2012-11-05 00:27:03 -04:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2012-10-11 21:27:19 -03:00
# include <AP_Progmem.h>
2012-11-05 00:27:03 -04:00
# include "AP_InertialSensor.h"
2012-11-07 02:20:22 -04:00
# include <AP_Common.h>
2012-10-11 21:27:19 -03:00
# include <AP_HAL.h>
2013-08-29 00:13:28 -03:00
# include <AP_Notify.h>
2015-03-11 21:58:36 -03:00
# include <AP_Vehicle.h>
2015-05-02 02:21:12 -03:00
# include <AP_Math.h>
2012-10-11 21:27:19 -03:00
2015-02-15 19:12:10 -04:00
/*
enable TIMING_DEBUG to track down scheduling issues with the main
loop . Output is on the debug console
*/
# define TIMING_DEBUG 0
# if TIMING_DEBUG
# include <stdio.h>
# define timing_printf(fmt, args...) do { printf("[timing] " fmt, ##args); } while(0)
# else
# define timing_printf(fmt, args...)
# endif
2012-10-11 21:27:19 -03:00
extern const AP_HAL : : HAL & hal ;
2015-03-11 21:58:36 -03:00
# if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
2015-03-11 23:11:17 -03:00
# define DEFAULT_GYRO_FILTER 20
# define DEFAULT_ACCEL_FILTER 20
2015-03-11 21:58:36 -03:00
# elif APM_BUILD_TYPE(APM_BUILD_APMrover2)
# define DEFAULT_GYRO_FILTER 10
# define DEFAULT_ACCEL_FILTER 10
# else
# define DEFAULT_GYRO_FILTER 20
# define DEFAULT_ACCEL_FILTER 20
# endif
2012-11-05 00:27:03 -04:00
# define SAMPLE_UNIT 1
// Class level parameters
const AP_Param : : GroupInfo AP_InertialSensor : : var_info [ ] PROGMEM = {
2012-11-29 16:15:12 -04:00
// @Param: PRODUCT_ID
// @DisplayName: IMU Product ID
2013-11-12 18:55:58 -04:00
// @Description: Which type of IMU is installed (read-only).
2013-11-26 09:18:28 -04:00
// @User: Advanced
2014-01-17 17:44:42 -04:00
// @Values: 0:Unknown,1:APM1-1280,2:APM1-2560,88:APM2,3:SITL,4:PX4v1,5:PX4v2,256:Flymaple,257:Linux
2012-11-05 00:27:03 -04:00
AP_GROUPINFO ( " PRODUCT_ID " , 0 , AP_InertialSensor , _product_id , 0 ) ,
2012-11-29 16:15:12 -04:00
2015-03-11 20:17:11 -03:00
/*
The following parameter indexes and reserved from previous use
as accel offsets and scaling from before the 16 g change in the
PX4 backend :
ACCSCAL : 1
ACCOFFS : 2
2015-03-11 21:58:36 -03:00
MPU6K_FILTER : 4
2015-03-11 20:17:11 -03:00
ACC2SCAL : 5
ACC2OFFS : 6
ACC3SCAL : 8
ACC3OFFS : 9
2015-03-11 20:22:52 -03:00
CALSENSFRAME : 11
2015-03-11 20:17:11 -03:00
*/
// @Param: GYROFFS_X
// @DisplayName: Gyro offsets of X axis
// @Description: Gyro sensor offsets of X axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Param: GYROFFS_Y
// @DisplayName: Gyro offsets of Y axis
// @Description: Gyro sensor offsets of Y axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Param: GYROFFS_Z
// @DisplayName: Gyro offsets of Z axis
// @Description: Gyro sensor offsets of Z axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
AP_GROUPINFO ( " GYROFFS " , 3 , AP_InertialSensor , _gyro_offset [ 0 ] , 0 ) ,
# if INS_MAX_INSTANCES > 1
// @Param: GYR2OFFS_X
// @DisplayName: Gyro2 offsets of X axis
// @Description: Gyro2 sensor offsets of X axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Param: GYR2OFFS_Y
// @DisplayName: Gyro2 offsets of Y axis
// @Description: Gyro2 sensor offsets of Y axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Param: GYR2OFFS_Z
// @DisplayName: Gyro2 offsets of Z axis
// @Description: Gyro2 sensor offsets of Z axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
AP_GROUPINFO ( " GYR2OFFS " , 7 , AP_InertialSensor , _gyro_offset [ 1 ] , 0 ) ,
# endif
# if INS_MAX_INSTANCES > 2
// @Param: GYR3OFFS_X
// @DisplayName: Gyro3 offsets of X axis
// @Description: Gyro3 sensor offsets of X axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Param: GYR3OFFS_Y
// @DisplayName: Gyro3 offsets of Y axis
// @Description: Gyro3 sensor offsets of Y axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Param: GYR3OFFS_Z
// @DisplayName: Gyro3 offsets of Z axis
// @Description: Gyro3 sensor offsets of Z axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
AP_GROUPINFO ( " GYR3OFFS " , 10 , AP_InertialSensor , _gyro_offset [ 2 ] , 0 ) ,
# endif
2013-01-02 03:31:58 -04:00
// @Param: ACCSCAL_X
// @DisplayName: Accelerometer scaling of X axis
// @Description: Accelerometer scaling of X axis. Calculated during acceleration calibration routine
2013-05-21 04:00:22 -03:00
// @Range: 0.8 1.2
2013-01-02 03:31:58 -04:00
// @User: Advanced
// @Param: ACCSCAL_Y
// @DisplayName: Accelerometer scaling of Y axis
// @Description: Accelerometer scaling of Y axis Calculated during acceleration calibration routine
2013-05-21 04:00:22 -03:00
// @Range: 0.8 1.2
2013-01-02 03:31:58 -04:00
// @User: Advanced
// @Param: ACCSCAL_Z
// @DisplayName: Accelerometer scaling of Z axis
// @Description: Accelerometer scaling of Z axis Calculated during acceleration calibration routine
2013-05-21 04:00:22 -03:00
// @Range: 0.8 1.2
2012-11-29 16:15:12 -04:00
// @User: Advanced
2015-03-11 20:17:11 -03:00
AP_GROUPINFO ( " ACCSCAL " , 12 , AP_InertialSensor , _accel_scale [ 0 ] , 0 ) ,
2012-11-29 16:15:12 -04:00
2013-01-02 03:31:58 -04:00
// @Param: ACCOFFS_X
// @DisplayName: Accelerometer offsets of X axis
// @Description: Accelerometer offsets of X axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
// @Param: ACCOFFS_Y
// @DisplayName: Accelerometer offsets of Y axis
// @Description: Accelerometer offsets of Y axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
// @Param: ACCOFFS_Z
// @DisplayName: Accelerometer offsets of Z axis
// @Description: Accelerometer offsets of Z axis. This is setup using the acceleration calibration or level operations
2012-11-29 16:15:12 -04:00
// @Units: m/s/s
2013-01-02 03:31:58 -04:00
// @Range: -300 300
2012-11-29 16:15:12 -04:00
// @User: Advanced
2015-03-11 20:17:11 -03:00
AP_GROUPINFO ( " ACCOFFS " , 13 , AP_InertialSensor , _accel_offset [ 0 ] , 0 ) ,
2012-11-29 16:15:12 -04:00
2013-12-08 18:50:12 -04:00
# if INS_MAX_INSTANCES > 1
2014-09-27 09:05:33 -03:00
// @Param: ACC2SCAL_X
// @DisplayName: Accelerometer2 scaling of X axis
// @Description: Accelerometer2 scaling of X axis. Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Param: ACC2SCAL_Y
// @DisplayName: Accelerometer2 scaling of Y axis
// @Description: Accelerometer2 scaling of Y axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Param: ACC2SCAL_Z
// @DisplayName: Accelerometer2 scaling of Z axis
// @Description: Accelerometer2 scaling of Z axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
2015-03-11 20:17:11 -03:00
AP_GROUPINFO ( " ACC2SCAL " , 14 , AP_InertialSensor , _accel_scale [ 1 ] , 0 ) ,
2014-09-27 09:05:33 -03:00
// @Param: ACC2OFFS_X
// @DisplayName: Accelerometer2 offsets of X axis
// @Description: Accelerometer2 offsets of X axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
// @Param: ACC2OFFS_Y
// @DisplayName: Accelerometer2 offsets of Y axis
// @Description: Accelerometer2 offsets of Y axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
// @Param: ACC2OFFS_Z
// @DisplayName: Accelerometer2 offsets of Z axis
// @Description: Accelerometer2 offsets of Z axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
2015-03-11 20:17:11 -03:00
AP_GROUPINFO ( " ACC2OFFS " , 15 , AP_InertialSensor , _accel_offset [ 1 ] , 0 ) ,
2013-12-08 18:50:12 -04:00
# endif
2014-06-26 01:04:33 -03:00
# if INS_MAX_INSTANCES > 2
2014-09-27 09:05:33 -03:00
// @Param: ACC3SCAL_X
// @DisplayName: Accelerometer3 scaling of X axis
// @Description: Accelerometer3 scaling of X axis. Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Param: ACC3SCAL_Y
// @DisplayName: Accelerometer3 scaling of Y axis
// @Description: Accelerometer3 scaling of Y axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Param: ACC3SCAL_Z
// @DisplayName: Accelerometer3 scaling of Z axis
// @Description: Accelerometer3 scaling of Z axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
2015-03-11 20:17:11 -03:00
AP_GROUPINFO ( " ACC3SCAL " , 16 , AP_InertialSensor , _accel_scale [ 2 ] , 0 ) ,
2014-09-27 09:05:33 -03:00
// @Param: ACC3OFFS_X
// @DisplayName: Accelerometer3 offsets of X axis
// @Description: Accelerometer3 offsets of X axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
// @Param: ACC3OFFS_Y
// @DisplayName: Accelerometer3 offsets of Y axis
// @Description: Accelerometer3 offsets of Y axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
// @Param: ACC3OFFS_Z
// @DisplayName: Accelerometer3 offsets of Z axis
// @Description: Accelerometer3 offsets of Z axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
2015-03-11 20:17:11 -03:00
AP_GROUPINFO ( " ACC3OFFS " , 17 , AP_InertialSensor , _accel_offset [ 2 ] , 0 ) ,
2014-06-26 01:04:33 -03:00
# endif
2015-03-11 21:58:36 -03:00
// @Param: GYRO_FILTER
// @DisplayName: Gyro filter cutoff frequency
// @Description: Filter cutoff frequency for gyroscopes. This can be set to a lower value to try to cope with very high vibration levels in aircraft. This option takes effect on the next reboot. A value of zero means no filtering (not recommended!)
