AP_InertialSensor: converted PX4 driver to new API
This commit is contained in:
parent
0ce5c99c26
commit
d48beb0c0f
@ -278,19 +278,20 @@ AP_InertialSensor::init( Start_style style,
|
||||
|
||||
switch (sample_rate) {
|
||||
case RATE_50HZ:
|
||||
_delta_time = 1.0f/50;
|
||||
_sample_period_usec = 20000;
|
||||
break;
|
||||
case RATE_100HZ:
|
||||
_delta_time = 1.0f/100;
|
||||
_sample_period_usec = 10000;
|
||||
break;
|
||||
case RATE_200HZ:
|
||||
_delta_time = 1.0f/200;
|
||||
_sample_period_usec = 5000;
|
||||
break;
|
||||
case RATE_400HZ:
|
||||
default:
|
||||
_delta_time = 1.0f/400;
|
||||
_sample_period_usec = 2500;
|
||||
break;
|
||||
}
|
||||
_delta_time = 1.0e-6f * _sample_period_usec;
|
||||
}
|
||||
|
||||
|
||||
@ -301,9 +302,11 @@ void
|
||||
AP_InertialSensor::_detect_backends(Sample_rate sample_rate)
|
||||
{
|
||||
#if HAL_INS_DEFAULT == HAL_INS_HIL
|
||||
_backends[0] = AP_InertialSensor_HIL::detect(*this, sample_rate, _gyro[_gyro_count], _accel[_accel_count]);
|
||||
_backends[0] = AP_InertialSensor_HIL::detect(*this, sample_rate);
|
||||
#elif HAL_INS_DEFAULT == HAL_INS_MPU6000
|
||||
_backends[0] = AP_InertialSensor_MPU6000::detect(*this, sample_rate, _gyro[_gyro_count], _accel[_accel_count]);
|
||||
_backends[0] = AP_InertialSensor_MPU6000::detect(*this, sample_rate);
|
||||
#elif HAL_INS_DEFAULT == HAL_INS_PX4
|
||||
_backends[0] = AP_InertialSensor_PX4::detect(*this, sample_rate);
|
||||
#else
|
||||
#error Unrecognised HAL_INS_TYPE setting
|
||||
#endif
|
||||
@ -912,13 +915,32 @@ void AP_InertialSensor::update(void)
|
||||
}
|
||||
|
||||
/*
|
||||
wait for a sample to be available
|
||||
wait for a sample to be available. This waits for at least one new
|
||||
accel and one new gyro sample. It is up to the backend to define
|
||||
what a new sample means. Some backends are based on the sensor
|
||||
providing a sample, some are based on time.
|
||||
*/
|
||||
void AP_InertialSensor::wait_for_sample(void)
|
||||
{
|
||||
bool have_sample = false;
|
||||
|
||||
// wait the right amount of time for a sample to be due
|
||||
uint32_t now = hal.scheduler->micros();
|
||||
while (now - _last_sample_usec > _sample_period_usec) {
|
||||
_last_sample_usec += _sample_period_usec;
|
||||
have_sample = true;
|
||||
}
|
||||
if (!have_sample) {
|
||||
uint32_t sample_due = _last_sample_usec + _sample_period_usec;
|
||||
uint32_t wait_usec = sample_due - now;
|
||||
hal.scheduler->delay_microseconds(wait_usec);
|
||||
_last_sample_usec += _sample_period_usec;
|
||||
}
|
||||
|
||||
// but also wait for at least one backend to have a sample of both
|
||||
// accel and gyro
|
||||
bool gyro_available = false;
|
||||
bool accel_available = false;
|
||||
|
||||
while (!gyro_available || !accel_available) {
|
||||
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
|
||||
if (_backends[i] != NULL) {
|
||||
@ -926,7 +948,9 @@ void AP_InertialSensor::wait_for_sample(void)
|
||||
accel_available |= _backends[i]->accel_sample_available();
|
||||
}
|
||||
}
|
||||
hal.scheduler->delay(1);
|
||||
if (!gyro_available || !accel_available) {
|
||||
hal.scheduler->delay_microseconds(100);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -247,10 +247,17 @@ private:
|
||||
|
||||
// time between samples
|
||||
float _delta_time;
|
||||
|
||||
// last time a wait_for_sample() returned a sample
|
||||
uint32_t _last_sample_usec;
|
||||
|
||||
