AP_MotorsSingle: stability patch uses 0 to 1 range
This commit is contained in:
parent
cffdced838
commit
24a100e429
@ -147,59 +147,124 @@ uint16_t AP_MotorsSingle::get_motor_mask()
|
||||
// sends commands to the motors
|
||||
void AP_MotorsSingle::output_armed_stabilizing()
|
||||
{
|
||||
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
|
||||
int16_t out_min = _throttle_radio_min + _min_throttle;
|
||||
uint8_t i; // general purpose counter
|
||||
float roll_thrust; // roll thrust input value, +/- 1.0
|
||||
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
||||
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
||||
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
|
||||
float thrust_min_rp; // the minimum throttle setting that will not limit the roll and pitch output
|
||||
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
|
||||
float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); // throttle hover thrust value, 0.0 - 1.0
|
||||
float throttle_thrust_rpy_mix; // partial calculation of throttle_thrust_best_rpy
|
||||
float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
|
||||
float actuator_allowed = 0.0f; // amount of yaw we can fit in
|
||||
float actuator[NUM_ACTUATORS]; // combined roll, pitch and yaw thrusts for each actuator
|
||||
float actuator_max = 0.0f; // maximum actuator value
|
||||
|
||||
// initialize limits flags
|
||||
limit.roll_pitch = false;
|
||||
limit.yaw = false;
|
||||
limit.throttle_lower = false;
|
||||
limit.throttle_upper = false;
|
||||
// apply voltage and air pressure compensation
|
||||
// todo: we shouldn't need input reversing with servo reversing
|
||||
roll_thrust = _roll_reverse * get_roll_thrust() * get_compensation_gain();
|
||||
pitch_thrust = _pitch_reverse * get_pitch_thrust() * get_compensation_gain();
|
||||
yaw_thrust = _yaw_reverse * get_yaw_thrust() * get_compensation_gain();
|
||||
throttle_thrust = get_throttle() * get_compensation_gain();
|
||||
|
||||
// Throttle is 0 to 1000 only
|
||||
int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle);
|
||||
if (_throttle_control_input <= thr_in_min) {
|
||||
_throttle_control_input = thr_in_min;
|
||||
// sanity check throttle is above zero and below current limited throttle
|
||||
if (throttle_thrust <= 0.0f) {
|
||||
throttle_thrust = 0.0f;
|
||||
limit.throttle_lower = true;
|
||||
}
|
||||
if (_throttle_control_input >= _max_throttle) {
|
||||
_throttle_control_input = _max_throttle;
|
||||
// convert throttle_max from 0~1000 to 0~1 range
|
||||
if (throttle_thrust >= _throttle_thrust_max) {
|
||||
throttle_thrust = _throttle_thrust_max;
|
||||
limit.throttle_upper = true;
|
||||
}
|
||||
throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix);
|
||||
|
||||
// calculate throttle PWM
|
||||
throttle_radio_output = calc_throttle_radio_output();
|
||||
|
||||
// adjust for thrust curve and voltage scaling
|
||||
throttle_radio_output = apply_thrust_curve_and_volt_scaling(throttle_radio_output, out_min, _throttle_radio_max);
|
||||
|
||||
// ensure motor doesn't drop below a minimum value and stop
|
||||
throttle_radio_output = MAX(throttle_radio_output, out_min);
|
||||
|
||||
// TODO: set limits.roll_pitch and limits.yaw
|
||||
// calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw
|
||||
if (is_zero(MAX(roll_thrust, pitch_thrust))) {
|
||||
rpy_scale = 1.0f;
|
||||
} else {
|
||||
rpy_scale = (1.0f - MIN(yaw_thrust, (float)_yaw_headroom/1000.0f)) / MAX(roll_thrust, pitch_thrust);
|
||||
}
|
||||
if(rpy_scale < 1.0f){
|
||||
limit.roll_pitch = true;
|
||||
}else{
|
||||
rpy_scale = 1.0f;
|
||||
}
|
||||
actuator_allowed = 1.0f - rpy_scale * MAX((roll_thrust), (pitch_thrust));
|
||||
if(fabsf(yaw_thrust) > actuator_allowed){
|
||||
yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed);
|
||||
limit.yaw = true;
|
||||
}
|
||||
|
||||
// combine roll, pitch and yaw on each actuator
|
||||
// front servo
|
||||
_servo1.servo_out = _rev_roll*_roll_control_input + _rev_yaw*_yaw_control_input;
|
||||
actuator[0] = rpy_scale * roll_thrust + yaw_thrust;
|
||||
// right servo
|
||||
_servo2.servo_out = _rev_pitch*_pitch_control_input + _rev_yaw*_yaw_control_input;
|
||||
actuator[1] = rpy_scale * pitch_thrust + yaw_thrust;
|
||||
// rear servo
|
||||
_servo3.servo_out = -_rev_roll*_roll_control_input + _rev_yaw*_yaw_control_input;
|
||||
actuator[2] = -rpy_scale * roll_thrust + yaw_thrust;
|
||||
// left servo
|
||||
_servo4.servo_out = -_rev_pitch*_pitch_control_input + _rev_yaw*_yaw_control_input;
|
||||
actuator[3] = -rpy_scale * pitch_thrust + yaw_thrust;
|
||||
|
||||
_servo1.calc_pwm();
|
||||
_servo2.calc_pwm();
|
||||
_servo3.calc_pwm();
|
||||
_servo4.calc_pwm();
|
||||
// calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces
|
||||
thrust_min_rp = MAX(MAX((actuator[1]), (actuator[2])), MAX((actuator[3]), (actuator[4])));
|
||||
|
||||
// send output to each motor
|
||||
hal.rcout->cork();
|
||||
rc_write(AP_MOTORS_MOT_1, _servo1.radio_out);
|
||||
rc_write(AP_MOTORS_MOT_2, _servo2.radio_out);
|
||||
rc_write(AP_MOTORS_MOT_3, _servo3.radio_out);
|
||||
rc_write(AP_MOTORS_MOT_4, _servo4.radio_out);
|
||||
rc_write(AP_MOTORS_MOT_7, throttle_radio_output);
|
||||
hal.rcout->push();
|
||||
thr_adj = throttle_thrust - throttle_thrust_rpy_mix;
|
||||
if(thr_adj < -(throttle_thrust_rpy_mix - thrust_min_rp)){
|
||||
// Throttle can't be reduced to the desired level because this would mean roll or pitch control
|
||||
// would not be able to reach the desired level because of lack of thrust.