// @Units: Hz
// @Range: 0 127
// @User: Advanced
AP_GROUPINFO ( " GYRO_FILTER " , 18 , AP_InertialSensor , _gyro_filter_cutoff , DEFAULT_GYRO_FILTER ) ,
// @Param: ACCEL_FILTER
// @DisplayName: Accel filter cutoff frequency
// @Description: Filter cutoff frequency for accelerometers. This can be set to a lower value to try to cope with very high vibration levels in aircraft. This option takes effect on the next reboot. A value of zero means no filtering (not recommended!)
// @Units: Hz
// @Range: 0 127
// @User: Advanced
AP_GROUPINFO ( " ACCEL_FILTER " , 19 , AP_InertialSensor , _accel_filter_cutoff , DEFAULT_ACCEL_FILTER ) ,
2015-03-11 20:17:11 -03:00
/*
NOTE : parameter indexes have gaps above . When adding new
parameters check for conflicts carefully
*/
2015-03-10 04:05:41 -03:00
2012-11-05 00:27:03 -04:00
AP_GROUPEND
} ;
2013-04-12 01:30:35 -03:00
AP_InertialSensor : : AP_InertialSensor ( ) :
2014-10-15 20:55:18 -03:00
_gyro_count ( 0 ) ,
_accel_count ( 0 ) ,
2014-10-16 17:27:01 -03:00
_backend_count ( 0 ) ,
2013-04-12 01:30:35 -03:00
_accel ( ) ,
2014-07-15 00:43:32 -03:00
_gyro ( ) ,
2014-10-14 01:48:33 -03:00
_board_orientation ( ROTATION_NONE ) ,
2015-05-01 03:29:01 -03:00
_primary_gyro ( 0 ) ,
_primary_accel ( 0 ) ,
2015-01-02 02:38:28 -04:00
_hil_mode ( false ) ,
2015-05-06 23:08:30 -03:00
_calibrating ( false ) ,
_log_raw_data ( false ) ,
2015-06-12 06:23:38 -03:00
# if INS_VIBRATION_CHECK
2015-06-11 04:15:57 -03:00
_accel_vibe_floor_filter ( AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ ) ,
_accel_vibe_filter ( AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ ) ,
2015-06-12 06:23:38 -03:00
# endif
2015-05-06 23:08:30 -03:00
_dataflash ( NULL )
2013-04-12 01:30:35 -03:00
{
2012-12-19 00:55:38 -04:00
AP_Param : : setup_object_defaults ( this , var_info ) ;
2014-10-15 20:32:40 -03:00
for ( uint8_t i = 0 ; i < INS_MAX_BACKENDS ; i + + ) {
2014-10-14 01:48:33 -03:00
_backends [ i ] = NULL ;
}
2014-12-29 06:19:35 -04:00
for ( uint8_t i = 0 ; i < INS_MAX_INSTANCES ; i + + ) {
_accel_error_count [ i ] = 0 ;
_gyro_error_count [ i ] = 0 ;
2015-06-12 06:23:38 -03:00
# if INS_VIBRATION_CHECK
2015-06-11 04:15:57 -03:00
_accel_clip_count [ i ] = 0 ;
2015-06-12 06:23:38 -03:00
# endif
2014-12-29 06:19:35 -04:00
}
2015-02-17 02:54:17 -04:00
memset ( _delta_velocity_valid , 0 , sizeof ( _delta_velocity_valid ) ) ;
memset ( _delta_angle_valid , 0 , sizeof ( _delta_angle_valid ) ) ;
2014-10-14 01:48:33 -03:00
}
/*
register a new gyro instance
*/
uint8_t AP_InertialSensor : : register_gyro ( void )
{
if ( _gyro_count = = INS_MAX_INSTANCES ) {
hal . scheduler - > panic ( PSTR ( " Too many gyros " ) ) ;
}
return _gyro_count + + ;
}
/*
register a new accel instance
*/
uint8_t AP_InertialSensor : : register_accel ( void )
{
if ( _accel_count = = INS_MAX_INSTANCES ) {
hal . scheduler - > panic ( PSTR ( " Too many accels " ) ) ;
}
return _accel_count + + ;
2012-12-19 00:55:38 -04:00
}
2012-11-05 00:27:03 -04:00
void
AP_InertialSensor : : init ( Start_style style ,
2013-09-19 05:32:19 -03:00
Sample_rate sample_rate )
2012-11-05 00:27:03 -04:00
{
2014-10-16 17:52:21 -03:00
// remember the sample rate
_sample_rate = sample_rate ;
2014-10-14 01:48:33 -03:00
if ( _gyro_count = = 0 & & _accel_count = = 0 ) {
// detect available backends. Only called once
2014-10-16 17:52:21 -03:00
_detect_backends ( ) ;
2014-10-14 01:48:33 -03:00
}
2012-11-05 00:27:03 -04:00
2014-10-14 01:48:33 -03:00
// initialise accel scale if need be. This is needed as we can't
// give non-zero default values for vectors in AP_Param
2013-12-08 18:50:12 -04:00
for ( uint8_t i = 0 ; i < get_accel_count ( ) ; i + + ) {
if ( _accel_scale [ i ] . get ( ) . is_zero ( ) ) {
_accel_scale [ i ] . set ( Vector3f ( 1 , 1 , 1 ) ) ;
}
2012-11-05 00:27:03 -04:00
}
2012-11-07 02:20:22 -04:00
if ( WARM_START ! = style ) {
// do cold-start calibration for gyro only
2013-09-19 05:32:19 -03:00
_init_gyro ( ) ;
2012-11-05 00:27:03 -04:00
}
2014-10-14 01:48:33 -03:00
switch ( sample_rate ) {
case RATE_50HZ :
2014-10-15 05:54:30 -03:00
_sample_period_usec = 20000 ;
2014-10-14 01:48:33 -03:00
break ;
case RATE_100HZ :
2014-10-15 05:54:30 -03:00
_sample_period_usec = 10000 ;
2014-10-14 01:48:33 -03:00
break ;
case RATE_200HZ :
2014-10-15 05:54:30 -03:00
_sample_period_usec = 5000 ;
2014-10-14 01:48:33 -03:00
break ;
case RATE_400HZ :
default :
2014-10-15 05:54:30 -03:00
_sample_period_usec = 2500 ;
2014-10-14 01:48:33 -03:00
break ;
}
2014-10-15 20:32:40 -03:00
// establish the baseline time between samples
_delta_time = 0 ;
2014-10-19 20:46:02 -03:00
_next_sample_usec = 0 ;
_last_sample_usec = 0 ;
2014-10-15 20:32:40 -03:00
_have_sample = false ;
2014-10-14 01:48:33 -03:00
}
2014-10-16 17:27:01 -03:00
/*
try to load a backend
*/
2014-10-16 17:52:21 -03:00
void AP_InertialSensor : : _add_backend ( AP_InertialSensor_Backend * ( detect ) ( AP_InertialSensor & ) )
2014-10-16 17:27:01 -03:00
{
if ( _backend_count = = INS_MAX_BACKENDS ) {
hal . scheduler - > panic ( PSTR ( " Too many INS backends " ) ) ;
}
2014-10-16 17:52:21 -03:00
_backends [ _backend_count ] = detect ( * this ) ;
2014-10-16 17:27:01 -03:00
if ( _backends [ _backend_count ] ! = NULL ) {
_backend_count + + ;
}
}
2014-10-14 01:48:33 -03:00
/*
detect available backends for this board
*/
void
2014-10-16 17:52:21 -03:00
AP_InertialSensor : : _detect_backends ( void )
2014-10-14 01:48:33 -03:00
{
2015-03-13 08:32:52 -03:00
if ( _hil_mode ) {
_add_backend ( AP_InertialSensor_HIL : : detect ) ;
return ;
}
2014-10-15 02:37:59 -03:00
# if HAL_INS_DEFAULT == HAL_INS_HIL
2014-10-16 17:52:21 -03:00
_add_backend ( AP_InertialSensor_HIL : : detect ) ;
2014-10-15 02:37:59 -03:00
# elif HAL_INS_DEFAULT == HAL_INS_MPU6000
2014-10-16 17:52:21 -03:00
_add_backend ( AP_InertialSensor_MPU6000 : : detect ) ;
2014-12-30 07:01:24 -04:00
