Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor.cpp

463 lines
12 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <FastSerial.h>
#include "AP_InertialSensor.h"
#include <SPI.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include <wiring.h>
#endif
#define FLASH_LEDS(on) do { if (flash_leds_cb != NULL) flash_leds_cb(on); } while (0)
#define SAMPLE_UNIT 1
// Class level parameters
const AP_Param::GroupInfo AP_InertialSensor::var_info[] PROGMEM = {
AP_GROUPINFO("PRODUCT_ID", 0, AP_InertialSensor, _product_id, 0),
AP_GROUPINFO("ACCSCA", 1, AP_InertialSensor, _accel_scale, 0),
AP_GROUPINFO("ACCOFF", 2, AP_InertialSensor, _accel_offset, 0),
AP_GROUPINFO("GYROFF", 3, AP_InertialSensor, _gyro_offset, 0),
AP_GROUPEND
};
AP_InertialSensor::AP_InertialSensor()
{
}
void
AP_InertialSensor::init( Start_style style,
void (*delay_cb)(unsigned long t),
void (*flash_leds_cb)(bool on),
AP_PeriodicProcess * scheduler )
{
_product_id = _init(scheduler);
// check scaling
Vector3f accel_scale = _accel_scale.get();
if( accel_scale.x == 0 && accel_scale.y == 0 && accel_scale.z == 0 ) {
accel_scale.x = accel_scale.y = accel_scale.z = 1.0;
_accel_scale.set(accel_scale);
}
// if we are warm-starting, load the calibration data from EEPROM and go
if (WARM_START == style) {
load_parameters();
} else {
// do cold-start calibration for both accel and gyro
_init_gyro(delay_cb, flash_leds_cb);
// save calibration
save_parameters();
}
}
// save parameters to eeprom
void AP_InertialSensor::load_parameters()
{
_product_id.load();
_accel_scale.load();
_accel_offset.load();
}
// save parameters to eeprom
void AP_InertialSensor::save_parameters()
{
_product_id.save();
_accel_scale.save();
_accel_offset.save();
}
void
AP_InertialSensor::init_gyro(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on))
{
_init_gyro(delay_cb, flash_leds_cb);
// save calibration
save_parameters();
}
void
AP_InertialSensor::_init_gyro(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on))
{
Vector3f last_average, best_avg;
Vector3f ins_gyro;
float best_diff = 0;
// cold start
delay_cb(100);
Serial.printf_P(PSTR("Init Gyro"));
// remove existing gyro offsets
_gyro_offset = Vector3f(0,0,0);
for(int16_t c = 0; c < 25; c++) {
// Mostly we are just flashing the LED's here
// to tell the user to keep the IMU still
FLASH_LEDS(true);
delay_cb(20);
update();
ins_gyro = get_gyro();
FLASH_LEDS(false);
delay_cb(20);
}
// the strategy is to average 200 points over 1 second, then do it
// again and see if the 2nd average is within a small margin of
// the first
last_average.zero();
// we try to get a good calibration estimate for up to 10 seconds
// if the gyros are stable, we should get it in 2 seconds
for (int16_t j = 0; j <= 10; j++) {
Vector3f gyro_sum, gyro_avg, gyro_diff;
float diff_norm;
uint8_t i;
Serial.printf_P(PSTR("*"));
gyro_sum.zero();
for (i=0; i<200; i++) {
update();
ins_gyro = get_gyro();
gyro_sum += ins_gyro;
if (i % 40 == 20) {
FLASH_LEDS(true);
} else if (i % 40 == 0) {
FLASH_LEDS(false);
}
delay_cb(5);
}
gyro_avg = gyro_sum / i;
gyro_diff = last_average - gyro_avg;
diff_norm = gyro_diff.length();
if (j == 0) {
best_diff = diff_norm;
best_avg = gyro_avg;
} else if (gyro_diff.length() < ToRad(0.04)) {
// we want the average to be within 0.1 bit, which is 0.04 degrees/s
last_average = (gyro_avg * 0.5) + (last_average * 0.5);
_gyro_offset = last_average;
