Ardupilot2/libraries/AP_Motors/AP_MotorsSingle.cpp

366 lines
16 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsSingle.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_MotorsSingle.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsSingle::var_info[] = {
// variables from parent vehicle
AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0),
// parameters 1 ~ 29 were reserved for tradheli
// parameters 30 ~ 39 reserved for tricopter
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files)
// @Param: ROLL_SV_REV
// @DisplayName: Reverse roll feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Reversed,1:Normal
AP_GROUPINFO("ROLL_SV_REV", 40, AP_MotorsSingle, _roll_reverse, AP_MOTORS_SING_POSITIVE),
// @Param: PITCH_SV_REV
// @DisplayName: Reverse pitch feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Reversed,1:Normal
AP_GROUPINFO("PITCH_SV_REV", 41, AP_MotorsSingle, _pitch_reverse, AP_MOTORS_SING_POSITIVE),
// @Param: YAW_SV_REV
// @DisplayName: Reverse yaw feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Reversed,1:Normal
AP_GROUPINFO("YAW_SV_REV", 42, AP_MotorsSingle, _yaw_reverse, AP_MOTORS_SING_POSITIVE),
// @Param: SV_SPEED
// @DisplayName: Servo speed
// @Description: Servo update speed in hz
// @Values: 50, 125, 250
AP_GROUPINFO("SV_SPEED", 43, AP_MotorsSingle, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS),
AP_GROUPEND
};
// init
void AP_MotorsSingle::Init()
{
// set update rate for the 3 motors (but not the servo on channel 7)
set_update_rate(_speed_hz);
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_5] = true;
motor_enabled[AP_MOTORS_MOT_6] = true;
// we set four servos to angle
_servo1.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo2.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo3.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo4.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo1.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
_servo2.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
_servo3.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
_servo4.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
// disable CH7 from being used as an aux output (i.e. for camera gimbal, etc)
RC_Channel_aux::disable_aux_channel(CH_7);
}
// set update rate to motors - a value in hertz
void AP_MotorsSingle::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// set update rate for the 3 motors (but not the servo on channel 7)
uint32_t mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_3 |
1U << AP_MOTORS_MOT_4 ;
rc_set_freq(mask, _servo_speed);
uint32_t mask2 =
1U << AP_MOTORS_MOT_5 |
1U << AP_MOTORS_MOT_6 ;
rc_set_freq(mask2, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsSingle::enable()
{
// enable output channels
rc_enable_ch(AP_MOTORS_MOT_1);
rc_enable_ch(AP_MOTORS_MOT_2);
rc_enable_ch(AP_MOTORS_MOT_3);
rc_enable_ch(AP_MOTORS_MOT_4);
rc_enable_ch(AP_MOTORS_MOT_5);
rc_enable_ch(AP_MOTORS_MOT_6);
}
// output_min - sends minimum values out to the motor and trim values to the servos
void AP_MotorsSingle::output_min()
{
// send minimum value to each motor
hal.rcout->cork();
rc_write(AP_MOTORS_MOT_1, _servo1.radio_trim);
rc_write(AP_MOTORS_MOT_2, _servo2.radio_trim);
rc_write(AP_MOTORS_MOT_3, _servo3.radio_trim);
rc_write(AP_MOTORS_MOT_4, _servo4.radio_trim);
rc_write(AP_MOTORS_MOT_5, _throttle_radio_min);
rc_write(AP_MOTORS_MOT_6, _throttle_radio_min);
hal.rcout->push();
}
void AP_MotorsSingle::output_to_motors()
{
switch (_multicopter_flags.spool_mode) {
case SHUT_DOWN:
// sends minimum values out to the motors
hal.rcout->cork();
rc_write(AP_MOTORS_MOT_1, calc_pivot_radio_output(constrain_float(_roll_radio_passthrough+_yaw_radio_passthrough, -1.0f, 1.0f) *_servo_1_reverse, _servo_1_min, _servo_1_trim, _servo_1_max));
rc_write(AP_MOTORS_MOT_2, calc_pivot_radio_output(constrain_float(_pitch_radio_passthrough+_yaw_radio_passthrough, -1.0f, 1.0f) *_servo_2_reverse, _servo_2_min, _servo_2_trim, _servo_2_max));