# elif HAL_INS_DEFAULT == HAL_INS_PX4 || HAL_INS_DEFAULT == HAL_INS_VRBRAIN
2014-10-16 17:52:21 -03:00
_add_backend ( AP_InertialSensor_PX4 : : detect ) ;
2014-10-15 20:32:40 -03:00
# elif HAL_INS_DEFAULT == HAL_INS_OILPAN
2014-10-16 17:52:21 -03:00
_add_backend ( AP_InertialSensor_Oilpan : : detect ) ;
2014-10-15 20:32:40 -03:00
# elif HAL_INS_DEFAULT == HAL_INS_MPU9250
2014-10-16 17:52:21 -03:00
_add_backend ( AP_InertialSensor_MPU9250 : : detect ) ;
2014-10-15 21:24:32 -03:00
# elif HAL_INS_DEFAULT == HAL_INS_FLYMAPLE
2014-10-16 17:52:21 -03:00
_add_backend ( AP_InertialSensor_Flymaple : : detect ) ;
2014-10-15 02:37:59 -03:00
# else
# error Unrecognised HAL_INS_TYPE setting
# endif
2014-10-16 17:27:01 -03:00
#if 0 // disabled due to broken hardware on some PXF capes
# if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
// the PXF also has a MPU6000
2014-10-16 17:52:21 -03:00
_add_backend ( AP_InertialSensor_MPU6000 : : detect ) ;
2014-10-16 17:27:01 -03:00
# endif
# endif
if ( _backend_count = = 0 | |
2014-10-14 01:48:33 -03:00
_gyro_count = = 0 | |
_accel_count = = 0 ) {
hal . scheduler - > panic ( PSTR ( " No INS backends available " ) ) ;
}
2014-10-15 23:14:56 -03:00
// set the product ID to the ID of the first backend
_product_id . set ( _backends [ 0 ] - > product_id ( ) ) ;
2012-11-05 00:27:03 -04:00
}
2015-05-15 18:18:09 -03:00
/*
_calculate_trim - calculates the x and y trim angles . The
accel_sample must be correctly scaled , offset and oriented for the
board
*/
bool AP_InertialSensor : : _calculate_trim ( const Vector3f & accel_sample , float & trim_roll , float & trim_pitch )
{
2015-05-15 19:19:18 -03:00
trim_pitch = atan2f ( accel_sample . x , pythagorous2 ( accel_sample . y , accel_sample . z ) ) ;
trim_roll = atan2f ( - accel_sample . y , - accel_sample . z ) ;
2015-05-15 18:18:09 -03:00
if ( fabsf ( trim_roll ) > radians ( 10 ) | |
fabsf ( trim_pitch ) > radians ( 10 ) ) {
hal . console - > println_P ( PSTR ( " trim over maximum of 10 degrees " ) ) ;
return false ;
}
hal . console - > printf_P ( PSTR ( " Trim OK: roll=%.2f pitch=%.2f \n " ) ,
2015-05-30 09:51:19 -03:00
( double ) degrees ( trim_roll ) ,
( double ) degrees ( trim_pitch ) ) ;
2015-05-15 18:18:09 -03:00
return true ;
}
2014-09-01 03:28:07 -03:00
# if !defined( __AVR_ATmega1280__ )
// calibrate_accel - perform accelerometer calibration including providing user
// instructions and feedback Gauss-Newton accel calibration routines borrowed
// from Rolfe Schmidt blog post describing the method:
// http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
// original sketch available at
// http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
bool AP_InertialSensor : : calibrate_accel ( AP_InertialSensor_UserInteract * interact ,
float & trim_roll ,
float & trim_pitch )
2012-11-05 00:27:03 -04:00
{
2014-09-01 03:28:07 -03:00
uint8_t num_accels = min ( get_accel_count ( ) , INS_MAX_INSTANCES ) ;
Vector3f samples [ INS_MAX_INSTANCES ] [ 6 ] ;
Vector3f new_offsets [ INS_MAX_INSTANCES ] ;
Vector3f new_scaling [ INS_MAX_INSTANCES ] ;
Vector3f orig_offset [ INS_MAX_INSTANCES ] ;
Vector3f orig_scale [ INS_MAX_INSTANCES ] ;
uint8_t num_ok = 0 ;
2013-08-13 23:52:19 -03:00
2015-03-15 01:22:59 -03:00
// exit immediately if calibration is already in progress
if ( _calibrating ) {
return false ;
}
_calibrating = true ;
2015-03-10 04:05:41 -03:00
/*
we do the accel calibration with no board rotation . This avoids
having to rotate readings during the calibration
*/
enum Rotation saved_orientation = _board_orientation ;
_board_orientation = ROTATION_NONE ;
2014-09-01 03:28:07 -03:00
for ( uint8_t k = 0 ; k < num_accels ; k + + ) {
// backup original offsets and scaling
orig_offset [ k ] = _accel_offset [ k ] . get ( ) ;
orig_scale [ k ] = _accel_scale [ k ] . get ( ) ;
2012-11-05 00:27:03 -04:00
2014-09-01 03:28:07 -03:00
// clear accelerometer offsets and scaling
_accel_offset [ k ] = Vector3f ( 0 , 0 , 0 ) ;
_accel_scale [ k ] = Vector3f ( 1 , 1 , 1 ) ;
2012-11-05 00:27:03 -04:00
}
2015-03-10 20:39:47 -03:00
memset ( samples , 0 , sizeof ( samples ) ) ;
2014-09-01 03:28:07 -03:00
// capture data from 6 positions
for ( uint8_t i = 0 ; i < 6 ; i + + ) {
const prog_char_t * msg ;
2012-11-05 00:27:03 -04:00
2014-09-01 03:28:07 -03:00
// display message to user
switch ( i ) {
case 0 :
msg = PSTR ( " level " ) ;
break ;
case 1 :
msg = PSTR ( " on its LEFT side " ) ;
break ;
case 2 :
msg = PSTR ( " on its RIGHT side " ) ;
break ;
case 3 :
msg = PSTR ( " nose DOWN " ) ;
break ;
case 4 :
msg = PSTR ( " nose UP " ) ;
break ;
default : // default added to avoid compiler warning
case 5 :
msg = PSTR ( " on its BACK " ) ;
break ;
}
interact - > printf_P (
PSTR ( " Place vehicle %S and press any key. \n " ) , msg ) ;
2012-11-05 00:27:03 -04:00
2014-09-01 03:28:07 -03:00
// wait for user input
if ( ! interact - > blocking_read ( ) ) {
//No need to use interact->printf_P for an error, blocking_read does this when it fails
goto failed ;
}
2014-03-23 22:52:16 -03:00
2015-03-21 17:35:19 -03:00
const uint8_t update_dt_milliseconds = ( uint8_t ) ( 1000.0f / get_sample_rate ( ) + 0.5f ) ;
2015-03-21 17:30:16 -03:00
// wait 100ms for ins filter to rise
2015-03-21 17:35:19 -03:00
for ( uint8_t k = 0 ; k < 100 / update_dt_milliseconds ; k + + ) {
2015-03-21 17:30:16 -03:00
wait_for_sample ( ) ;
update ( ) ;
2015-03-21 17:35:19 -03:00
hal . scheduler - > delay ( update_dt_milliseconds ) ;
2015-03-21 17:30:16 -03:00
}
2012-11-05 00:27:03 -04:00
2015-03-21 17:35:19 -03:00
uint32_t num_samples = 0 ;
2015-03-21 21:44:02 -03:00
while ( num_samples < 400 / update_dt_milliseconds ) {
2014-10-14 01:48:33 -03:00
wait_for_sample ( ) ;
2014-09-01 03:28:07 -03:00
// read samples from ins
2012-11-05 00:27:03 -04:00
update ( ) ;
2014-09-01 03:28:07 -03:00
// capture sample
for ( uint8_t k = 0 ; k < num_accels ; k + + ) {
