ 17 ] [ 18 ] = P [ 17 ] [ 18 ] ;
nextP [ 18 ] [ 18 ] = P [ 18 ] [ 18 ] ;
nextP [ 0 ] [ 19 ] = P [ 0 ] [ 19 ] * SPP [ 5 ] - P [ 1 ] [ 19 ] * SPP [ 4 ] + P [ 2 ] [ 19 ] * SPP [ 7 ] + P [ 9 ] [ 19 ] * SPP [ 22 ] + P [ 12 ] [ 19 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 19 ] = P [ 1 ] [ 19 ] * SPP [ 6 ] - P [ 0 ] [ 19 ] * SPP [ 2 ] - P [ 2 ] [ 19 ] * SPP [ 8 ] + P [ 10 ] [ 19 ] * SPP [ 22 ] + P [ 13 ] [ 19 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 19 ] = P [ 0 ] [ 19 ] * SPP [ 14 ] - P [ 1 ] [ 19 ] * SPP [ 3 ] + P [ 2 ] [ 19 ] * SPP [ 13 ] + P [ 11 ] [ 19 ] * SPP [ 22 ] + P [ 14 ] [ 19 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 19 ] = P [ 3 ] [ 19 ] + P [ 0 ] [ 19 ] * SPP [ 1 ] + P [ 1 ] [ 19 ] * SPP [ 19 ] + P [ 2 ] [ 19 ] * SPP [ 15 ] - P [ 15 ] [ 19 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 19 ] = P [ 4 ] [ 19 ] + P [ 15 ] [ 19 ] * SF [ 22 ] + P [ 0 ] [ 19 ] * SPP [ 20 ] + P [ 1 ] [ 19 ] * SPP [ 12 ] + P [ 2 ] [ 19 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 19 ] = P [ 5 ] [ 19 ] + P [ 15 ] [ 19 ] * SF [ 20 ] - P [ 0 ] [ 19 ] * SPP [ 9 ] + P [ 1 ] [ 19 ] * SPP [ 10 ] + P [ 2 ] [ 19 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 19 ] = P [ 6 ] [ 19 ] + P [ 3 ] [ 19 ] * dt ;
nextP [ 7 ] [ 19 ] = P [ 7 ] [ 19 ] + P [ 4 ] [ 19 ] * dt ;
nextP [ 8 ] [ 19 ] = P [ 8 ] [ 19 ] + P [ 5 ] [ 19 ] * dt ;
nextP [ 9 ] [ 19 ] = P [ 9 ] [ 19 ] ;
nextP [ 10 ] [ 19 ] = P [ 10 ] [ 19 ] ;
nextP [ 11 ] [ 19 ] = P [ 11 ] [ 19 ] ;
nextP [ 12 ] [ 19 ] = P [ 12 ] [ 19 ] ;
nextP [ 13 ] [ 19 ] = P [ 13 ] [ 19 ] ;
nextP [ 14 ] [ 19 ] = P [ 14 ] [ 19 ] ;
nextP [ 15 ] [ 19 ] = P [ 15 ] [ 19 ] ;
nextP [ 16 ] [ 19 ] = P [ 16 ] [ 19 ] ;
nextP [ 17 ] [ 19 ] = P [ 17 ] [ 19 ] ;
nextP [ 18 ] [ 19 ] = P [ 18 ] [ 19 ] ;
nextP [ 19 ] [ 19 ] = P [ 19 ] [ 19 ] ;
nextP [ 0 ] [ 20 ] = P [ 0 ] [ 20 ] * SPP [ 5 ] - P [ 1 ] [ 20 ] * SPP [ 4 ] + P [ 2 ] [ 20 ] * SPP [ 7 ] + P [ 9 ] [ 20 ] * SPP [ 22 ] + P [ 12 ] [ 20 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 20 ] = P [ 1 ] [ 20 ] * SPP [ 6 ] - P [ 0 ] [ 20 ] * SPP [ 2 ] - P [ 2 ] [ 20 ] * SPP [ 8 ] + P [ 10 ] [ 20 ] * SPP [ 22 ] + P [ 13 ] [ 20 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 20 ] = P [ 0 ] [ 20 ] * SPP [ 14 ] - P [ 1 ] [ 20 ] * SPP [ 3 ] + P [ 2 ] [ 20 ] * SPP [ 13 ] + P [ 11 ] [ 20 ] * SPP [ 22 ] + P [ 14 ] [ 20 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 20 ] = P [ 3 ] [ 