// time between samples in microseconds
|
||||
uint32_t _sample_period_usec;
|
||||
};
|
||||
|
||||
#include "AP_InertialSensor_Backend.h"
|
||||
#include "AP_InertialSensor_MPU6000.h"
|
||||
#include "AP_InertialSensor_PX4.h"
|
||||
#include "AP_InertialSensor_HIL.h"
|
||||
#include "AP_InertialSensor_UserInteract_Stream.h"
|
||||
#include "AP_InertialSensor_UserInteract_MAVLink.h"
|
||||
|
@ -4,17 +4,16 @@
|
||||
#include "AP_InertialSensor.h"
|
||||
#include "AP_InertialSensor_Backend.h"
|
||||
|
||||
AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu, Vector3f &gyro, Vector3f &accel) :
|
||||
_imu(imu),
|
||||
_gyro(gyro),
|
||||
_accel(accel)
|
||||
AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu) :
|
||||
_imu(imu)
|
||||
{}
|
||||
|
||||
/*
|
||||
rotate gyro vector and add the gyro offset
|
||||
*/
|
||||
void AP_InertialSensor_Backend::_rotate_and_offset_gyro(uint8_t instance, uint32_t now)
|
||||
void AP_InertialSensor_Backend::_rotate_and_offset_gyro(uint8_t instance, const Vector3f &gyro, uint32_t now)
|
||||
{
|
||||
_imu._gyro[instance] = gyro;
|
||||
_imu._gyro[instance].rotate(_imu._board_orientation);
|
||||
_imu._gyro[instance] -= _imu._gyro_offset[instance];
|
||||
_imu._last_gyro_sample_time_usec[instance] = now;
|
||||
@ -23,8 +22,9 @@ void AP_InertialSensor_Backend::_rotate_and_offset_gyro(uint8_t instance, uint32
|
||||
/*
|
||||
rotate accel vector, scale and add the accel offset
|
||||
*/
|
||||
void AP_InertialSensor_Backend::_rotate_and_offset_accel(uint8_t instance, uint32_t now)
|
||||
void AP_InertialSensor_Backend::_rotate_and_offset_accel(uint8_t instance, const Vector3f &accel, uint32_t now)
|
||||
{
|
||||
_imu._accel[instance] = accel;
|
||||
_imu._accel[instance].rotate(_imu._board_orientation);
|
||||
|
||||
const Vector3f &accel_scale = _imu._accel_scale[instance].get();
|
||||
|
@ -23,7 +23,7 @@
|
||||
class AP_InertialSensor_Backend
|
||||
{
|
||||
public:
|
||||
AP_InertialSensor_Backend(AP_InertialSensor &imu, Vector3f &gyro, Vector3f &accel);
|
||||
AP_InertialSensor_Backend(AP_InertialSensor &imu);
|
||||
|
||||
// we declare a virtual destructor so that drivers can
|
||||
// override with a custom destructor if need be.
|
||||
@ -50,15 +50,11 @@ public:
|
||||
protected:
|
||||
AP_InertialSensor &_imu; ///< access to frontend
|
||||
|
||||
// references to instance vectors
|
||||
Vector3f &_gyro;
|
||||
Vector3f &_accel;
|
||||
|
||||
// rotate gyro vector and offset
|
||||
void _rotate_and_offset_gyro(uint8_t instance, uint32_t now);
|
||||
void _rotate_and_offset_gyro(uint8_t instance, const Vector3f &gyro, uint32_t now);
|
||||
|
||||
// rotate accel vector, scale and offset
|
||||
void _rotate_and_offset_accel(uint8_t instance, uint32_t now);
|
||||
void _rotate_and_offset_accel(uint8_t instance, const Vector3f &accel, uint32_t now);
|
||||
|
||||
// note that each backend is also expected to have a detect()
|
||||
// function which instantiates an instance of the backend sensor
|
||||
|
@ -5,10 +5,9 @@
|
||||
|
||||
const extern AP_HAL::HAL& hal;
|
||||
|
||||
AP_InertialSensor_HIL::AP_InertialSensor_HIL(AP_InertialSensor &imu, Vector3f &gyro, Vector3f &accel) :
|
||||
AP_InertialSensor_Backend(imu, gyro, accel),
|
||||
_sample_period_usec(0),
|
||||
_last_sample_usec(0)
|
||||
AP_InertialSensor_HIL::AP_InertialSensor_HIL(AP_InertialSensor &imu) :
|
||||
AP_InertialSensor_Backend(imu),
|
||||