2015-03-21 17:19:14 -03:00
Vector3f samp ;
2015-04-03 19:10:47 -03:00
if ( get_delta_velocity ( k , samp ) & & _delta_velocity_dt [ k ] > 0 ) {
2015-03-21 17:19:14 -03:00
samp / = _delta_velocity_dt [ k ] ;
} else {
samp = get_accel ( k ) ;
}
samples [ k ] [ i ] + = samp ;
2015-03-10 21:05:05 -03:00
if ( ! get_accel_health ( k ) ) {
interact - > printf_P ( PSTR ( " accel[%u] not healthy " ) , ( unsigned ) k ) ;
goto failed ;
}
2013-12-08 18:50:12 -04:00
}
2015-03-21 17:35:19 -03:00
hal . scheduler - > delay ( update_dt_milliseconds ) ;
2014-09-01 03:28:07 -03:00
num_samples + + ;
2013-12-08 18:50:12 -04:00
}
2014-09-01 03:28:07 -03:00
for ( uint8_t k = 0 ; k < num_accels ; k + + ) {
samples [ k ] [ i ] / = num_samples ;
2012-11-05 00:27:03 -04:00
}
}
2014-09-01 03:28:07 -03:00
// run the calibration routine
for ( uint8_t k = 0 ; k < num_accels ; k + + ) {
2015-03-10 19:40:02 -03:00
if ( ! _check_sample_range ( samples [ k ] , saved_orientation , interact ) ) {
interact - > printf_P ( PSTR ( " Insufficient accel range " ) ) ;
continue ;
}
bool success = _calibrate_accel ( samples [ k ] , new_offsets [ k ] , new_scaling [ k ] , saved_orientation ) ;
2013-08-13 23:52:19 -03:00
2014-09-01 03:28:07 -03:00
interact - > printf_P ( PSTR ( " Offsets[%u]: %.2f %.2f %.2f \n " ) ,
2015-05-02 02:21:12 -03:00
( unsigned ) k ,
( double ) new_offsets [ k ] . x , ( double ) new_offsets [ k ] . y , ( double ) new_offsets [ k ] . z ) ;
2014-09-01 03:28:07 -03:00
interact - > printf_P ( PSTR ( " Scaling[%u]: %.2f %.2f %.2f \n " ) ,
( unsigned ) k ,
2015-05-02 02:21:12 -03:00
( double ) new_scaling [ k ] . x , ( double ) new_scaling [ k ] . y , ( double ) new_scaling [ k ] . z ) ;
2014-09-01 03:28:07 -03:00
if ( success ) num_ok + + ;
2013-12-08 18:50:12 -04:00
}
2014-09-01 03:28:07 -03:00
if ( num_ok = = num_accels ) {
interact - > printf_P ( PSTR ( " Calibration successful \n " ) ) ;
for ( uint8_t k = 0 ; k < num_accels ; k + + ) {
// set and save calibration
_accel_offset [ k ] . set ( new_offsets [ k ] ) ;
_accel_scale [ k ] . set ( new_scaling [ k ] ) ;
2013-12-08 18:50:12 -04:00
}
2015-05-12 03:18:25 -03:00
for ( uint8_t k = num_accels ; k < INS_MAX_INSTANCES ; k + + ) {
// clear unused accelerometer's scaling and offsets
_accel_offset [ k ] = Vector3f ( 0 , 0 , 0 ) ;
_accel_scale [ k ] = Vector3f ( 0 , 0 , 0 ) ;
}
2014-09-01 03:28:07 -03:00
_save_parameters ( ) ;
2015-03-10 04:05:41 -03:00
/*
calculate the trims as well from primary accels
We use the original board rotation for this sample
*/
Vector3f level_sample = samples [ 0 ] [ 0 ] ;
2015-05-14 21:12:46 -03:00
level_sample . x * = new_scaling [ 0 ] . x ;
level_sample . y * = new_scaling [ 0 ] . y ;
level_sample . z * = new_scaling [ 0 ] . z ;
2015-05-15 18:18:09 -03:00
level_sample - = new_offsets [ 0 ] ;
2015-03-10 04:05:41 -03:00
level_sample . rotate ( saved_orientation ) ;
2015-05-15 18:18:09 -03:00
if ( ! _calculate_trim ( level_sample , trim_roll , trim_pitch ) ) {
goto failed ;
}
2015-03-10 04:05:41 -03:00
_board_orientation = saved_orientation ;
2015-03-15 01:22:59 -03:00
_calibrating = false ;
2014-09-01 03:28:07 -03:00
return true ;
2013-12-08 18:50:12 -04:00
}
2014-09-01 03:28:07 -03:00
failed :
interact - > printf_P ( PSTR ( " Calibration FAILED \n " ) ) ;
// restore original scaling and offsets
for ( uint8_t k = 0 ; k < num_accels ; k + + ) {
_accel_offset [ k ] . set ( orig_offset [ k ] ) ;
_accel_scale [ k ] . set ( orig_scale [ k ] ) ;
}
2015-03-10 04:05:41 -03:00
_board_orientation = saved_orientation ;
2015-03-15 01:22:59 -03:00
_calibrating = false ;
2014-09-01 03:28:07 -03:00
return false ;
2012-11-05 00:27:03 -04:00
}
2014-09-01 03:28:07 -03:00
# endif
2012-11-05 00:27:03 -04:00
void
2014-09-01 03:28:07 -03:00
AP_InertialSensor : : init_gyro ( )
2012-11-05 00:27:03 -04:00
{
2014-09-01 03:28:07 -03:00
_init_gyro ( ) ;
2012-11-05 00:27:03 -04:00
// save calibration
2012-11-07 02:20:22 -04:00
_save_parameters ( ) ;
2012-11-05 00:27:03 -04:00
}
2015-06-12 06:23:38 -03:00
# if INS_VIBRATION_CHECK
2015-06-11 04:15:57 -03:00
// accelerometer clipping reporting
uint32_t AP_InertialSensor : : get_accel_clip_count ( uint8_t instance ) const
{
2015-06-12 06:23:38 -03:00
if ( instance > = get_accel_count ( ) ) {
2015-06-11 04:15:57 -03:00
return 0 ;
}
return _accel_clip_count [ instance ] ;
}
2015-06-12 06:23:38 -03:00
# endif
2015-06-11 04:15:57 -03:00
2014-09-01 08:20:27 -03:00
// get_gyro_health_all - return true if all gyros are healthy
bool AP_InertialSensor : : get_gyro_health_all ( void ) const
{
for ( uint8_t i = 0 ; i < get_gyro_count ( ) ; i + + ) {
if ( ! get_gyro_health ( i ) ) {
return false ;
}
}
// return true if we have at least one gyro
return ( get_gyro_count ( ) > 0 ) ;
}
2014-10-08 08:17:31 -03:00
// gyro_calibration_ok_all - returns true if all gyros were calibrated successfully
bool AP_InertialSensor : : gyro_calibrated_ok_all ( ) const
{
for ( uint8_t i = 0 ; i < get_gyro_count ( ) ; i + + ) {
if ( ! gyro_calibrated_ok ( i ) ) {
return false ;
}
}
return ( get_gyro_count ( ) > 0 ) ;
}
2014-09-01 08:20:27 -03:00
// get_accel_health_all - return true if all accels are healthy
bool AP_InertialSensor : : get_accel_health_all ( void ) const
{
for ( uint8_t i = 0 ; i < get_accel_count ( ) ; i + + ) {
if ( ! get_accel_health ( i ) ) {
return false ;
}
}
// return true if we have at least one accel
return ( get_accel_count ( ) > 0 ) ;
}
2015-05-15 18:22:25 -03:00
/*
calculate the trim_roll and trim_pitch . This is used for redoing the
trim without needing a full accel cal
*/
bool AP_InertialSensor : : calibrate_trim ( float & trim_roll , float & trim_pitch )
{
Vector3f level_sample ;
// exit immediately if calibration is already in progress
if ( _calibrating ) {
return false ;
}
_calibrating = true ;