20 ] + P [ 0 ] [ 20 ] * SPP [ 1 ] + P [ 1 ] [ 20 ] * SPP [ 19 ] + P [ 2 ] [ 20 ] * SPP [ 15 ] - P [ 15 ] [ 20 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 20 ] = P [ 4 ] [ 20 ] + P [ 15 ] [ 20 ] * SF [ 22 ] + P [ 0 ] [ 20 ] * SPP [ 20 ] + P [ 1 ] [ 20 ] * SPP [ 12 ] + P [ 2 ] [ 20 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 20 ] = P [ 5 ] [ 20 ] + P [ 15 ] [ 20 ] * SF [ 20 ] - P [ 0 ] [ 20 ] * SPP [ 9 ] + P [ 1 ] [ 20 ] * SPP [ 10 ] + P [ 2 ] [ 20 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 20 ] = P [ 6 ] [ 20 ] + P [ 3 ] [ 20 ] * dt ;
nextP [ 7 ] [ 20 ] = P [ 7 ] [ 20 ] + P [ 4 ] [ 20 ] * dt ;
nextP [ 8 ] [ 20 ] = P [ 8 ] [ 20 ] + P [ 5 ] [ 20 ] * dt ;
nextP [ 9 ] [ 20 ] = P [ 9 ] [ 20 ] ;
nextP [ 10 ] [ 20 ] = P [ 10 ] [ 20 ] ;
nextP [ 11 ] [ 20 ] = P [ 11 ] [ 20 ] ;
nextP [ 12 ] [ 20 ] = P [ 12 ] [ 20 ] ;
nextP [ 13 ] [ 20 ] = P [ 13 ] [ 20 ] ;
nextP [ 14 ] [ 20 ] = P [ 14 ] [ 20 ] ;
nextP [ 15 ] [ 20 ] = P [ 15 ] [ 20 ] ;
nextP [ 16 ] [ 20 ] = P [ 16 ] [ 20 ] ;
nextP [ 17 ] [ 20 ] = P [ 17 ] [ 20 ] ;
nextP [ 18 ] [ 20 ] = P [ 18 ] [ 20 ] ;
nextP [ 19 ] [ 20 ] = P [ 19 ] [ 20 ] ;
nextP [ 20 ] [ 20 ] = P [ 20 ] [ 20 ] ;
nextP [ 0 ] [ 21 ] = P [ 0 ] [ 21 ] * SPP [ 5 ] - P [ 1 ] [ 21 ] * SPP [ 4 ] + P [ 2 ] [ 21 ] * SPP [ 7 ] + P [ 9 ] [ 21 ] * SPP [ 22 ] + P [ 12 ] [ 21 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 21 ] = P [ 1 ] [ 21 ] * SPP [ 6 ] - P [ 0 ] [ 21 ] * SPP [ 2 ] - P [ 2 ] [ 21 ] * SPP [ 8 ] + P [ 10 ] [ 21 ] * SPP [ 22 ] + P [ 13 ] [ 21 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 21 ] = P [ 0 ] [ 21 ] * SPP [ 14 ] - P [ 1 ] [ 21 ] * SPP [ 3 ] + P [ 2 ] [ 21 ] * SPP [ 13 ] + P [ 11 ] [ 21 ] * SPP [ 22 ] + P [ 14 ] [ 21 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 21 ] = P [ 3 ] [ 21 ] + P [ 0 ] [ 21 ] * SPP [ 1 ] + P [ 1 ] [ 21 ] * SPP [ 19 ] + P [ 2 ] [ 21 ] * SPP [ 15 ] - P [ 15 ] [ 21 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 21 ] = P [ 4 ] [ 21 ] + P [ 15 ] [ 21 ] * SF [ 22 ] + P [ 0 ] [ 21 ] * SPP [ 20 ] + P [ 1 ] [ 21 ] * SPP [ 12 ] + P [ 2 ] [ 21 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 21 ] = P [ 5 ] [ 21 ] + P [ 15 ] [ 21 ] * SF [ 20 ] - P [ 0 ] [ 21 ] * SPP [ 9 ] + P [ 1 ] [ 21 ] * SPP [ 10 ] + P [ 2 ] [ 21 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 21 ] = P [ 6 ] [ 21 ] + P [ 3 ] [ 21 ] * dt ;
nextP [ 7 ] [ 21 ] = P [ 7 ] [ 21 ] + P [ 4 ] [ 21 ] * dt ;