// all done
return;
} else if (diff_norm < best_diff) {
best_diff = diff_norm;
best_avg = (gyro_avg * 0.5) + (last_average * 0.5);
}
last_average = gyro_avg;
}
// we've kept the user waiting long enough - use the best pair we
// found so far
Serial.printf_P(PSTR("\ngyro did not converge: diff=%f dps\n"), ToDeg(best_diff));
_gyro_offset = best_avg;
}
void
AP_InertialSensor::init_accel(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on))
{
_init_accel(delay_cb, flash_leds_cb);
// save calibration
save_parameters();
}
void
AP_InertialSensor::_init_accel(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on))
{
int16_t flashcount = 0;
Vector3f ins_accel;
Vector3f prev;
Vector3f accel_offset;
float total_change;
float max_offset;
// cold start
delay_cb(500);
Serial.printf_P(PSTR("Init Accel"));
// clear accelerometer offsets and scaling
_accel_offset = Vector3f(0,0,0);
_accel_scale = Vector3f(1,1,1);
// initialise accel offsets to a large value the first time
// this will force us to calibrate accels at least twice
accel_offset = Vector3f(500, 500, 500);
// loop until we calculate acceptable offsets
do {
// get latest accelerometer values
update();
ins_accel = get_accel();
// store old offsets
prev = accel_offset;
// get new offsets
accel_offset = ins_accel;
// We take some readings...
for(int16_t i = 0; i < 50; i++) {
delay_cb(20);
update();
ins_accel = get_accel();
// low pass filter the offsets
accel_offset = accel_offset * 0.9 + ins_accel * 0.1;
// display some output to the user
if(flashcount == 5) {
Serial.printf_P(PSTR("*"));
FLASH_LEDS(true);
}
if(flashcount >= 10) {
flashcount = 0;
FLASH_LEDS(false);
}
flashcount++;
}
// null gravity from the Z accel
// TO-DO: replace with gravity #define form location.cpp
accel_offset.z += GRAVITY;
total_change = fabs(prev.x - accel_offset.x) + fabs(prev.y - accel_offset.y) + fabs(prev.z - accel_offset.z);
max_offset = (accel_offset.x > accel_offset.y) ? accel_offset.x : accel_offset.y;
max_offset = (max_offset > accel_offset.z) ? max_offset : accel_offset.z;
delay_cb(500);
} while ( total_change > AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE || max_offset > AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET);
// set the global accel offsets
_accel_offset = accel_offset;
Serial.printf_P(PSTR(" "));
}
// perform accelerometer calibration including providing user instructions and feedback
void AP_InertialSensor::calibrate_accel(void (*callback)(unsigned long t), void (*flash_leds_cb)(bool on))
{
Vector3f samples[6];
Vector3f new_offsets;
Vector3f new_scaling;
// clear accelerometer offsets and scaling
_accel_offset = Vector3f(0,0,0);
_accel_scale = Vector3f(1,1,1);
// capture data from 6 positions
for(int16_t i=0; i<6; i++ ) {
// display message to user
Serial.print_P(PSTR("Place APM "));
switch( i ) {
case 0:
Serial.print_P(PSTR("level"));
break;
case 1:
Serial.print_P(PSTR("on it's left side"));
break;
case 2:
Serial.print_P(PSTR("on it's right side"));
break;
case 3:
Serial.print_P(PSTR("nose down"));
break;
case 4:
Serial.print_P(PSTR("nose up"));
break;
case 5:
Serial.print_P(PSTR("on it's back"));
break;
default:
// should never happen
break;
}
Serial.print_P(PSTR(" and press any key.\n"));
// wait for user input
while( !Serial.available() ) {
delay(20);
}
// clear unput buffer
while( Serial.available() ) {
Serial.read();
}
