Ardupilot2/libraries/AP_Motors/AP_MotorsSingle.cpp

286 lines
11 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsSingle.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include <AP_HAL.h>
#include <AP_Math.h>
#include "AP_MotorsSingle.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsSingle::var_info[] PROGMEM = {
// variables from parent vehicle
AP_NESTEDGROUPINFO(AP_Motors, 0),
// parameters 1 ~ 29 reserved for tradheli
// parameters 30 ~ 39 reserved for tricopter
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files)
// @Param: ROLL_SV_REV
// @DisplayName: Reverse roll feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Reversed,1:Normal
AP_GROUPINFO("ROLL_SV_REV", 40, AP_MotorsSingle, _rev_roll, AP_MOTORS_SING_POSITIVE),
// @Param: PITCH_SV_REV
// @DisplayName: Reverse pitch feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Reversed,1:Normal
AP_GROUPINFO("PITCH_SV_REV", 41, AP_MotorsSingle, _rev_pitch, AP_MOTORS_SING_POSITIVE),
// @Param: YAW_SV_REV
// @DisplayName: Reverse yaw feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Reversed,1:Normal
AP_GROUPINFO("YAW_SV_REV", 42, AP_MotorsSingle, _rev_yaw, AP_MOTORS_SING_POSITIVE),
// @Param: SV_SPEED
// @DisplayName: Servo speed
// @Description: Servo update speed in hz
// @Values: 50, 125, 250
AP_GROUPINFO("SV_SPEED", 43, AP_MotorsSingle, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS),
AP_GROUPEND
};
// init
void AP_MotorsSingle::Init()
{
// call parent Init function to set-up throttle curve
AP_Motors::Init();
// set update rate for the 3 motors (but not the servo on channel 7)
set_update_rate(_speed_hz);
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_7] = true;
// we set four servos to angle
_servo1.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo2.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo3.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo4.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo1.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
_servo2.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
_servo3.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
_servo4.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
// disable CH7 from being used as an aux output (i.e. for camera gimbal, etc)
RC_Channel_aux::disable_aux_channel(CH_7);
}
// set update rate to motors - a value in hertz
void AP_MotorsSingle::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// set update rate for the 3 motors (but not the servo on channel 7)
uint32_t mask =
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]) ;
hal.rcout->set_freq(mask, _servo_speed);
uint32_t mask2 = 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]);
hal.rcout->set_freq(mask2, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsSingle::enable()
{
// enable output channels
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]));
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]));
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]));
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]));
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]));
}
// output_min - sends minimum values out to the motor and trim values to the servos
void AP_MotorsSingle::output_min()
{
// send minimum value to each motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_trim);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_trim);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_trim);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_trim);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), _throttle_radio_min);
}
2014-07-26 04:28:10 -03:00
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsSingle::get_motor_mask()
{
// single copter uses channels 1,2,3,4 and 7
return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << 6);
}
void AP_MotorsSingle::output_armed_not_stabilizing()
{
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
int16_t out_min = _throttle_radio_min + _min_throttle;
// initialize limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = false;
limit.throttle_upper = false;
int16_t thr_in_min = rel_pwm_to_thr_range(_spin_when_armed_ramped);
if (_throttle_control_input <= thr_in_min) {
_throttle_control_input = thr_in_min;
limit.throttle_lower = true;
}
if (_throttle_control_input >= _max_throttle) {
_throttle_control_input = _max_throttle;
limit.throttle_upper = true;
}
throttle_radio_output = calc_throttle_radio_output();
// front servo
_servo1.servo_out = 0;
// right servo
_servo2.servo_out = 0;
// rear servo
_servo3.servo_out = 0;
// left servo
_servo4.servo_out = 0;
_servo1.calc_pwm();
_servo2.calc_pwm();
_servo3.calc_pwm();
_servo4.calc_pwm();
if (throttle_radio_output >= out_min) {
throttle_radio_output = apply_thrust_curve_and_volt_scaling(throttle_radio_output, out_min, _throttle_radio_max);
}
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), throttle_radio_output);
}
// sends commands to the motors
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
void AP_MotorsSingle::output_armed_stabilizing()
{
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
int16_t out_min = _throttle_radio_min + _min_throttle;
// initialize limits flags
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// Throttle is 0 to 1000 only
int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle);
if (_throttle_control_input <= thr_in_min) {
_throttle_control_input = thr_in_min;
limit.throttle_lower = true;
}
if (_throttle_control_input >= _max_throttle) {
_throttle_control_input = _max_throttle;
limit.throttle_upper = true;
}
// calculate throttle PWM
throttle_radio_output = calc_throttle_radio_output();
// adjust for thrust curve and voltage scaling
throttle_radio_output = apply_thrust_curve_and_volt_scaling(throttle_radio_output, out_min, _throttle_radio_max);
// ensure motor doesn't drop below a minimum value and stop
throttle_radio_output = max(throttle_radio_output, out_min);
// TODO: set limits.roll_pitch and limits.yaw
// front servo
_servo1.servo_out = _rev_roll*_roll_control_input + _rev_yaw*_yaw_control_input;
// right servo
_servo2.servo_out = _rev_pitch*_pitch_control_input + _rev_yaw*_yaw_control_input;
// rear servo
_servo3.servo_out = -_rev_roll*_roll_control_input + _rev_yaw*_yaw_control_input;
// left servo
_servo4.servo_out = -_rev_pitch*_pitch_control_input + _rev_yaw*_yaw_control_input;
_servo1.calc_pwm();
_servo2.calc_pwm();
_servo3.calc_pwm();
_servo4.calc_pwm();
// send output to each motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), throttle_radio_output);
}
// output_disarmed - sends commands to the motors
void AP_MotorsSingle::output_disarmed()
{
// Send minimum values to all motors
output_min();
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsSingle::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// flap servo 1
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm);
break;
case 2:
// flap servo 2
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm);
break;
case 3:
// flap servo 3
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), pwm);
break;
case 4:
// flap servo 4
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm);
break;
case 5:
// spin main motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), pwm);
break;
default:
// do nothing
break;
}
}