nextP [ 8 ] [ 21 ] = P [ 8 ] [ 21 ] + P [ 5 ] [ 21 ] * dt ;
nextP [ 9 ] [ 21 ] = P [ 9 ] [ 21 ] ;
nextP [ 10 ] [ 21 ] = P [ 10 ] [ 21 ] ;
nextP [ 11 ] [ 21 ] = P [ 11 ] [ 21 ] ;
nextP [ 12 ] [ 21 ] = P [ 12 ] [ 21 ] ;
nextP [ 13 ] [ 21 ] = P [ 13 ] [ 21 ] ;
nextP [ 14 ] [ 21 ] = P [ 14 ] [ 21 ] ;
nextP [ 15 ] [ 21 ] = P [ 15 ] [ 21 ] ;
nextP [ 16 ] [ 21 ] = P [ 16 ] [ 21 ] ;
nextP [ 17 ] [ 21 ] = P [ 17 ] [ 21 ] ;
nextP [ 18 ] [ 21 ] = P [ 18 ] [ 21 ] ;
nextP [ 19 ] [ 21 ] = P [ 19 ] [ 21 ] ;
nextP [ 20 ] [ 21 ] = P [ 20 ] [ 21 ] ;
nextP [ 21 ] [ 21 ] = P [ 21 ] [ 21 ] ;
nextP [ 0 ] [ 22 ] = P [ 0 ] [ 22 ] * SPP [ 5 ] - P [ 1 ] [ 22 ] * SPP [ 4 ] + P [ 2 ] [ 22 ] * SPP [ 7 ] + P [ 9 ] [ 22 ] * SPP [ 22 ] + P [ 12 ] [ 22 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 22 ] = P [ 1 ] [ 22 ] * SPP [ 6 ] - P [ 0 ] [ 22 ] * SPP [ 2 ] - P [ 2 ] [ 22 ] * SPP [ 8 ] + P [ 10 ] [ 22 ] * SPP [ 22 ] + P [ 13 ] [ 22 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 22 ] = P [ 0 ] [ 22 ] * SPP [ 14 ] - P [ 1 ] [ 22 ] * SPP [ 3 ] + P [ 2 ] [ 22 ] * SPP [ 13 ] + P [ 11 ] [ 22 ] * SPP [ 22 ] + P [ 14 ] [ 22 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 22 ] = P [ 3 ] [ 22 ] + P [ 0 ] [ 22 ] * SPP [ 1 ] + P [ 1 ] [ 22 ] * SPP [ 19 ] + P [ 2 ] [ 22 ] * SPP [ 15 ] - P [ 15 ] [ 22 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 22 ] = P [ 4 ] [ 22 ] + P [ 15 ] [ 22 ] * SF [ 22 ] + P [ 0 ] [ 22 ] * SPP [ 20 ] + P [ 1 ] [ 22 ] * SPP [ 12 ] + P [ 2 ] [ 22 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 22 ] = P [ 5 ] [ 22 ] + P [ 15 ] [ 22 ] * SF [ 20 ] - P [ 0 ] [ 22 ] * SPP [ 9 ] + P [ 1 ] [ 22 ] * SPP [ 10 ] + P [ 2 ] [ 22 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 22 ] = P [ 6 ] [ 22 ] + P [ 3 ] [ 22 ] * dt ;
nextP [ 7 ] [ 22 ] = P [ 7 ] [ 22 ] + P [ 4 ] [ 22 ] * dt ;
nextP [ 8 ] [ 22 ] = P [ 8 ] [ 22 ] + P [ 5 ] [ 22 ] * dt ;
nextP [ 9 ] [ 22 ] = P [ 9 ] [ 22 ] ;
nextP [ 10 ] [ 22 ] = P [ 10 ] [ 22 ] ;
nextP [ 11 ] [ 22 ] = P [ 11 ] [ 22 ] ;
nextP [ 12 ] [ 22 ] = P [ 12 ] [ 22 ] ;
nextP [ 13 ] [ 22 ] = P [ 13 ] [ 22 ] ;
nextP [ 14 ] [ 22 ] = P [ 14 ] [ 22 ] ;
nextP [ 15 ] [ 22 ] = P [ 15 ] [ 22 ] ;
nextP [ 16 ] [ 22 ] = P [ 16 ] [ 22 ] ;
nextP [ 17 ] [ 22 ] = P [ 17 ] [ 22 ] ;
nextP [ 18 ] [ 22 ] = P [ 18 ] [ 22 ] ;
nextP [ 19 ] [ 22 ] = P [ 19 ] [ 22 ] ;
nextP [ 20 ] [ 22 ] = P [ 20 ] [ 22 ] ;
nextP [ 21 ] [ 22 ] = P [ 21 ] [ 22 ] ;
nextP [ 22 ] [ 22 ] = P [ 22 ] [ 22 ] ;