// clear out any existing samples from ins
update();
// wait until we have 32 samples
while( num_samples_available() < 32 * SAMPLE_UNIT ) {
delay(1);
}
// read samples from ins
update();
// capture sample
samples[i] = get_accel();
// display sample
Serial.printf_P(PSTR("Acc X:%4.2f\tY:%4.2f\tZ:%4.2f\n"),samples[i].x,samples[i].y,samples[i].z);
}
// run the calibration routine
if( _calibrate_accel(samples, new_offsets, new_scaling) ) {
_accel_offset.set(new_offsets);
_accel_scale.set(new_scaling);
// save calibration
save_parameters();
}else{
Serial.printf_P(PSTR("Accel calibration failed"));
}
}
// _calibrate_model - perform low level accel calibration
// accel_sample are accelerometer samples collected in 6 different positions
// accel_offsets are output from the calibration routine
// accel_scale are output from the calibration routine
// returns true if successful
bool AP_InertialSensor::_calibrate_accel( Vector3f accel_sample[6], Vector3f& accel_offsets, Vector3f& accel_scale )
{
int16_t i;
int16_t num_iterations = 0;
float eps = 0.000000001;
float change = 100.0;
float data[3];
float beta[6];
float delta[6];
float ds[6];
float JS[6][6];
// reset
beta[0] = beta[1] = beta[2] = 0;
beta[3] = beta[4] = beta[5] = 1.0/GRAVITY;
while( num_iterations < 20 && change > eps ) {
num_iterations++;
_calibrate_reset_matrices(ds, JS);
for( i=0; i<6; i++ ) {
data[0] = accel_sample[i].x;
data[1] = accel_sample[i].y;
data[2] = accel_sample[i].z;
_calibrate_update_matrices(ds, JS, beta, data);
}
_calibrate_find_delta(ds, JS, delta);
change = delta[0]*delta[0] +
delta[0]*delta[0] +
delta[1]*delta[1] +
delta[2]*delta[2] +
delta[3]*delta[3] / (beta[3]*beta[3]) +
delta[4]*delta[4] / (beta[4]*beta[4]) +
delta[5]*delta[5] / (beta[5]*beta[5]);
for( i=0; i<6; i++ ) {
beta[i] -= delta[i];
}
}
// copy results out
accel_scale.x = beta[3] * GRAVITY;
accel_scale.y = beta[4] * GRAVITY;
accel_scale.z = beta[5] * GRAVITY;
accel_offsets.x = beta[0] * accel_scale.x;
accel_offsets.y = beta[1] * accel_scale.y;
accel_offsets.z = beta[2] * accel_scale.z;
// always return success
return true;
}
void AP_InertialSensor::_calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3])
{
int16_t j, k;
float dx, b;
float residual = 1.0;
float jacobian[6];
for( j=0; j<3; j++ ) {
b = beta[3+j];
dx = (float)data[j] - beta[j];
residual -= b*b*dx*dx;
jacobian[j] = 2.0*b*b*dx;
jacobian[3+j] = -2.0*b*dx*dx;
}
for( j=0; j<6; j++ ) {
dS[j] += jacobian[j]*residual;
for( k=0; k<6; k++ ) {
JS[j][k] += jacobian[j]*jacobian[k];
}
}
}
// _calibrate_reset_matrices - clears matrices
void AP_InertialSensor::_calibrate_reset_matrices(float dS[6], float JS[6][6])
{
int16_t j,k;
for( j=0; j<6; j++ ) {
dS[j] = 0.0;
for( k=0; k<6; k++ ) {
JS[j][k] = 0.0;
}
}
}
void AP_InertialSensor::_calibrate_find_delta(float dS[6], float JS[6][6], float delta[6])
{
//Solve 6-d matrix equation JS*x = dS
//first put in upper triangular form
int16_t i,j,k;
float mu;
//make upper triangular
for( i=0; i<6; i++ ) {
//eliminate all nonzero entries below JS[i][i]
for( j=i+1; j<6; j++ ) {
mu = JS[i][j]/JS[i][i];
if( mu != 0.0 ) {
dS[j] -= mu*dS[i];
for( k=j; k<6; k++ ) {
JS[k][j] -= mu*JS[k][i];
}
}
}
}
//back-substitute
for( i=5; i>=0; i-- ) {
dS[i] /= JS[i][i];
JS[i][i] = 1.0;
for( j=0; j<i; j++ ) {
mu = JS[i][j];
dS[j] -= mu*dS[i];
JS[i][j] = 0.0;
}
}
for( i=0; i<6; i++ ) {
delta[i] = dS[i];
}
}