forked from Archive/PX4-Autopilot
EKF: Improve protection against badly conditioned dVel bias covariances
Reduces likelihood of Z delta velocity bias learning to wrong value.
This commit is contained in:
parent
225057aaf5
commit
93c456f2b8
|
@ -769,12 +769,12 @@ void Ekf::fixCovarianceErrors()
|
|||
|
||||
// To ensure stability of the covariance matrix operations, the ratio of a max and min variance must
|
||||
// not exceed 100 and the minimum variance must not fall below the target minimum
|
||||
// Also limit variance to a maximum equivalent to a 1g uncertainty
|
||||
const float minStateVarTarget = 1E-8f;
|
||||
// Also limit variance to a maximum equivalent to a 0.1g uncertainty
|
||||
const float minStateVarTarget = 5E-8f;
|
||||
float minAllowedStateVar = fmaxf(0.01f * maxStateVar, minStateVarTarget);
|
||||
|
||||
for (uint8_t stateIndex = 13; stateIndex <= 15; stateIndex++) {
|
||||
P[stateIndex][stateIndex] = math::constrain(P[stateIndex][stateIndex], minAllowedStateVar, sq(CONSTANTS_ONE_G * _dt_ekf_avg));
|
||||
P[stateIndex][stateIndex] = math::constrain(P[stateIndex][stateIndex], minAllowedStateVar, sq(0.1f * CONSTANTS_ONE_G * _dt_ekf_avg));
|
||||
}
|
||||
|
||||
// If any one axis has fallen below the safe minimum, all delta velocity covariance terms must be reset to zero
|
||||
|
|
Loading…
Reference in New Issue