// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsSingle.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include "AP_MotorsSingle.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsSingle::var_info[] = { // variables from parent vehicle AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0), // parameters 1 ~ 29 were reserved for tradheli // parameters 30 ~ 39 reserved for tricopter // parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files) // @Param: ROLL_SV_REV // @DisplayName: Reverse roll feedback // @Description: Ensure the feedback is negative // @Values: -1:Reversed,1:Normal AP_GROUPINFO("ROLL_SV_REV", 40, AP_MotorsSingle, _roll_reverse, AP_MOTORS_SING_POSITIVE), // @Param: PITCH_SV_REV // @DisplayName: Reverse pitch feedback // @Description: Ensure the feedback is negative // @Values: -1:Reversed,1:Normal AP_GROUPINFO("PITCH_SV_REV", 41, AP_MotorsSingle, _pitch_reverse, AP_MOTORS_SING_POSITIVE), // @Param: YAW_SV_REV // @DisplayName: Reverse yaw feedback // @Description: Ensure the feedback is negative // @Values: -1:Reversed,1:Normal AP_GROUPINFO("YAW_SV_REV", 42, AP_MotorsSingle, _yaw_reverse, AP_MOTORS_SING_POSITIVE), // @Param: SV_SPEED // @DisplayName: Servo speed // @Description: Servo update speed in hz // @Values: 50, 125, 250 AP_GROUPINFO("SV_SPEED", 43, AP_MotorsSingle, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS), AP_GROUPEND }; // init void AP_MotorsSingle::Init() { // set update rate for the 3 motors (but not the servo on channel 7) set_update_rate(_speed_hz); // set the motor_enabled flag so that the main ESC can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_5] = true; motor_enabled[AP_MOTORS_MOT_6] = true; // we set four servos to angle _servo1.set_type(RC_CHANNEL_TYPE_ANGLE); _servo2.set_type(RC_CHANNEL_TYPE_ANGLE); _servo3.set_type(RC_CHANNEL_TYPE_ANGLE); _servo4.set_type(RC_CHANNEL_TYPE_ANGLE); _servo1.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); _servo2.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); _servo3.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); _servo4.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); // disable CH7 from being used as an aux output (i.e. for camera gimbal, etc) RC_Channel_aux::disable_aux_channel(CH_7); } // set update rate to motors - a value in hertz void AP_MotorsSingle::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // set update rate for the 3 motors (but not the servo on channel 7) uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4 ; rc_set_freq(mask, _servo_speed); uint32_t mask2 = 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6 ; rc_set_freq(mask2, _speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsSingle::enable() { // enable output channels rc_enable_ch(AP_MOTORS_MOT_1); rc_enable_ch(AP_MOTORS_MOT_2); rc_enable_ch(AP_MOTORS_MOT_3); rc_enable_ch(AP_MOTORS_MOT_4); rc_enable_ch(AP_MOTORS_MOT_5); rc_enable_ch(AP_MOTORS_MOT_6); } // output_min - sends minimum values out to the motor and trim values to the servos void AP_MotorsSingle::output_min() { // send minimum value to each motor hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, _servo1.radio_trim); rc_write(AP_MOTORS_MOT_2, _servo2.radio_trim); rc_write(AP_MOTORS_MOT_3, _servo3.radio_trim); rc_write(AP_MOTORS_MOT_4, _servo4.radio_trim); rc_write(AP_MOTORS_MOT_5, _throttle_radio_min); rc_write(AP_MOTORS_MOT_6, _throttle_radio_min); hal.rcout->push(); } void AP_MotorsSingle::output_to_motors() { switch (_multicopter_flags.spool_mode) { case SHUT_DOWN: // sends minimum values out to the motors hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, calc_pivot_radio_output(constrain_float(_roll_radio_passthrough+_yaw_radio_passthrough, -1.0f, 