_sample_period_usec(0)
|
||||
{
|
||||
}
|
||||
|
||||
@ -16,11 +15,9 @@ AP_InertialSensor_HIL::AP_InertialSensor_HIL(AP_InertialSensor &imu, Vector3f &g
|
||||
detect the sensor
|
||||
*/
|
||||
AP_InertialSensor_Backend *AP_InertialSensor_HIL::detect(AP_InertialSensor &_imu,
|
||||
AP_InertialSensor::Sample_rate sample_rate,
|
||||
Vector3f &gyro,
|
||||
Vector3f &accel)
|
||||
AP_InertialSensor::Sample_rate sample_rate)
|
||||
{
|
||||
AP_InertialSensor_HIL *sensor = new AP_InertialSensor_HIL(_imu, gyro, accel);
|
||||
AP_InertialSensor_HIL *sensor = new AP_InertialSensor_HIL(_imu);
|
||||
if (sensor == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
@ -57,15 +54,10 @@ bool AP_InertialSensor_HIL::_init_sensor(AP_InertialSensor::Sample_rate sample_r
|
||||
|
||||
bool AP_InertialSensor_HIL::update(void)
|
||||
{
|
||||
uint32_t now = hal.scheduler->micros();
|
||||
while (now - _last_sample_usec > _sample_period_usec) {
|
||||
_last_sample_usec += _sample_period_usec;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_HIL::_sample_available()
|
||||
{
|
||||
return (hal.scheduler->micros() - _last_sample_usec > _sample_period_usec);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -8,7 +8,7 @@
|
||||
class AP_InertialSensor_HIL : public AP_InertialSensor_Backend
|
||||
{
|
||||
public:
|
||||
AP_InertialSensor_HIL(AP_InertialSensor &imu, Vector3f &gyro, Vector3f &accel);
|
||||
AP_InertialSensor_HIL(AP_InertialSensor &imu);
|
||||
|
||||
/* update accel and gyro state */
|
||||
bool update();
|
||||
@ -18,15 +18,12 @@ public:
|
||||
|
||||
// detect the sensor
|
||||
static AP_InertialSensor_Backend *detect(AP_InertialSensor &imu,
|
||||
AP_InertialSensor::Sample_rate sample_rate,
|
||||
Vector3f &gyro,
|
||||
Vector3f &accel);
|
||||
AP_InertialSensor::Sample_rate sample_rate);
|
||||
|
||||
private:
|
||||
bool _init_sensor(AP_InertialSensor::Sample_rate sample_rate);
|
||||
bool _sample_available(void);
|
||||
uint32_t _sample_period_usec;
|
||||
uint32_t _last_sample_usec;
|
||||
};
|
||||
|
||||
#endif // __AP_INERTIALSENSOR_HIL_H__
|
||||
|
@ -173,10 +173,8 @@ const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532f / 16.4f);
|
||||
* variants however
|
||||
*/
|
||||
|
||||
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu,
|
||||
Vector3f &gyro,
|
||||
Vector3f &accel) :
|
||||
AP_InertialSensor_Backend(imu, gyro, accel),
|
||||
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu) :
|
||||
AP_InertialSensor_Backend(imu),
|
||||
_drdy_pin(NULL),
|
||||
_spi(NULL),
|
||||
_spi_sem(NULL),
|
||||
@ -193,11 +191,9 @@ AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu,
|
||||
detect the sensor
|
||||
*/
|
||||
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::detect(AP_InertialSensor &_imu,
|
||||
AP_InertialSensor::Sample_rate sample_rate,
|
||||
Vector3f &gyro,
|
||||
Vector3f &accel)
|
||||
AP_InertialSensor::Sample_rate sample_rate)
|
||||
{
|
||||
AP_InertialSensor_MPU6000 *sensor = new AP_InertialSensor_MPU6000(_imu, gyro, accel);
|
||||
AP_InertialSensor_MPU6000 *sensor = new AP_InertialSensor_MPU6000(_imu);
|
||||
if (sensor == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
@ -276,21 +272,22 @@ bool AP_InertialSensor_MPU6000::update( void )
|
||||
// we have a full set of samples
|
||||
uint16_t num_samples;
|
||||
uint32_t now = hal.scheduler->micros();
|
||||
Vector3f accel, gyro;
|
||||
|
||||