const uint8_t update_dt_milliseconds = ( uint8_t ) ( 1000.0f / get_sample_rate ( ) + 0.5f ) ;
// wait 100ms for ins filter to rise
for ( uint8_t k = 0 ; k < 100 / update_dt_milliseconds ; k + + ) {
wait_for_sample ( ) ;
update ( ) ;
hal . scheduler - > delay ( update_dt_milliseconds ) ;
}
uint32_t num_samples = 0 ;
while ( num_samples < 400 / update_dt_milliseconds ) {
wait_for_sample ( ) ;
// read samples from ins
update ( ) ;
// capture sample
Vector3f samp ;
samp = get_accel ( 0 ) ;
level_sample + = samp ;
if ( ! get_accel_health ( 0 ) ) {
goto failed ;
}
hal . scheduler - > delay ( update_dt_milliseconds ) ;
num_samples + + ;
}
level_sample / = num_samples ;
if ( ! _calculate_trim ( level_sample , trim_roll , trim_pitch ) ) {
goto failed ;
}
_calibrating = false ;
return true ;
failed :
_calibrating = false ;
return false ;
}
2015-05-12 03:18:25 -03:00
/*
check if the accelerometers are calibrated in 3 D and that current number of accels matched number when calibrated
*/
bool AP_InertialSensor : : accel_calibrated_ok_all ( ) const
{
// check each accelerometer has offsets saved
for ( uint8_t i = 0 ; i < get_accel_count ( ) ; i + + ) {
// exactly 0.0 offset is extremely unlikely
if ( _accel_offset [ i ] . get ( ) . is_zero ( ) ) {
return false ;
}
// exactly 1.0 scaling is extremely unlikely
const Vector3f & scaling = _accel_scale [ i ] . get ( ) ;
if ( is_equal ( scaling . x , 1.0f ) & & is_equal ( scaling . y , 1.0f ) & & is_equal ( scaling . z , 1.0f ) ) {
return false ;
}
// zero scaling also indicates not calibrated
if ( _accel_scale [ i ] . get ( ) . is_zero ( ) ) {
return false ;
}
}
// check calibrated accels matches number of accels (no unused accels should have offsets or scaling)
if ( get_accel_count ( ) < INS_MAX_INSTANCES ) {
for ( uint8_t i = get_accel_count ( ) ; i < INS_MAX_INSTANCES ; i + + ) {
const Vector3f & scaling = _accel_scale [ i ] . get ( ) ;
bool have_scaling = ( ! is_zero ( scaling . x ) & & ! is_equal ( scaling . x , 1.0f ) ) | | ( ! is_zero ( scaling . y ) & & ! is_equal ( scaling . y , 1.0f ) ) | | ( ! is_zero ( scaling . z ) & & ! is_equal ( scaling . z , 1.0f ) ) ;
bool have_offsets = ! _accel_offset [ i ] . get ( ) . is_zero ( ) ;
if ( have_scaling | | have_offsets ) {
return false ;
}
}
}
// if we got this far the accelerometers must have been calibrated
return true ;
}
2014-09-01 03:28:07 -03:00
void
AP_InertialSensor : : _init_gyro ( )
2012-11-05 00:27:03 -04:00
{
2014-09-01 03:28:07 -03:00
uint8_t num_gyros = min ( get_gyro_count ( ) , INS_MAX_INSTANCES ) ;
Vector3f last_average [ INS_MAX_INSTANCES ] , best_avg [ INS_MAX_INSTANCES ] ;
2015-04-03 10:57:30 -03:00
Vector3f new_gyro_offset [ INS_MAX_INSTANCES ] ;
2014-09-01 03:28:07 -03:00
float best_diff [ INS_MAX_INSTANCES ] ;
bool converged [ INS_MAX_INSTANCES ] ;
2013-12-08 18:50:12 -04:00
2015-03-09 03:37:11 -03:00
// exit immediately if calibration is already in progress
if ( _calibrating ) {
return ;
}
2013-12-08 18:50:12 -04:00
2015-03-09 03:31:55 -03:00
// record we are calibrating
_calibrating = true ;
2014-09-01 03:28:07 -03:00
// flash leds to tell user to keep the IMU still
AP_Notify : : flags . initialising = true ;
2015-03-09 03:37:11 -03:00
// cold start
hal . console - > print_P ( PSTR ( " Init Gyro " ) ) ;
2015-03-10 04:05:41 -03:00
/*
we do the gyro calibration with no board rotation . This avoids
having to rotate readings during the calibration
*/
enum Rotation saved_orientation = _board_orientation ;
_board_orientation = ROTATION_NONE ;
2014-09-01 03:28:07 -03:00
// remove existing gyro offsets
for ( uint8_t k = 0 ; k < num_gyros ; k + + ) {
2015-03-10 20:39:47 -03:00
_gyro_offset [ k ] . set ( Vector3f ( ) ) ;
2015-04-03 10:57:30 -03:00
new_gyro_offset [ k ] . zero ( ) ;
2014-09-01 03:28:07 -03:00
best_diff [ k ] = 0 ;
last_average [ k ] . zero ( ) ;
converged [ k ] = false ;
2013-12-08 18:50:12 -04:00
}
2012-11-05 00:27:03 -04:00
2014-09-01 03:28:07 -03:00
for ( int8_t c = 0 ; c < 5 ; c + + ) {
hal . scheduler - > delay ( 5 ) ;
update ( ) ;
}
2012-11-05 00:27:03 -04:00
2014-09-01 03:28:07 -03:00
// the strategy is to average 50 points over 0.5 seconds, then do it
// again and see if the 2nd average is within a small margin of
// the first
2012-11-05 00:27:03 -04:00
2014-09-01 03:28:07 -03:00
uint8_t num_converged = 0 ;
2012-11-05 00:27:03 -04:00
2014-11-21 22:25:23 -04:00
// we try to get a good calibration estimate for up to 30 seconds
2014-09-01 03:28:07 -03:00
// if the gyros are stable, we should get it in 1 second
2014-11-21 22:25:23 -04:00
for ( int16_t j = 0 ; j < = 30 * 4 & & num_converged < num_gyros ; j + + ) {
2014-09-01 03:28:07 -03:00
Vector3f gyro_sum [ INS_MAX_INSTANCES ] , gyro_avg [ INS_MAX_INSTANCES ] , gyro_diff [ INS_MAX_INSTANCES ] ;
2015-03-07 16:48:16 -04:00
Vector3f accel_start ;
2014-09-01 03:28:07 -03:00
float diff_norm [ INS_MAX_INSTANCES ] ;
uint8_t i ;
2012-11-05 00:27:03 -04:00
2014-09-01 03:28:07 -03:00
memset ( diff_norm , 0 , sizeof ( diff_norm ) ) ;
hal . console - > print_P ( PSTR ( " * " ) ) ;
for ( uint8_t k = 0 ; k < num_gyros ; k + + ) {
gyro_sum [ k ] . zero ( ) ;
2013-12-08 18:50:12 -04:00
}
2015-03-07 16:48:16 -04:00
accel_start = get_accel ( 0 ) ;
2014-09-01 03:28:07 -03:00
for ( i = 0 ; i < 50 ; i + + ) {
2013-10-08 03:28:39 -03:00
update ( ) ;
2014-09-01 03:28:07 -03:00
for ( uint8_t k = 0 ; k < num_gyros ; k + + ) {
gyro_sum [ k ] + = get_gyro ( k ) ;
2013-12-08 18:50:12 -04:00
}
2014-09-01 03:28:07 -03:00
hal . scheduler - > delay ( 5 ) ;
2012-11-05 00:27:03 -04:00
}
2015-03-07 16:48:16 -04:00
Vector3f accel_diff = get_accel ( 0 ) - accel_start ;
if ( accel_diff . length ( ) > 0.2f ) {
// the accelerometers changed during the gyro sum. Skip
// this sample. This copes with doing gyro cal on a
2015-03-08 18:25:08 -03:00
// steadily moving platform. The value 0.2 corresponds
// with around 5 degrees/second of rotation.