rc_write(AP_MOTORS_MOT_3, calc_pivot_radio_output(constrain_float(-_roll_radio_passthrough+_yaw_radio_passthrough, -1.0f, 1.0f) *_servo_3_reverse, _servo_3_min, _servo_3_trim, _servo_3_max));
rc_write(AP_MOTORS_MOT_4, calc_pivot_radio_output(constrain_float(-_pitch_radio_passthrough+_yaw_radio_passthrough, -1.0f, 1.0f) *_servo_4_reverse, _servo_4_min, _servo_4_trim, _servo_4_max));
rc_write(AP_MOTORS_MOT_5, _throttle_radio_min);
rc_write(AP_MOTORS_MOT_6, _throttle_radio_min);
hal.rcout->push();
break;
case SPIN_WHEN_ARMED:
// sends output to motors when armed but not flying
hal.rcout->cork();
rc_write(AP_MOTORS_MOT_1, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[0]*_servo_1_reverse, _servo_1_min, _servo_1_trim, _servo_1_max));
rc_write(AP_MOTORS_MOT_2, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[1]*_servo_2_reverse, _servo_2_min, _servo_2_trim, _servo_2_max));
rc_write(AP_MOTORS_MOT_3, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[2]*_servo_3_reverse, _servo_3_min, _servo_3_trim, _servo_3_max));
rc_write(AP_MOTORS_MOT_4, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[3]*_servo_4_reverse, _servo_4_min, _servo_4_trim, _servo_4_max));
rc_write(AP_MOTORS_MOT_5, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle));
rc_write(AP_MOTORS_MOT_6, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle));
hal.rcout->push();
break;
case SPOOL_UP:
case THROTTLE_UNLIMITED:
case SPOOL_DOWN:
// set motor output based on thrust requests
hal.rcout->cork();
rc_write(AP_MOTORS_MOT_1, calc_pivot_radio_output(_actuator_out[0]*_servo_1_reverse, _servo_1_min, _servo_1_trim, _servo_1_max));
rc_write(AP_MOTORS_MOT_2, calc_pivot_radio_output(_actuator_out[1]*_servo_2_reverse, _servo_2_min, _servo_2_trim, _servo_2_max));
rc_write(AP_MOTORS_MOT_3, calc_pivot_radio_output(_actuator_out[2]*_servo_3_reverse, _servo_3_min, _servo_3_trim, _servo_3_max));
rc_write(AP_MOTORS_MOT_4, calc_pivot_radio_output(_actuator_out[3]*_servo_4_reverse, _servo_4_min, _servo_4_trim, _servo_4_max));
rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_out));
rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_out));
hal.rcout->push();
break;
}
}
2014-07-26 04:28:10 -03:00
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsSingle::get_motor_mask()
{
uint32_t mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_3 |
1U << AP_MOTORS_MOT_4 |
1U << AP_MOTORS_MOT_5 |
1U << AP_MOTORS_MOT_6;
return rc_map_mask(mask);
2014-07-26 04:28:10 -03:00
}
// sends commands to the motors
void AP_MotorsSingle::output_armed_stabilizing()
{
uint8_t i; // general purpose counter
float roll_thrust; // roll thrust input value, +/- 1.0
float pitch_thrust; // pitch thrust input value, +/- 1.0
float yaw_thrust; // yaw thrust input value, +/- 1.0
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
float thrust_min_rp; // the minimum throttle setting that will not limit the roll and pitch output
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); // throttle hover thrust value, 0.0 - 1.0
float throttle_thrust_rpy_mix; // partial calculation of throttle_thrust_best_rpy
float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
float actuator_allowed = 0.0f; // amount of yaw we can fit in
float actuator[NUM_ACTUATORS]; // combined roll, pitch and yaw thrusts for each actuator
float actuator_max = 0.0f; // maximum actuator value
// apply voltage and air pressure compensation
// todo: we shouldn't need input reversing with servo reversing
roll_thrust = _roll_reverse * get_roll_thrust() * get_compensation_gain();
pitch_thrust = _pitch_reverse * get_pitch_thrust() * get_compensation_gain();
yaw_thrust = _yaw_reverse * get_yaw_thrust() * get_compensation_gain();
throttle_thrust = get_throttle() * get_compensation_gain();
// sanity check throttle is above zero and below current limited throttle
if (throttle_thrust <= 0.0f) {
throttle_thrust = 0.0f;
limit.throttle_lower = true;
}
// convert throttle_max from 0~1000 to 0~1 range