hal.scheduler->suspend_timer_procs();
|
||||
_gyro(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z);
|
||||
_accel(_accel_sum.x, _accel_sum.y, _accel_sum.z);
|
||||
gyro(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z);
|
||||
accel(_accel_sum.x, _accel_sum.y, _accel_sum.z);
|
||||
num_samples = _sum_count;
|
||||
_accel_sum.zero();
|
||||
_gyro_sum.zero();
|
||||
_sum_count = 0;
|
||||
hal.scheduler->resume_timer_procs();
|
||||
|
||||
_gyro *= _gyro_scale / num_samples;
|
||||
_rotate_and_offset_gyro(_gyro_instance, now);
|
||||
gyro *= _gyro_scale / num_samples;
|
||||
_rotate_and_offset_gyro(_gyro_instance, gyro, now);
|
||||
|
||||
_accel *= MPU6000_ACCEL_SCALE_1G / num_samples;
|
||||
_rotate_and_offset_accel(_accel_instance, now);
|
||||
accel *= MPU6000_ACCEL_SCALE_1G / num_samples;
|
||||
_rotate_and_offset_accel(_accel_instance, accel, now);
|
||||
|
||||
if (_last_filter_hz != _imu.get_filter()) {
|
||||
if (_spi_sem->take(10)) {
|
||||
|
@ -15,7 +15,7 @@
|
||||
class AP_InertialSensor_MPU6000 : public AP_InertialSensor_Backend
|
||||
{
|
||||
public:
|
||||
AP_InertialSensor_MPU6000(AP_InertialSensor &imu, Vector3f &gyro, Vector3f &accel);
|
||||
AP_InertialSensor_MPU6000(AP_InertialSensor &imu);
|
||||
|
||||
/* update accel and gyro state */
|
||||
bool update();
|
||||
@ -25,9 +25,8 @@ public:
|
||||
|
||||
// detect the sensor
|
||||
static AP_InertialSensor_Backend *detect(AP_InertialSensor &imu,
|
||||
AP_InertialSensor::Sample_rate sample_rate,
|
||||
Vector3f &gyro,
|
||||
Vector3f &accel);
|
||||
AP_InertialSensor::Sample_rate sample_rate);
|
||||
|
||||
private:
|
||||
#if MPU6000_DEBUG
|
||||
void _dump_registers(void);
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
#include <AP_HAL.h>
|
||||
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
||||
|
||||
#include "AP_InertialSensor_PX4.h"
|
||||
|
||||
const extern AP_HAL::HAL& hal;
|
||||
@ -15,11 +16,35 @@ const extern AP_HAL::HAL& hal;
|
||||
#include <drivers/drv_gyro.h>
|
||||
#include <drivers/drv_hrt.h>
|
||||
|
||||
#include <AP_Notify.h>
|
||||
#include <stdio.h>
|
||||
|
||||
uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate )
|
||||
AP_InertialSensor_PX4::AP_InertialSensor_PX4(AP_InertialSensor &imu) :
|
||||
AP_InertialSensor_Backend(imu),
|
||||
_last_get_sample_timestamp(0),
|
||||
_sample_time_usec(0)
|
||||
{
|
||||
// assumes max 2 instances
|
||||
}
|
||||
|
||||
/*
|
||||
detect the sensor
|
||||
*/
|
||||
AP_InertialSensor_Backend *AP_InertialSensor_PX4::detect(AP_InertialSensor &_imu,
|
||||
AP_InertialSensor::Sample_rate sample_rate)
|
||||
{
|
||||
AP_InertialSensor_PX4 *sensor = new AP_InertialSensor_PX4(_imu);
|
||||
if (sensor == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
if (!sensor->_init_sensor(sample_rate)) {
|
||||
delete sensor;
|
||||
return NULL;
|
||||
}
|
||||
return sensor;
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_PX4::_init_sensor(AP_InertialSensor::Sample_rate sample_rate)
|
||||
{
|
||||
// assumes max 3 instances
|
||||
_accel_fd[0] = open(ACCEL_DEVICE_PATH, O_RDONLY);
|
||||
_accel_fd[1] = open(ACCEL_DEVICE_PATH "1", O_RDONLY);
|
||||
_accel_fd[2] = open(ACCEL_DEVICE_PATH "2", O_RDONLY);
|
||||
@ -32,45 +57,44 @@ uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate )
|
||||
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
|
||||
if (_accel_fd[i] >= 0) {
|
||||
_num_accel_instances = i+1;