1.0f) *_servo_1_reverse, _servo_1_min, _servo_1_trim, _servo_1_max)); rc_write(AP_MOTORS_MOT_2, calc_pivot_radio_output(constrain_float(_pitch_radio_passthrough+_yaw_radio_passthrough, -1.0f, 1.0f) *_servo_2_reverse, _servo_2_min, _servo_2_trim, _servo_2_max)); rc_write(AP_MOTORS_MOT_3, calc_pivot_radio_output(constrain_float(-_roll_radio_passthrough+_yaw_radio_passthrough, -1.0f, 1.0f) *_servo_3_reverse, _servo_3_min, _servo_3_trim, _servo_3_max)); rc_write(AP_MOTORS_MOT_4, calc_pivot_radio_output(constrain_float(-_pitch_radio_passthrough+_yaw_radio_passthrough, -1.0f, 1.0f) *_servo_4_reverse, _servo_4_min, _servo_4_trim, _servo_4_max)); rc_write(AP_MOTORS_MOT_5, _throttle_radio_min); rc_write(AP_MOTORS_MOT_6, _throttle_radio_min); hal.rcout->push(); break; case SPIN_WHEN_ARMED: // sends output to motors when armed but not flying hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[0]*_servo_1_reverse, _servo_1_min, _servo_1_trim, _servo_1_max)); rc_write(AP_MOTORS_MOT_2, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[1]*_servo_2_reverse, _servo_2_min, _servo_2_trim, _servo_2_max)); rc_write(AP_MOTORS_MOT_3, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[2]*_servo_3_reverse, _servo_3_min, _servo_3_trim, _servo_3_max)); rc_write(AP_MOTORS_MOT_4, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[3]*_servo_4_reverse, _servo_4_min, _servo_4_trim, _servo_4_max)); rc_write(AP_MOTORS_MOT_5, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle)); rc_write(AP_MOTORS_MOT_6, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle)); hal.rcout->push(); break; case SPOOL_UP: case THROTTLE_UNLIMITED: case SPOOL_DOWN: // set motor output based on thrust requests hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, calc_pivot_radio_output(_actuator_out[0]*_servo_1_reverse, _servo_1_min, _servo_1_trim, _servo_1_max)); rc_write(AP_MOTORS_MOT_2, calc_pivot_radio_output(_actuator_out[1]*_servo_2_reverse, _servo_2_min, _servo_2_trim, _servo_2_max)); rc_write(AP_MOTORS_MOT_3, calc_pivot_radio_output(_actuator_out[2]*_servo_3_reverse, _servo_3_min, _servo_3_trim, _servo_3_max)); rc_write(AP_MOTORS_MOT_4, calc_pivot_radio_output(_actuator_out[3]*_servo_4_reverse, _servo_4_min, _servo_4_trim, _servo_4_max)); rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_out)); rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_out)); hal.rcout->push(); break; } } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsSingle::get_motor_mask() { uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4 | 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6; return rc_map_mask(mask); } // sends commands to the motors void AP_MotorsSingle::output_armed_stabilizing() { uint8_t i; // general purpose counter float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float thrust_min_rp; // the minimum throttle setting that will not limit the roll and pitch output float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); // throttle hover thrust value, 0.0 - 1.0 float throttle_thrust_rpy_mix; // partial calculation of throttle_thrust_best_rpy float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits float actuator_allowed = 0.0f; // amount of yaw we can fit in float actuator[NUM_ACTUATORS]; // combined roll, pitch and yaw thrusts for each actuator float actuator_max = 0.0f; // maximum actuator value // apply voltage and air pressure compensation // todo: we shouldn't need input reversing with servo reversing roll_thrust = _roll_reverse * get_roll_thrust() * get_compensation_gain(); pitch_thrust = _pitch_reverse * get_pitch_thrust() * get_compensation_gain(); yaw_thrust = _yaw_reverse * get_yaw_thrust() * get_compensation_gain(); throttle_thrust = get_throttle() * get_compensation_gain(); // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= 