|
||||
thr_adj = -(throttle_thrust_rpy_mix - thrust_min_rp);
|
||||
limit.throttle_lower = true;
|
||||
if(thrust_min_rp > throttle_thrust_rpy_mix + thr_adj){
|
||||
// todo: add limits for roll and pitch separately
|
||||
limit.yaw = true;
|
||||
limit.roll_pitch = true;
|
||||
}
|
||||
}
|
||||
|
||||
// calculate the throttle setting for the lift fan
|
||||
_thrust_out = throttle_thrust_rpy_mix + thr_adj;
|
||||
|
||||
if(is_zero((throttle_thrust_rpy_mix + thr_adj))){
|
||||
limit.roll_pitch = true;
|
||||
limit.yaw = true;
|
||||
for (i=0; i<NUM_ACTUATORS; i++) {
|
||||
if(actuator[1] < 0.0f){
|
||||
_actuator_out[i] = -1.0f;
|
||||
}else if(actuator[i] > 0.0f){
|
||||
_actuator_out[i] = 1.0f;
|
||||
}else{
|
||||
_actuator_out[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
// calculate the maximum allowed actuator output and maximum requested actuator output
|
||||
actuator_allowed = (throttle_thrust_rpy_mix + thr_adj);
|
||||
for (i=0; i<NUM_ACTUATORS; i++) {
|
||||
if(actuator_max > (actuator[i])){
|
||||
actuator_max = (actuator[i]);
|
||||
}
|
||||
}
|
||||
if(actuator_max > actuator_allowed){
|
||||
// roll, pitch and yaw request can not be achieved at full servo defection
|
||||
// reduce roll, pitch and yaw to reduce the requested defection to maximum
|
||||
limit.roll_pitch = true;
|
||||
limit.yaw = true;
|
||||
rpy_scale = actuator_allowed/actuator_max;
|
||||
}else{
|
||||
rpy_scale = 1.0f;
|
||||
}
|
||||
// force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared
|
||||
// static thrust is proportional to the airflow velocity squared
|
||||
// therefore the torque of the roll and pitch actuators should be approximately proportional to
|
||||
// the angle of attack multiplied by the static thrust.
|
||||
for (i=0; i<NUM_ACTUATORS; i++) {
|
||||
if(actuator_max > (_actuator_out[i])){
|
||||
_actuator_out[i] = constrain_float(rpy_scale*actuator[i]/(throttle_thrust_rpy_mix + thr_adj), -1.0f, 1.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// output_test - spin a motor at the pwm value specified
|
||||
|
@ -13,6 +13,8 @@
|
||||
#define AP_MOTORS_SING_POSITIVE 1
|
||||
#define AP_MOTORS_SING_NEGATIVE -1
|
||||
|
||||
#define NUM_ACTUATORS 4
|
||||
|
||||
#define AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS 250 // update rate for digital servos
|
||||
#define AP_MOTORS_SINGLE_SPEED_ANALOG_SERVOS 125 // update rate for analog servos
|
||||
|
||||
@ -61,6 +63,9 @@ protected:
|
||||
// output - sends commands to the motors
|
||||
void output_armed_stabilizing();
|
||||
|
||||
// calc_yaw_radio_output - calculate final radio output for yaw channel
|
||||
int16_t calc_pivot_radio_output(float yaw_input, int16_t servo_min, int16_t servo_trim, int16_t servo_max); // calculate radio output for yaw servo, typically in range of 1100-1900
|
||||
|
||||
// We shouldn't need roll, pitch, and yaw reversing with servo reversing.
|
||||
AP_Int8 _roll_reverse; // Reverse roll output
|
||||
AP_Int8 _pitch_reverse; // Reverse pitch output
|
||||
@ -70,6 +75,7 @@ protected:
|
||||
RC_Channel& _servo2;
|
||||
RC_Channel& _servo3;
|
||||
RC_Channel& _servo4;
|
||||
int16_t _throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
|
||||
AP_Int8 _servo_1_reverse; // Roll servo signal reversing
|
||||
AP_Int16 _servo_1_trim; // Trim or center position of roll servo
|
||||
AP_Int16 _servo_1_min; // Minimum angle limit of roll servo
|
||||
@ -87,4 +93,6 @@ protected:
|
||||
AP_Int16 _servo_4_min; // Minimum angle limit of pitch servo
|
||||
AP_Int16 _servo_4_max; // Maximum angle limit of pitch servo
|
||||
|
||||
float _actuator_out[NUM_ACTUATORS]; // combined roll, pitch, yaw and throttle outputs to motors in 0~1 range
|
||||
float _thrust_out;
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user