|
||||
_accel_instance[i] = _imu.register_accel();
|
||||
}
|
||||
if (_gyro_fd[i] >= 0) {
|
||||
_num_gyro_instances = i+1;
|
||||
_gyro_instance[i] = _imu.register_gyro();
|
||||
}
|
||||
}
|
||||
if (_num_accel_instances == 0) {
|
||||
hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH);
|
||||
return false;
|
||||
}
|
||||
if (_num_gyro_instances == 0) {
|
||||
hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH);
|
||||
return false;
|
||||
}
|
||||
|
||||
switch (sample_rate) {
|
||||
case RATE_50HZ:
|
||||
case AP_InertialSensor::RATE_50HZ:
|
||||
_default_filter_hz = 15;
|
||||
_sample_time_usec = 20000;
|
||||
break;
|
||||
case RATE_100HZ:
|
||||
case AP_InertialSensor::RATE_100HZ:
|
||||
_default_filter_hz = 30;
|
||||
_sample_time_usec = 10000;
|
||||
break;
|
||||
case RATE_200HZ:
|
||||
case AP_InertialSensor::RATE_200HZ:
|
||||
_default_filter_hz = 30;
|
||||
_sample_time_usec = 5000;
|
||||
break;
|
||||
case RATE_400HZ:
|
||||
default:
|
||||
case AP_InertialSensor::RATE_400HZ:
|
||||
_default_filter_hz = 30;
|
||||
_sample_time_usec = 2500;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
_set_filter_frequency(_mpu6000_filter);
|
||||
_set_filter_frequency(_imu.get_filter());
|
||||
|
||||
#if defined(CONFIG_ARCH_BOARD_PX4FMU_V2)
|
||||
return AP_PRODUCT_ID_PX4_V2;
|
||||
#else
|
||||
return AP_PRODUCT_ID_PX4;
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -89,109 +113,33 @@ void AP_InertialSensor_PX4::_set_filter_frequency(uint8_t filter_hz)
|
||||
}
|
||||
}
|
||||
|
||||
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
|
||||
|
||||
// multi-device interface
|
||||
bool AP_InertialSensor_PX4::get_gyro_health(uint8_t instance) const
|
||||
{
|
||||
if (_sample_time_usec == 0 || _last_get_sample_timestamp == 0) {
|
||||
// not initialised yet, show as healthy to prevent scary GCS
|
||||
// warnings
|
||||
return true;
|
||||
}
|
||||
if (instance >= _num_gyro_instances) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((_last_get_sample_timestamp - _last_gyro_timestamp[instance]) > 2*_sample_time_usec) {
|
||||
// gyros have not updated
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
uint8_t AP_InertialSensor_PX4::get_gyro_count(void) const
|
||||
{
|
||||
return _num_gyro_instances;
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_PX4::get_accel_health(uint8_t k) const
|
||||
{
|
||||
if (_sample_time_usec == 0 || _last_get_sample_timestamp == 0) {
|
||||
// not initialised yet, show as healthy to prevent scary GCS
|
||||
// warnings
|
||||
return true;
|
||||
}
|
||||
if (k >= _num_accel_instances) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((_last_get_sample_timestamp - _last_accel_timestamp[k]) > 2*_sample_time_usec) {
|
||||
// accels have not updated
|
||||
return false;
|
||||
}
|
||||
if (fabsf(_accel[k].x) > 30 && fabsf(_accel[k].y) > 30 && fabsf(_accel[k].z) > 30 &&
|
||||
(_previous_accel[k] - _accel[k]).length() < 0.01f) {
|
||||
// unchanging accel, large in all 3 axes. This is a likely
|
||||
// accelerometer failure of the LSM303d
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
||||
}
|
||||
|
||||
uint8_t AP_InertialSensor_PX4::get_accel_count(void) const
|
||||
{
|
||||
return _num_accel_instances;
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_PX4::update(void)
|
||||
{
|
||||
if (!wait_for_sample(100)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// get the latest sample from the sensor drivers