0.0f) { throttle_thrust = 0.0f; limit.throttle_lower = true; } // convert throttle_max from 0~1000 to 0~1 range if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix); // calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw if (is_zero(MAX(roll_thrust, pitch_thrust))) { rpy_scale = 1.0f; } else { rpy_scale = (1.0f - MIN(yaw_thrust, (float)_yaw_headroom/1000.0f)) / MAX(roll_thrust, pitch_thrust); } if(rpy_scale < 1.0f){ limit.roll_pitch = true; }else{ rpy_scale = 1.0f; } actuator_allowed = 1.0f - rpy_scale * MAX((roll_thrust), (pitch_thrust)); if(fabsf(yaw_thrust) > actuator_allowed){ yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed); limit.yaw = true; } // combine roll, pitch and yaw on each actuator // front servo actuator[0] = rpy_scale * roll_thrust + yaw_thrust; // right servo actuator[1] = rpy_scale * pitch_thrust + yaw_thrust; // rear servo actuator[2] = -rpy_scale * roll_thrust + yaw_thrust; // left servo actuator[3] = -rpy_scale * pitch_thrust + yaw_thrust; // calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces thrust_min_rp = MAX(MAX((actuator[1]), (actuator[2])), MAX((actuator[3]), (actuator[4]))); thr_adj = throttle_thrust - throttle_thrust_rpy_mix; if(thr_adj < -(throttle_thrust_rpy_mix - thrust_min_rp)){ // Throttle can't be reduced to the desired level because this would mean roll or pitch control // would not be able to reach the desired level because of lack of thrust. thr_adj = -(throttle_thrust_rpy_mix - thrust_min_rp); limit.throttle_lower = true; if(thrust_min_rp > throttle_thrust_rpy_mix + thr_adj){ // todo: add limits for roll and pitch separately limit.yaw = true; limit.roll_pitch = true; } } // calculate the throttle setting for the lift fan _thrust_out = throttle_thrust_rpy_mix + thr_adj; if(is_zero((throttle_thrust_rpy_mix + thr_adj))){ limit.roll_pitch = true; limit.yaw = true; for (i=0; i 0.0f){ _actuator_out[i] = 1.0f; }else{ _actuator_out[i] = 0.0f; } } }else{ // calculate the maximum allowed actuator output and maximum requested actuator output actuator_allowed = (throttle_thrust_rpy_mix + thr_adj); for (i=0; i (actuator[i])){ actuator_max = (actuator[i]); } } if(actuator_max > actuator_allowed){ // roll, pitch and yaw request can not be achieved at full servo defection // reduce roll, pitch and yaw to reduce the requested defection to maximum limit.roll_pitch = true; limit.yaw = true; rpy_scale = actuator_allowed/actuator_max; }else{ rpy_scale = 1.0f; } // force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared // static thrust is proportional to the airflow velocity squared // therefore the torque of the roll and pitch actuators should be approximately proportional to // the angle of attack multiplied by the static thrust. for (i=0; i (_actuator_out[i])){ _actuator_out[i] = constrain_float(rpy_scale*actuator[i]/(throttle_thrust_rpy_mix + thr_adj), -1.0f, 1.0f); } } } } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsSingle::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // flap servo 1 rc_write(AP_MOTORS_MOT_1, pwm); break; case 2: // flap servo 2 rc_write(AP_MOTORS_MOT_2, pwm); break; case 3: // flap servo 3 rc_write(AP_MOTORS_MOT_3, pwm); break; case 4: // flap servo 4 rc_write(AP_MOTORS_MOT_4, pwm); break; case 5: // spin motor 1 rc_write(AP_MOTORS_MOT_5, pwm); break; case 6: // spin motor 2 rc_write(AP_MOTORS_MOT_6, pwm); break; default: // do nothing break; } } // calc_yaw_radio_output - calculate final radio output for yaw channel int16_t AP_MotorsSingle::calc_pivot_radio_output(float yaw_input, int16_t servo_min, int16_t servo_trim, int16_t servo_max) { int16_t ret; if (yaw_input >= 0){ ret = ((yaw_input * (servo_max - servo_trim)) + servo_trim); } else { ret = ((yaw_input * (servo_trim - servo_min)) + servo_trim); } return ret; }