2015-03-07 16:48:16 -04:00
continue ;
}
2014-09-01 03:28:07 -03:00
for ( uint8_t k = 0 ; k < num_gyros ; k + + ) {
gyro_avg [ k ] = gyro_sum [ k ] / i ;
gyro_diff [ k ] = last_average [ k ] - gyro_avg [ k ] ;
diff_norm [ k ] = gyro_diff [ k ] . length ( ) ;
2013-12-08 18:50:12 -04:00
}
2012-11-07 02:20:22 -04:00
2014-09-01 03:28:07 -03:00
for ( uint8_t k = 0 ; k < num_gyros ; k + + ) {
if ( j = = 0 ) {
best_diff [ k ] = diff_norm [ k ] ;
best_avg [ k ] = gyro_avg [ k ] ;
} else if ( gyro_diff [ k ] . length ( ) < ToRad ( 0.1f ) ) {
// we want the average to be within 0.1 bit, which is 0.04 degrees/s
last_average [ k ] = ( gyro_avg [ k ] * 0.5f ) + ( last_average [ k ] * 0.5f ) ;
2015-04-03 10:57:30 -03:00
if ( ! converged [ k ] | | last_average [ k ] . length ( ) < new_gyro_offset [ k ] . length ( ) ) {
new_gyro_offset [ k ] = last_average [ k ] ;
2015-03-07 16:49:38 -04:00
}
if ( ! converged [ k ] ) {
converged [ k ] = true ;
num_converged + + ;
}
2014-09-01 03:28:07 -03:00
} else if ( diff_norm [ k ] < best_diff [ k ] ) {
best_diff [ k ] = diff_norm [ k ] ;
best_avg [ k ] = ( gyro_avg [ k ] * 0.5f ) + ( last_average [ k ] * 0.5f ) ;
}
last_average [ k ] = gyro_avg [ k ] ;
2013-12-08 18:50:12 -04:00
}
2012-11-20 03:26:51 -04:00
}
2012-11-07 02:20:22 -04:00
2014-09-01 03:28:07 -03:00
// we've kept the user waiting long enough - use the best pair we
// found so far
hal . console - > println ( ) ;
for ( uint8_t k = 0 ; k < num_gyros ; k + + ) {
if ( ! converged [ k ] ) {
2015-05-05 00:54:00 -03:00
hal . console - > printf_P ( PSTR ( " gyro[%u] did not converge: diff=%f dps \n " ) ,
2015-05-02 02:21:12 -03:00
( unsigned ) k , ( double ) ToDeg ( best_diff [ k ] ) ) ;
2014-09-01 03:28:07 -03:00
_gyro_offset [ k ] = best_avg [ k ] ;
2014-10-08 08:17:31 -03:00
// flag calibration as failed for this gyro
_gyro_cal_ok [ k ] = false ;
2015-03-09 01:21:43 -03:00
} else {
_gyro_cal_ok [ k ] = true ;
2015-04-03 10:57:30 -03:00
_gyro_offset [ k ] = new_gyro_offset [ k ] ;
2014-07-13 10:05:21 -03:00
}
}
2015-03-09 03:31:55 -03:00
2015-03-10 04:05:41 -03:00
// restore orientation
_board_orientation = saved_orientation ;
2015-03-09 03:31:55 -03:00
// record calibration complete
_calibrating = false ;
// stop flashing leds
AP_Notify : : flags . initialising = false ;
2013-04-22 11:55:53 -03:00
}
2014-09-01 03:28:07 -03:00
# if !defined( __AVR_ATmega1280__ )
2015-03-10 19:40:02 -03:00
/*
check that the samples used for accel calibration have a sufficient
range on each axis . The sphere fit in _calibrate_accel ( ) can produce
bad offsets and scaling factors if the range of input data is
insufficient .
We rotate each sample in the check to body frame to cope with 45
board orientations which could result in smaller ranges . The sample
inputs are in sensor frame
*/
bool AP_InertialSensor : : _check_sample_range ( const Vector3f accel_sample [ 6 ] , enum Rotation rotation ,
AP_InertialSensor_UserInteract * interact )
{
// we want at least 12 m/s/s range on all axes. This should be
// very easy to achieve, and guarantees the accels have been
// exposed to a good range of data
const float min_range = 12.0f ;
Vector3f min_sample , max_sample ;
// start with first sample
min_sample = accel_sample [ 0 ] ;
min_sample . rotate ( rotation ) ;
max_sample = min_sample ;
for ( uint8_t s = 1 ; s < 6 ; s + + ) {
Vector3f sample = accel_sample [ s ] ;
sample . rotate ( rotation ) ;
for ( uint8_t i = 0 ; i < 3 ; i + + ) {
if ( sample [ i ] < min_sample [ i ] ) {
min_sample [ i ] = sample [ i ] ;
}
if ( sample [ i ] > max_sample [ i ] ) {
max_sample [ i ] = sample [ i ] ;
}
}
}
Vector3f range = max_sample - min_sample ;
interact - > printf_P ( PSTR ( " AccelRange: %.1f %.1f %.1f " ) ,
2015-05-02 02:21:12 -03:00
( double ) range . x , ( double ) range . y , ( double ) range . z ) ;
2015-03-10 19:40:02 -03:00
bool ok = ( range . x > = min_range & &
range . y > = min_range & &
range . z > = min_range ) ;
return ok ;
}
2012-11-05 00:27:03 -04:00
// _calibrate_model - perform low level accel calibration
// accel_sample are accelerometer samples collected in 6 different positions
// accel_offsets are output from the calibration routine
// accel_scale are output from the calibration routine
// returns true if successful
2015-03-10 19:40:02 -03:00
bool AP_InertialSensor : : _calibrate_accel ( const Vector3f accel_sample [ 6 ] ,
Vector3f & accel_offsets , Vector3f & accel_scale ,
enum Rotation rotation )
2012-11-05 00:27:03 -04:00
{
int16_t i ;
int16_t num_iterations = 0 ;
2015-04-24 00:50:26 -03:00
float eps = 0.000000001f ;
float change = 100.0f ;
2012-11-05 00:27:03 -04:00
float data [ 3 ] ;
float beta [ 6 ] ;
float delta [ 6 ] ;
float ds [ 6 ] ;
float JS [ 6 ] [ 6 ] ;
2012-11-07 02:20:22 -04:00
bool success = true ;
2012-11-05 00:27:03 -04:00
// reset
beta [ 0 ] = beta [ 1 ] = beta [ 2 ] = 0 ;
2013-04-05 10:57:46 -03:00
beta [ 3 ] = beta [ 4 ] = beta [ 5 ] = 1.0f / GRAVITY_MSS ;
2012-11-05 00:27:03 -04:00
while ( num_iterations < 20 & & change > eps ) {
num_iterations + + ;
_calibrate_reset_matrices ( ds , JS ) ;
for ( i = 0 ; i < 6 ; i + + ) {
data [ 0 ] = accel_sample [ i ] . x ;
data [ 1 ] = accel_sample [ i ] . y ;
data [ 2 ] = accel_sample [ i ] . z ;
_calibrate_update_matrices ( ds , JS , beta , data ) ;
}
_calibrate_find_delta ( ds , JS , delta ) ;
change = delta [ 0 ] * delta [ 0 ] +
delta [ 0 ] * delta [ 0 ] +
delta [ 1 ] * delta [ 1 ] +
delta [ 2 ] * delta [ 2 ] +
delta [ 3 ] * delta [ 3 ] / ( beta [ 3 ] * beta [ 3 ] ) +
delta [ 4 ] * delta [ 4 ] / ( beta [ 4 ] * beta [ 4 ] ) +
delta [ 5 ] * delta [ 5 ] / ( beta [ 5 ] * beta [ 5 ] ) ;
for ( i = 0 ; i < 6 ; i + + ) {
beta [ i ] - = delta [ i ] ;
}
}
// copy results out
2013-04-05 10:57:46 -03:00
accel_scale . x = beta [ 3 ] * GRAVITY_MSS ;
accel_scale . y = beta [ 4 ] * GRAVITY_MSS ;
accel_scale . z = beta [ 5 ] * GRAVITY_MSS ;
2012-11-05 00:27:03 -04:00
accel_offsets . x = beta [ 0 ] * accel_scale . x ;
accel_offsets . y = beta [ 1 ] * accel_scale . y ;
accel_offsets . z = beta [ 2 ] * accel_scale . z ;
2012-11-07 02:20:22 -04:00
// sanity check scale
2013-01-10 14:42:24 -04:00
if ( accel_scale . is_nan ( ) | | fabsf ( accel_scale . x - 1.0f ) > 0.1f | | fabsf ( accel_scale . y - 1.0f ) > 0.1f | | fabsf ( accel_scale . z - 1.0f ) > 0.1f ) {
2012-11-07 02:20:22 -04:00
success = false ;
}
2013-07-12 22:43:07 -03:00
// sanity check offsets (3.5 is roughly 3/10th of a G, 5.0 is roughly half a G)
if ( accel_offsets . is_nan ( ) | | fabsf ( accel_offsets . x ) > 3.5f | | fabsf ( accel_offsets . y ) > 3.5f | | fabsf ( accel_offsets . z ) > 3.5f ) {
2012-11-07 02:20:22 -04:00
success = false ;
}
// return success or failure
return success ;
2012-11-05 00:27:03 -04:00
}
2012-10-11 21:27:19 -03:00
void AP_InertialSensor : : _calibrate_update_matrices ( float dS [ 6 ] , float JS [ 6 ] [ 6 ] ,
float beta [ 6 ] , float data [ 3 ] )
2012-11-05 00:27:03 -04:00
{
int16_t j , k ;
float dx , b ;
2015-04-24 00:50:26 -03:00
float residual = 1.0f ;
2012-11-05 00:27:03 -04:00
float jacobian [ 6 ] ;
for ( j = 0 ; j < 3 ; j + + ) {
b = beta [ 3 + j ] ;
dx = ( float ) data [ j ] - beta [ j ] ;
residual - = b * b * dx * dx ;
2013-01-10 14:42:24 -04:00
jacobian [ j ] = 2.0f * b * b * dx ;