nextP [ 0 ] [ 23 ] = P [ 0 ] [ 23 ] * SPP [ 5 ] - P [ 1 ] [ 23 ] * SPP [ 4 ] + P [ 2 ] [ 23 ] * SPP [ 7 ] + P [ 9 ] [ 23 ] * SPP [ 22 ] + P [ 12 ] [ 23 ] * SPP [ 18 ] ;
nextP [ 1 ] [ 23 ] = P [ 1 ] [ 23 ] * SPP [ 6 ] - P [ 0 ] [ 23 ] * SPP [ 2 ] - P [ 2 ] [ 23 ] * SPP [ 8 ] + P [ 10 ] [ 23 ] * SPP [ 22 ] + P [ 13 ] [ 23 ] * SPP [ 17 ] ;
nextP [ 2 ] [ 23 ] = P [ 0 ] [ 23 ] * SPP [ 14 ] - P [ 1 ] [ 23 ] * SPP [ 3 ] + P [ 2 ] [ 23 ] * SPP [ 13 ] + P [ 11 ] [ 23 ] * SPP [ 22 ] + P [ 14 ] [ 23 ] * SPP [ 16 ] ;
nextP [ 3 ] [ 23 ] = P [ 3 ] [ 23 ] + P [ 0 ] [ 23 ] * SPP [ 1 ] + P [ 1 ] [ 23 ] * SPP [ 19 ] + P [ 2 ] [ 23 ] * SPP [ 15 ] - P [ 15 ] [ 23 ] * SPP [ 21 ] ;
nextP [ 4 ] [ 23 ] = P [ 4 ] [ 23 ] + P [ 15 ] [ 23 ] * SF [ 22 ] + P [ 0 ] [ 23 ] * SPP [ 20 ] + P [ 1 ] [ 23 ] * SPP [ 12 ] + P [ 2 ] [ 23 ] * SPP [ 11 ] ;
nextP [ 5 ] [ 23 ] = P [ 5 ] [ 23 ] + P [ 15 ] [ 23 ] * SF [ 20 ] - P [ 0 ] [ 23 ] * SPP [ 9 ] + P [ 1 ] [ 23 ] * SPP [ 10 ] + P [ 2 ] [ 23 ] * SPP [ 0 ] ;
nextP [ 6 ] [ 23 ] = P [ 6 ] [ 23 ] + P [ 3 ] [ 23 ] * dt ;
nextP [ 7 ] [ 23 ] = P [ 7 ] [ 23 ] + P [ 4 ] [ 23 ] * dt ;
nextP [ 8 ] [ 23 ] = P [ 8 ] [ 23 ] + P [ 5 ] [ 23 ] * dt ;
nextP [ 9 ] [ 23 ] = P [ 9 ] [ 23 ] ;
nextP [ 10 ] [ 23 ] = P [ 10 ] [ 23 ] ;
nextP [ 11 ] [ 23 ] = P [ 11 ] [ 23 ] ;
nextP [ 12 ] [ 23 ] = P [ 12 ] [ 23 ] ;
nextP [ 13 ] [ 23 ] = P [ 13 ] [ 23 ] ;
nextP [ 14 ] [ 23 ] = P [ 14 ] [ 23 ] ;
nextP [ 15 ] [ 23 ] = P [ 15 ] [ 23 ] ;
nextP [ 16 ] [ 23 ] = P [ 16 ] [ 23 ] ;
nextP [ 17 ] [ 23 ] = P [ 17 ] [ 23 ] ;
nextP [ 18 ] [ 23 ] = P [ 18 ] [ 23 ] ;
nextP [ 19 ] [ 23 ] = P [ 19 ] [ 23 ] ;
nextP [ 20 ] [ 23 ] = P [ 20 ] [ 23 ] ;
nextP [ 21 ] [ 23 ] = P [ 21 ] [ 23 ] ;
nextP [ 22 ] [ 23 ] = P [ 22 ] [ 23 ] ;
nextP [ 23 ] [ 23 ] = P [ 23 ] [ 23 ] ;
2015-12-07 04:26:30 -04:00
// add process noise
for ( unsigned i = 0 ; i < _k_num_states ; i + + ) {
nextP [ i ] [ i ] + = process_noise [ i ] ;
}
// stop position covariance growth if our total position variance reaches 100m
// this can happen if we loose gps for some time
if ( ( P [ 6 ] [ 6 ] + P [ 7 ] [ 7 ] ) > 1e4 f ) {
for ( uint8_t i = 6 ; i < 8 ; i + + ) {
for ( uint8_t j = 0 ; j < _k_num_states ; j + + ) {
nextP [ i ] [ j ] = P [ i ] [ j ] ;
nextP [ j ] [ i ] = P [ j ] [ i ] ;
}
}
}
// covariance matrix is symmetrical, so copy upper half to lower half
for ( unsigned row = 1 ; row < _k_num_states ; row + + ) {
for ( unsigned column = 0 ; column < row ; column + + ) {