|
||||
_get_sample();
|
||||
|
||||
uint32_t now = hal.scheduler->micros();
|
||||
|
||||
for (uint8_t k=0; k<_num_accel_instances; k++) {
|
||||
_previous_accel[k] = _accel[k];
|
||||
_accel[k] = _accel_in[k];
|
||||
_accel[k].rotate(_board_orientation);
|
||||
_accel[k].x *= _accel_scale[k].get().x;
|
||||
_accel[k].y *= _accel_scale[k].get().y;
|
||||
_accel[k].z *= _accel_scale[k].get().z;
|
||||
_accel[k] -= _accel_offset[k];
|
||||
Vector3f accel = _accel_in[k];
|
||||
_rotate_and_offset_accel(_accel_instance[k], accel, now);
|
||||
_last_accel_update_timestamp[k] = _last_accel_timestamp[k];
|
||||
}
|
||||
|
||||
for (uint8_t k=0; k<_num_gyro_instances; k++) {
|
||||
_gyro[k] = _gyro_in[k];
|
||||
_gyro[k].rotate(_board_orientation);
|
||||
_gyro[k] -= _gyro_offset[k];
|
||||
Vector3f gyro = _gyro_in[k];
|
||||
_rotate_and_offset_gyro(_gyro_instance[k], gyro, now);
|
||||
_last_gyro_update_timestamp[k] = _last_gyro_timestamp[k];
|
||||
}
|
||||
|
||||
if (_last_filter_hz != _mpu6000_filter) {
|
||||
_set_filter_frequency(_mpu6000_filter);
|
||||
_last_filter_hz = _mpu6000_filter;
|
||||
if (_last_filter_hz != _imu.get_filter()) {
|
||||
_set_filter_frequency(_imu.get_filter());
|
||||
_last_filter_hz = _imu.get_filter();
|
||||
}
|
||||
|
||||
_have_sample_available = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
float AP_InertialSensor_PX4::get_delta_time(void) const
|
||||
{
|
||||
return _sample_time_usec * 1.0e-6f;
|
||||
}
|
||||
|
||||
float AP_InertialSensor_PX4::get_gyro_drift_rate(void)
|
||||
{
|
||||
// assume 0.5 degrees/second/minute
|
||||
return ToRad(0.5/60);
|
||||
}
|
||||
|
||||
void AP_InertialSensor_PX4::_get_sample(void)
|
||||
{
|
||||
for (uint8_t i=0; i<_num_accel_instances; i++) {
|
||||
@ -215,59 +163,26 @@ void AP_InertialSensor_PX4::_get_sample(void)
|
||||
_last_get_sample_timestamp = hal.scheduler->micros64();
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_PX4::_sample_available(void)
|
||||
bool AP_InertialSensor_PX4::gyro_sample_available(void)
|
||||
{
|
||||
uint64_t tnow = hal.scheduler->micros64();
|
||||
while (tnow - _last_sample_timestamp > _sample_time_usec) {
|
||||
_have_sample_available = true;
|
||||
_last_sample_timestamp += _sample_time_usec;
|
||||
}
|
||||
return _have_sample_available;
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_PX4::wait_for_sample(uint16_t timeout_ms)
|
||||
{
|
||||
if (_sample_available()) {
|
||||
return true;
|
||||
}
|
||||
uint64_t start = hal.scheduler->millis64();
|
||||
while ((hal.scheduler->millis64() - start) < timeout_ms) {
|
||||
uint64_t tnow = hal.scheduler->micros64();
|
||||
// we spin for the last timing_lag microseconds. Before that
|
||||
// we yield the CPU to allow IO to happen
|
||||
const uint16_t timing_lag = 400;
|
||||
if (_last_sample_timestamp + _sample_time_usec > tnow+timing_lag) {
|
||||
hal.scheduler->delay_microseconds(_last_sample_timestamp + _sample_time_usec - (tnow+timing_lag));
|
||||
}
|
||||
if (_sample_available()) {
|
||||
_get_sample();
|
||||
for (uint8_t i=0; i<_num_gyro_instances; i++) {
|
||||
if (_last_gyro_timestamp[i] != _last_gyro_update_timestamp[i]) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
try to detect bad accel/gyro sensors
|
||||
*/
|
||||
bool AP_InertialSensor_PX4::healthy(void) const
|
||||
{
|
||||