if (throttle_thrust >= _throttle_thrust_max) {
throttle_thrust = _throttle_thrust_max;
limit.throttle_upper = true;
}
throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix);
// calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw
if (is_zero(MAX(roll_thrust, pitch_thrust))) {
rpy_scale = 1.0f;
} else {
rpy_scale = (1.0f - MIN(yaw_thrust, (float)_yaw_headroom/1000.0f)) / MAX(roll_thrust, pitch_thrust);
}
if(rpy_scale < 1.0f){
limit.roll_pitch = true;
}else{
rpy_scale = 1.0f;
}
actuator_allowed = 1.0f - rpy_scale * MAX((roll_thrust), (pitch_thrust));
if(fabsf(yaw_thrust) > actuator_allowed){
yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed);
limit.yaw = true;
}
// combine roll, pitch and yaw on each actuator
// front servo
actuator[0] = rpy_scale * roll_thrust + yaw_thrust;
// right servo
actuator[1] = rpy_scale * pitch_thrust + yaw_thrust;
// rear servo
actuator[2] = -rpy_scale * roll_thrust + yaw_thrust;
// left servo
actuator[3] = -rpy_scale * pitch_thrust + yaw_thrust;
// calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces
thrust_min_rp = MAX(MAX((actuator[1]), (actuator[2])), MAX((actuator[3]), (actuator[4])));
thr_adj = throttle_thrust - throttle_thrust_rpy_mix;
if(thr_adj < -(throttle_thrust_rpy_mix - thrust_min_rp)){
// Throttle can't be reduced to the desired level because this would mean roll or pitch control
// would not be able to reach the desired level because of lack of thrust.
thr_adj = -(throttle_thrust_rpy_mix - thrust_min_rp);
limit.throttle_lower = true;
if(thrust_min_rp > throttle_thrust_rpy_mix + thr_adj){
// todo: add limits for roll and pitch separately
limit.yaw = true;
limit.roll_pitch = true;
}
}
// calculate the throttle setting for the lift fan
_thrust_out = throttle_thrust_rpy_mix + thr_adj;
if(is_zero((throttle_thrust_rpy_mix + thr_adj))){
limit.roll_pitch = true;
limit.yaw = true;
for (i=0; i<NUM_ACTUATORS; i++) {
if(actuator[1] < 0.0f){
_actuator_out[i] = -1.0f;
}else if(actuator[i] > 0.0f){
_actuator_out[i] = 1.0f;
}else{
_actuator_out[i] = 0.0f;
}
}
}else{
// calculate the maximum allowed actuator output and maximum requested actuator output
actuator_allowed = (throttle_thrust_rpy_mix + thr_adj);
for (i=0; i<NUM_ACTUATORS; i++) {
if(actuator_max > (actuator[i])){
actuator_max = (actuator[i]);
}
}
if(actuator_max > actuator_allowed){
// roll, pitch and yaw request can not be achieved at full servo defection
// reduce roll, pitch and yaw to reduce the requested defection to maximum
limit.roll_pitch = true;
limit.yaw = true;
rpy_scale = actuator_allowed/actuator_max;
}else{
rpy_scale = 1.0f;
}
// force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared
// static thrust is proportional to the airflow velocity squared
// therefore the torque of the roll and pitch actuators should be approximately proportional to
// the angle of attack multiplied by the static thrust.
for (i=0; i<NUM_ACTUATORS; i++) {
if(actuator_max > (_actuator_out[i])){
_actuator_out[i] = constrain_float(rpy_scale*actuator[i]/(throttle_thrust_rpy_mix + thr_adj), -1.0f, 1.0f);
}
}
}
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsSingle::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// flap servo 1
rc_write(AP_MOTORS_MOT_1, pwm);
break;
case 2:
// flap servo 2
rc_write(AP_MOTORS_MOT_2, pwm);
break;
case 3:
// flap servo 3
rc_write(AP_MOTORS_MOT_3, pwm);
break;
case 4:
// flap servo 4
rc_write(AP_MOTORS_MOT_4, pwm);
break;
case 5:
// spin motor 1
rc_write(AP_MOTORS_MOT_5, pwm);
break;
case 6:
// spin motor 2
rc_write(AP_MOTORS_MOT_6, pwm);
break;
default:
// do nothing
break;
}
}
// calc_yaw_radio_output - calculate final radio output for yaw channel
int16_t AP_MotorsSingle::calc_pivot_radio_output(float yaw_input, int16_t servo_min, int16_t servo_trim, int16_t servo_max)
{
int16_t ret;
if (yaw_input >= 0){
ret = ((yaw_input * (servo_max - servo_trim)) + servo_trim);
} else {
ret = ((yaw_input * (servo_trim - servo_min)) + servo_trim);
}
return ret;
}