jacobian [ 3 + j ] = - 2.0f * b * dx * dx ;
2012-11-05 00:27:03 -04:00
}
for ( j = 0 ; j < 6 ; j + + ) {
dS [ j ] + = jacobian [ j ] * residual ;
for ( k = 0 ; k < 6 ; k + + ) {
JS [ j ] [ k ] + = jacobian [ j ] * jacobian [ k ] ;
}
}
}
// _calibrate_reset_matrices - clears matrices
void AP_InertialSensor : : _calibrate_reset_matrices ( float dS [ 6 ] , float JS [ 6 ] [ 6 ] )
{
int16_t j , k ;
for ( j = 0 ; j < 6 ; j + + ) {
2013-01-10 14:42:24 -04:00
dS [ j ] = 0.0f ;
2012-11-05 00:27:03 -04:00
for ( k = 0 ; k < 6 ; k + + ) {
2013-01-10 14:42:24 -04:00
JS [ j ] [ k ] = 0.0f ;
2012-11-05 00:27:03 -04:00
}
}
}
void AP_InertialSensor : : _calibrate_find_delta ( float dS [ 6 ] , float JS [ 6 ] [ 6 ] , float delta [ 6 ] )
{
//Solve 6-d matrix equation JS*x = dS
//first put in upper triangular form
int16_t i , j , k ;
float mu ;
//make upper triangular
for ( i = 0 ; i < 6 ; i + + ) {
//eliminate all nonzero entries below JS[i][i]
for ( j = i + 1 ; j < 6 ; j + + ) {
mu = JS [ i ] [ j ] / JS [ i ] [ i ] ;
2015-05-04 23:35:25 -03:00
if ( ! is_zero ( mu ) ) {
2012-11-05 00:27:03 -04:00
dS [ j ] - = mu * dS [ i ] ;
for ( k = j ; k < 6 ; k + + ) {
JS [ k ] [ j ] - = mu * JS [ k ] [ i ] ;
}
}
}
}
//back-substitute
for ( i = 5 ; i > = 0 ; i - - ) {
dS [ i ] / = JS [ i ] [ i ] ;
2013-01-10 14:42:24 -04:00
JS [ i ] [ i ] = 1.0f ;
2012-11-05 00:27:03 -04:00
for ( j = 0 ; j < i ; j + + ) {
mu = JS [ i ] [ j ] ;
dS [ j ] - = mu * dS [ i ] ;
2013-01-10 14:42:24 -04:00
JS [ i ] [ j ] = 0.0f ;
2012-11-05 00:27:03 -04:00
}
}
for ( i = 0 ; i < 6 ; i + + ) {
delta [ i ] = dS [ i ] ;
}
2012-11-07 02:20:22 -04:00
}
2012-11-20 03:41:04 -04:00
# endif // __AVR_ATmega1280__
2014-09-01 03:28:07 -03:00
// save parameters to eeprom
void AP_InertialSensor : : _save_parameters ( )
{
_product_id . save ( ) ;
for ( uint8_t i = 0 ; i < INS_MAX_INSTANCES ; i + + ) {
_accel_scale [ i ] . save ( ) ;
_accel_offset [ i ] . save ( ) ;
_gyro_offset [ i ] . save ( ) ;
}
}
2014-10-14 01:48:33 -03:00
/*
update gyro and accel values from backends
*/
void AP_InertialSensor : : update ( void )
{
2014-10-15 20:32:40 -03:00
// during initialisation update() may be called without
// wait_for_sample(), and a wait is implied
wait_for_sample ( ) ;
if ( ! _hil_mode ) {
2014-12-29 06:19:35 -04:00
for ( uint8_t i = 0 ; i < INS_MAX_INSTANCES ; i + + ) {
2014-10-15 23:27:22 -03:00
// mark sensors unhealthy and let update() in each backend
2015-02-17 02:50:59 -04:00
// mark them healthy via _publish_gyro() and
// _publish_accel()
2014-10-15 23:27:22 -03:00
_gyro_healthy [ i ] = false ;
_accel_healthy [ i ] = false ;
2015-02-17 02:54:17 -04:00
_delta_velocity_valid [ i ] = false ;
_delta_angle_valid [ i ] = false ;
2014-10-15 23:27:22 -03:00
}
2014-10-16 17:27:01 -03:00
for ( uint8_t i = 0 ; i < _backend_count ; i + + ) {
_backends [ i ] - > update ( ) ;
2014-10-15 23:27:22 -03:00
}
2014-12-29 06:19:35 -04:00
// adjust health status if a sensor has a non-zero error count
// but another sensor doesn't.
bool have_zero_accel_error_count = false ;
bool have_zero_gyro_error_count = false ;
for ( uint8_t i = 0 ; i < INS_MAX_INSTANCES ; i + + ) {
if ( _accel_healthy [ i ] & & _accel_error_count [ i ] = = 0 ) {
have_zero_accel_error_count = true ;
}
if ( _gyro_healthy [ i ] & & _gyro_error_count [ i ] = = 0 ) {
have_zero_gyro_error_count = true ;
}
}
2014-12-31 17:55:34 -04:00
2014-12-29 06:19:35 -04:00
for ( uint8_t i = 0 ; i < INS_MAX_INSTANCES ; i + + ) {
if ( _gyro_healthy [ i ] & & _gyro_error_count [ i ] ! = 0 & & have_zero_gyro_error_count ) {
// we prefer not to use a gyro that has had errors
_gyro_healthy [ i ] = false ;
}
2014-12-31 17:55:34 -04:00
if ( _accel_healthy [ i ] & & _accel_error_count [ i ] ! = 0 & & have_zero_accel_error_count ) {
// we prefer not to use a accel that has had errors
_accel_healthy [ i ] = false ;
}
}
// set primary to first healthy accel and gyro
for ( uint8_t i = 0 ; i < INS_MAX_INSTANCES ; i + + ) {
2014-10-15 23:27:22 -03:00
if ( _gyro_healthy [ i ] ) {
_primary_gyro = i ;
break ;
}
}
2014-12-29 06:19:35 -04:00
for ( uint8_t i = 0 ; i < INS_MAX_INSTANCES ; i + + ) {
2014-10-15 23:27:22 -03:00
if ( _accel_healthy [ i ] ) {
_primary_accel = i ;
break ;
}
}
2014-10-15 20:32:40 -03:00
}
_have_sample = false ;
2014-10-14 01:48:33 -03:00
}
/*
2014-10-15 20:32:40 -03:00
wait for a sample to be available . This is the function that
determines the timing of the main loop in ardupilot .
Ideally this function would return at exactly the rate given by the
sample_rate argument given to AP_InertialSensor : : init ( ) .
The key output of this function is _delta_time , which is the time
over which the gyro and accel integration will happen for this
sample . We want that to be a constant time if possible , but if
delays occur we need to cope with them . The long term sum of
_delta_time should be exactly equal to the wall clock elapsed time
2014-10-14 01:48:33 -03:00
*/
void AP_InertialSensor : : wait_for_sample ( void )
{
2014-10-15 20:32:40 -03:00
if ( _have_sample ) {
// the user has called wait_for_sample() again without
// consuming the sample with update()
return ;
}
2014-10-15 05:54:30 -03:00
uint32_t now = hal . scheduler - > micros ( ) ;
2014-10-15 20:32:40 -03:00
2014-10-19 20:46:02 -03:00
if ( _next_sample_usec = = 0 & & _delta_time < = 0 ) {
2014-10-15 20:32:40 -03:00
// this is the first call to wait_for_sample()
2014-10-19 20:46:02 -03:00
_last_sample_usec = now - _sample_period_usec ;
_next_sample_usec = now + _sample_period_usec ;
goto check_sample ;
2014-10-15 20:32:40 -03:00
}
2014-10-19 20:46:02 -03:00
// see how long it is till the next sample is due
if ( _next_sample_usec - now < = _sample_period_usec ) {
// we're ahead on time, schedule next sample at expected period
uint32_t wait_usec = _next_sample_usec - now ;
2015-02-15 20:54:01 -04:00
hal . scheduler - > delay_microseconds_boost ( wait_usec ) ;
2015-02-15 19:12:10 -04:00
uint32_t now2 = hal . scheduler - > micros ( ) ;
if ( now2 + 100 < _next_sample_usec ) {
timing_printf ( " shortsleep %u \n " , ( unsigned ) ( _next_sample_usec - now2 ) ) ;
}
if ( now2 > _next_sample_usec + 400 ) {
timing_printf ( " longsleep %u wait_usec=%u \n " ,
( unsigned ) ( now2 - _next_sample_usec ) ,
( unsigned ) wait_usec ) ;
}
2014-10-19 20:46:02 -03:00
_next_sample_usec + = _sample_period_usec ;
} else if ( now - _next_sample_usec < _sample_period_usec / 8 ) {
// we've overshot, but only by a small amount, keep on
// schedule with no delay
2015-02-15 19:12:10 -04:00
timing_printf ( " overshoot1 %u \n " , ( unsigned ) ( now - _next_sample_usec ) ) ;
2014-10-19 20:46:02 -03:00
_next_sample_usec + = _sample_period_usec ;
2014-10-15 20:32:40 -03:00
} else {
2014-10-19 20:46:02 -03:00
// we've overshot by a larger amount, re-zero scheduling with
// no delay
2015-02-15 19:12:10 -04:00
timing_printf ( " overshoot2 %u \n " , ( unsigned ) ( now - _next_sample_usec ) ) ;
2014-10-19 20:46:02 -03:00
_next_sample_usec = now + _sample_period_usec ;
2014-10-15 05:54:30 -03:00
}
2014-10-15 20:32:40 -03:00
check_sample :
if ( ! _hil_mode ) {
2014-10-19 20:46:02 -03:00
// we also wait for at least one backend to have a sample of both
2014-10-15 20:32:40 -03:00
// accel and gyro. This normally completes immediately.