nextP [ row ] [ column ] = nextP [ column ] [ row ] ;
}
}
for ( unsigned i = 0 ; i < _k_num_states ; i + + ) {
P [ i ] [ i ] = nextP [ i ] [ i ] ;
}
for ( unsigned row = 1 ; row < _k_num_states ; row + + ) {
for ( unsigned column = 0 ; column < row ; column + + ) {
P [ row ] [ column ] = 0.5f * ( nextP [ row ] [ column ] + nextP [ column ] [ row ] ) ;
P [ column ] [ row ] = P [ row ] [ column ] ;
}
}
limitCov ( ) ;
}
2015-12-06 07:18:05 -04:00
2015-12-07 04:26:30 -04:00
void Ekf : : limitCov ( )
{
// Covariance diagonal limits. Use same values for states which
// belong to the same group (e.g. vel_x, vel_y, vel_z)
float P_lim [ 9 ] = { } ;
P_lim [ 0 ] = 1.0f ; // angle error max var
P_lim [ 1 ] = 1000.0f ; // velocity max var
P_lim [ 2 ] = 1000000.0f ; // positiion max var
P_lim [ 3 ] = 0.001f ; // gyro bias max var
P_lim [ 4 ] = 0.01f ; // gyro scale max var
P_lim [ 5 ] = 0.1f ; // delta velocity z bias max var
2016-02-15 20:05:46 -04:00
P_lim [ 6 ] = 0.1f ; // earth mag field max var
P_lim [ 7 ] = 0.1f ; // body mag field max var
2015-12-07 04:26:30 -04:00
P_lim [ 8 ] = 1000.0f ; // wind max var
for ( int i = 0 ; i < 3 ; i + + ) {
math : : constrain ( P [ i ] [ i ] , 0.0f , P_lim [ 0 ] ) ;
}
2015-12-06 07:18:05 -04:00
2015-12-07 04:26:30 -04:00
for ( int i = 3 ; i < 6 ; i + + ) {
2015-12-06 07:18:05 -04:00
2015-12-07 04:26:30 -04:00
math : : constrain ( P [ i ] [ i ] , 0.0f , P_lim [ 1 ] ) ;
}
2015-12-06 07:18:05 -04:00
2015-12-07 04:26:30 -04:00
for ( int i = 6 ; i < 9 ; i + + ) {
2015-12-06 07:18:05 -04:00
2015-12-07 04:26:30 -04:00
math : : constrain ( P [ i ] [ i ] , 0.0f , P_lim [ 2 ] ) ;
}
2015-12-06 07:18:05 -04:00
2015-12-07 04:26:30 -04:00
for ( int i = 9 ; i < 12 ; i + + ) {
2015-12-06 07:18:05 -04:00
2015-12-07 04:26:30 -04:00
math : : constrain ( P [ i ] [ i ] , 0.0f , P_lim [ 3 ] ) ;
2015-12-06 07:18:05 -04:00
}
2015-12-07 04:26:30 -04:00
for ( int i = 12 ; i < 15 ; i + + ) {
math : : constrain ( P [ i ] [ i ] , 0.0f , P_lim [ 4 ] ) ;
}
math : : constrain ( P [ 15 ] [ 15 ] , 0.0f , P_lim [ 5 ] ) ;
for ( int i = 16 ; i < 19 ; i + + ) {
math : : constrain ( P [ i ] [ i ] , 0.0f , P_lim [ 6 ] ) ;
}
for ( int i = 19 ; i < 22 ; i + + ) {
math : : constrain ( P [ i ] [ i ] , 0.0f , P_lim [ 7 ] ) ;
}
for ( int i = 22 ; i < 24 ; i + + ) {
math : : constrain ( P [ i ] [ i ] , 0.0f , P_lim [ 8 ] ) ;
2015-12-06 07:18:05 -04:00
}
}
2015-12-07 04:26:30 -04:00