return get_gyro_health(0) && get_accel_health(0);
|
||||
}
|
||||
|
||||
uint8_t AP_InertialSensor_PX4::_get_primary_gyro(void) const
|
||||
{
|
||||
for (uint8_t i=0; i<_num_gyro_instances; i++) {
|
||||
if (get_gyro_health(i)) return i;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t AP_InertialSensor_PX4::get_primary_accel(void) const
|
||||
bool AP_InertialSensor_PX4::accel_sample_available(void)
|
||||
{
|
||||
_get_sample();
|
||||
for (uint8_t i=0; i<_num_accel_instances; i++) {
|
||||
if (get_accel_health(i)) return i;
|
||||
if (_last_accel_timestamp[i] != _last_accel_update_timestamp[i]) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif // CONFIG_HAL_BOARD
|
||||
|
@ -13,47 +13,35 @@
|
||||
#include <uORB/uORB.h>
|
||||
#include <uORB/topics/sensor_combined.h>
|
||||
|
||||
class AP_InertialSensor_PX4 : public AP_InertialSensor
|
||||
class AP_InertialSensor_PX4 : public AP_InertialSensor_Backend
|
||||
{
|
||||
public:
|
||||
|
||||
AP_InertialSensor_PX4() :
|
||||
AP_InertialSensor(),
|
||||
_last_get_sample_timestamp(0),
|
||||
_sample_time_usec(0)
|
||||
{
|
||||
}
|
||||
AP_InertialSensor_PX4(AP_InertialSensor &imu);
|
||||
|
||||
/* Concrete implementation of AP_InertialSensor functions: */
|
||||
bool update();
|
||||
float get_delta_time() const;
|
||||
float get_gyro_drift_rate();
|
||||
bool wait_for_sample(uint16_t timeout_ms);
|
||||
bool healthy(void) const;
|
||||
/* update accel and gyro state */
|
||||
bool update();
|
||||
|
||||
// multi-device interface
|
||||
bool get_gyro_health(uint8_t instance) const;
|
||||
uint8_t get_gyro_count(void) const;
|
||||
// detect the sensor
|
||||
static AP_InertialSensor_Backend *detect(AP_InertialSensor &imu,
|
||||
AP_InertialSensor::Sample_rate sample_rate);
|
||||
|
||||
bool get_accel_health(uint8_t instance) const;
|
||||
uint8_t get_accel_count(void) const;
|
||||
|
||||
uint8_t get_primary_accel(void) const;
|
||||
bool gyro_sample_available(void);
|
||||
bool accel_sample_available(void);
|
||||
|
||||
private:
|
||||
uint8_t _get_primary_gyro(void) const;
|
||||
|
||||
uint16_t _init_sensor( Sample_rate sample_rate );
|
||||
bool _init_sensor(AP_InertialSensor::Sample_rate sample_rate);
|
||||
void _get_sample(void);
|
||||
bool _sample_available(void);
|
||||
Vector3f _accel_in[INS_MAX_INSTANCES];
|
||||
Vector3f _gyro_in[INS_MAX_INSTANCES];
|
||||
uint64_t _last_accel_timestamp[INS_MAX_INSTANCES];
|
||||
uint64_t _last_gyro_timestamp[INS_MAX_INSTANCES];
|
||||
uint64_t _last_accel_update_timestamp[INS_MAX_INSTANCES];
|
||||
uint64_t _last_gyro_update_timestamp[INS_MAX_INSTANCES];
|
||||
uint64_t _last_get_sample_timestamp;
|
||||
uint64_t _last_sample_timestamp;
|
||||
uint32_t _sample_time_usec;
|
||||
bool _have_sample_available;
|
||||
|
||||
// support for updating filter at runtime
|
||||
uint8_t _last_filter_hz;
|
||||
@ -64,8 +52,14 @@ private:
|
||||
// accelerometer and gyro driver handles
|
||||
uint8_t _num_accel_instances;
|
||||
uint8_t _num_gyro_instances;
|
||||
|
||||
int _accel_fd[INS_MAX_INSTANCES];
|
||||
int _gyro_fd[INS_MAX_INSTANCES];
|
||||
|
||||
// indexes in frontend object. Note that these could be different
|
||||
// from the backend indexes
|
||||
uint8_t _accel_instance[INS_MAX_INSTANCES];
|
||||
uint8_t _gyro_instance[INS_MAX_INSTANCES];
|
||||
};
|
||||
#endif
|
||||
#endif // __AP_INERTIAL_SENSOR_PX4_H__
|
||||
|
Loading…
Reference in New Issue
Block a user