bool gyro_available = false ;
bool accel_available = false ;
while ( ! gyro_available | | ! accel_available ) {
2014-10-16 17:27:01 -03:00
for ( uint8_t i = 0 ; i < _backend_count ; i + + ) {
gyro_available | = _backends [ i ] - > gyro_sample_available ( ) ;
accel_available | = _backends [ i ] - > accel_sample_available ( ) ;
2014-10-15 20:32:40 -03:00
}
if ( ! gyro_available | | ! accel_available ) {
hal . scheduler - > delay_microseconds ( 100 ) ;
2014-10-14 01:48:33 -03:00
}
2014-10-15 05:54:30 -03:00
}
2014-10-15 02:37:59 -03:00
}
2014-10-15 20:32:40 -03:00
2014-10-19 20:46:02 -03:00
now = hal . scheduler - > micros ( ) ;
2015-06-15 05:13:06 -03:00
if ( _hil_mode & & _hil . delta_time > 0 ) {
_delta_time = _hil . delta_time ;
_hil . delta_time = 0 ;
} else {
_delta_time = ( now - _last_sample_usec ) * 1.0e-6 f ;
}
2014-10-19 20:46:02 -03:00
_last_sample_usec = now ;
#if 0
{
static uint64_t delta_time_sum ;
static uint16_t counter ;
if ( delta_time_sum = = 0 ) {
delta_time_sum = _sample_period_usec ;
}
delta_time_sum + = _delta_time * 1.0e6 f ;
if ( counter + + = = 400 ) {
counter = 0 ;
hal . console - > printf ( " now=%lu _delta_time_sum=%lu diff=%ld \n " ,
( unsigned long ) now ,
( unsigned long ) delta_time_sum ,
( long ) ( now - delta_time_sum ) ) ;
}
}
# endif
2014-10-15 20:32:40 -03:00
_have_sample = true ;
2014-10-15 02:37:59 -03:00
}
2015-06-17 00:01:51 -03:00
/*
get delta angles
*/
bool AP_InertialSensor : : get_delta_angle ( uint8_t i , Vector3f & delta_angle ) const
{
if ( _delta_angle_valid [ i ] ) {
delta_angle = _delta_angle [ i ] ;
return true ;
} else if ( get_gyro_health ( i ) ) {
// provide delta angle from raw gyro, so we use the same code
// at higher level
delta_angle = get_gyro ( i ) * get_delta_time ( ) ;
return true ;
}
return false ;
}
/*
get delta velocity if available
*/
bool AP_InertialSensor : : get_delta_velocity ( uint8_t i , Vector3f & delta_velocity ) const
{
if ( _delta_velocity_valid [ i ] ) {
delta_velocity = _delta_velocity [ i ] ;
return true ;
} else if ( get_accel_health ( i ) ) {
delta_velocity = get_accel ( i ) * get_delta_time ( ) ;
return true ;
}
return false ;
}
/*
return delta_time for the delta_velocity
*/
float AP_InertialSensor : : get_delta_velocity_dt ( uint8_t i ) const
{
if ( _delta_velocity_valid [ i ] ) {
return _delta_velocity_dt [ i ] ;
}
return get_delta_time ( ) ;
}
2014-10-15 02:37:59 -03:00
/*
support for setting accel and gyro vectors , for use by HIL
*/
void AP_InertialSensor : : set_accel ( uint8_t instance , const Vector3f & accel )
{
2015-01-20 04:47:45 -04:00
if ( _accel_count = = 0 ) {
// we haven't initialised yet
return ;
}
2014-10-15 02:37:59 -03:00
if ( instance < INS_MAX_INSTANCES ) {
_accel [ instance ] = accel ;
2014-10-24 01:05:44 -03:00
_accel_healthy [ instance ] = true ;
2015-01-19 18:20:47 -04:00
if ( _accel_count < = instance ) {
_accel_count = instance + 1 ;
}
2015-05-10 22:16:57 -03:00
if ( ! _accel_healthy [ _primary_accel ] ) {
_primary_accel = instance ;
}
2014-10-15 02:37:59 -03:00
}
}
void AP_InertialSensor : : set_gyro ( uint8_t instance , const Vector3f & gyro )
{
2015-01-20 04:47:45 -04:00
if ( _gyro_count = = 0 ) {
// we haven't initialised yet
return ;
}
2014-10-15 02:37:59 -03:00
if ( instance < INS_MAX_INSTANCES ) {
_gyro [ instance ] = gyro ;
2014-10-24 01:05:44 -03:00
_gyro_healthy [ instance ] = true ;
2015-01-19 18:20:47 -04:00
if ( _gyro_count < = instance ) {
_gyro_count = instance + 1 ;
2015-01-20 04:47:45 -04:00
_gyro_cal_ok [ instance ] = true ;
2015-01-19 18:20:47 -04:00
}
2015-05-10 22:16:57 -03:00
if ( ! _accel_healthy [ _primary_accel ] ) {
_primary_accel = instance ;
}
2014-10-14 01:48:33 -03:00
}
}
2014-10-15 02:37:59 -03:00
2015-06-15 05:13:06 -03:00
/*
set delta time for next ins . update ( )
*/
void AP_InertialSensor : : set_delta_time ( float delta_time )
{
_hil . delta_time = delta_time ;
}
/*
set delta velocity for next update
*/
void AP_InertialSensor : : set_delta_velocity ( uint8_t instance , float deltavt , const Vector3f & deltav )
{
if ( instance < INS_MAX_INSTANCES ) {
_delta_velocity_valid [ instance ] = true ;
_delta_velocity [ instance ] = deltav ;
_delta_velocity_dt [ instance ] = deltavt ;
}
}
/*
set delta angle for next update
*/
void AP_InertialSensor : : set_delta_angle ( uint8_t instance , const Vector3f & deltaa )
{
if ( instance < INS_MAX_INSTANCES ) {
_delta_angle_valid [ instance ] = true ;
_delta_angle [ instance ] = deltaa ;
}
}
2015-06-12 06:23:38 -03:00
# if INS_VIBRATION_CHECK
2015-06-11 04:15:57 -03:00
// calculate vibration levels and check for accelerometer clipping (called by a backends)
void AP_InertialSensor : : calc_vibration_and_clipping ( uint8_t instance , const Vector3f & accel , float dt )
{
// check for clipping
if ( fabsf ( accel . x ) > AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS | |
fabsf ( accel . y ) > AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS | |
fabsf ( accel . z ) > AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS ) {
_accel_clip_count [ instance ] + + ;
}
// calculate vibration on primary accel only
if ( instance ! = _primary_accel ) {
return ;
}
// filter accel a 5hz
Vector3f accel_filt = _accel_vibe_floor_filter . apply ( accel , dt ) ;
// calc difference from this sample and 5hz filtered value, square and filter at 2hz
Vector3f accel_diff = ( accel - accel_filt ) ;
accel_diff . x * = accel_diff . x ;
accel_diff . y * = accel_diff . y ;
accel_diff . z * = accel_diff . z ;
_accel_vibe_filter . apply ( accel_diff , dt ) ;
}
// retrieve latest calculated vibration levels
Vector3f AP_InertialSensor : : get_vibration_levels ( ) const
{
Vector3f vibe = _accel_vibe_filter . get ( ) ;
vibe . x = safe_sqrt ( vibe . x ) ;
vibe . y = safe_sqrt ( vibe . y ) ;
vibe . z = safe_sqrt ( vibe . z ) ;
return vibe ;
}
2015-06-12 06:23:38 -03:00
# endif