mirror of https://github.com/ArduPilot/ardupilot
476 lines
14 KiB
C++
476 lines
14 KiB
C++
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <hal.h>
|
|
#include "I2CDevice.h"
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "Util.h"
|
|
#include "GPIO.h"
|
|
|
|
#if HAL_USE_I2C == TRUE && defined(HAL_I2C_DEVICE_LIST)
|
|
|
|
#include "Scheduler.h"
|
|
#include "hwdef/common/stm32_util.h"
|
|
#include <AP_InternalError/AP_InternalError.h>
|
|
|
|
#include "ch.h"
|
|
#include "hal.h"
|
|
|
|
static const struct I2CInfo {
|
|
I2CDriver *i2c;
|
|
uint8_t instance;
|
|
uint8_t dma_channel_rx;
|
|
uint8_t dma_channel_tx;
|
|
ioline_t scl_line;
|
|
ioline_t sda_line;
|
|
} I2CD[] = { HAL_I2C_DEVICE_LIST };
|
|
|
|
using namespace ChibiOS;
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
I2CBus I2CDeviceManager::businfo[ARRAY_SIZE(I2CD)];
|
|
|
|
#ifndef HAL_I2C_BUS_BASE
|
|
#define HAL_I2C_BUS_BASE 0
|
|
#endif
|
|
|
|
// default to 100kHz clock for maximum reliability. This can be
|
|
// changed in hwdef.dat
|
|
#ifndef HAL_I2C_MAX_CLOCK
|
|
#define HAL_I2C_MAX_CLOCK 100000
|
|
#endif
|
|
|
|
// values calculated with STM32CubeMX tool, PCLK=54MHz
|
|
#ifndef HAL_I2C_F7_100_TIMINGR
|
|
#define HAL_I2C_F7_100_TIMINGR 0x30812E3E
|
|
#endif
|
|
#ifndef HAL_I2C_F7_400_TIMINGR
|
|
#define HAL_I2C_F7_400_TIMINGR 0x6000030D
|
|
#endif
|
|
|
|
#ifndef HAL_I2C_H7_100_TIMINGR
|
|
#define HAL_I2C_H7_100_TIMINGR 0x00707CBB
|
|
#endif
|
|
#ifndef HAL_I2C_H7_400_TIMINGR
|
|
#define HAL_I2C_H7_400_TIMINGR 0x00300F38
|
|
#endif
|
|
|
|
#ifndef HAL_I2C_L4_100_TIMINGR
|
|
#define HAL_I2C_L4_100_TIMINGR 0x10909CEC
|
|
#endif
|
|
#ifndef HAL_I2C_L4_400_TIMINGR
|
|
#define HAL_I2C_L4_400_TIMINGR 0x00702991
|
|
#endif
|
|
|
|
#ifndef HAL_I2C_G4_100_TIMINGR
|
|
#define HAL_I2C_G4_100_TIMINGR 0x60505F8C
|
|
#endif
|
|
#ifndef HAL_I2C_G4_400_TIMINGR
|
|
#define HAL_I2C_G4_400_TIMINGR 0x20501E65
|
|
#endif
|
|
|
|
/*
|
|
enable clear (toggling SCL) on I2C bus timeouts which leave SDA stuck low
|
|
*/
|
|
#ifndef HAL_I2C_CLEAR_ON_TIMEOUT
|
|
#define HAL_I2C_CLEAR_ON_TIMEOUT 1
|
|
#endif
|
|
|
|
// get a handle for DMA sharing DMA channels with other subsystems
|
|
void I2CBus::dma_init(void)
|
|
{
|
|
chMtxObjectInit(&dma_lock);
|
|
dma_handle = new Shared_DMA(I2CD[busnum].dma_channel_tx, I2CD[busnum].dma_channel_rx,
|
|
FUNCTOR_BIND_MEMBER(&I2CBus::dma_allocate, void, Shared_DMA *),
|
|
FUNCTOR_BIND_MEMBER(&I2CBus::dma_deallocate, void, Shared_DMA *));
|
|
}
|
|
|
|
// Clear Bus to avoid bus lockup
|
|
void I2CBus::clear_all()
|
|
{
|
|
for (uint8_t i=0; i<ARRAY_SIZE(I2CD); i++) {
|
|
clear_bus(i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
If bus exists, set its data and clock lines to floating
|
|
*/
|
|
void I2CBus::set_bus_to_floating(uint8_t busidx)
|
|
{
|
|
if (busidx < ARRAY_SIZE(I2CD)) {
|
|
const struct I2CInfo &info = I2CD[busidx];
|
|
const ioline_t sda_line = GPIO::resolve_alt_config(info.sda_line, PERIPH_TYPE::I2C_SDA, info.instance);
|
|
const ioline_t scl_line = GPIO::resolve_alt_config(info.scl_line, PERIPH_TYPE::I2C_SCL, info.instance);
|
|
palSetLineMode(sda_line, PAL_MODE_INPUT);
|
|
palSetLineMode(scl_line, PAL_MODE_INPUT);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Check enabled I2C/CAN select pins against check_pins bitmask
|
|
*/
|
|
bool I2CBus::check_select_pins(uint8_t check_pins)
|
|
{
|
|
uint8_t enabled_pins = 0;
|
|
|
|
#ifdef HAL_GPIO_PIN_GPIO_CAN_I2C1_SEL
|
|
enabled_pins |= palReadLine(HAL_GPIO_PIN_GPIO_CAN_I2C1_SEL) << 0;
|
|
#endif
|
|
#ifdef HAL_GPIO_PIN_GPIO_CAN_I2C2_SEL
|
|
enabled_pins |= palReadLine(HAL_GPIO_PIN_GPIO_CAN_I2C2_SEL) << 1;
|
|
#endif
|
|
#ifdef HAL_GPIO_PIN_GPIO_CAN_I2C3_SEL
|
|
enabled_pins |= palReadLine(HAL_GPIO_PIN_GPIO_CAN_I2C3_SEL) << 2;
|
|
#endif
|
|
#ifdef HAL_GPIO_PIN_GPIO_CAN_I2C4_SEL
|
|
enabled_pins |= palReadLine(HAL_GPIO_PIN_GPIO_CAN_I2C4_SEL) << 3;
|
|
#endif
|
|
|
|
return (enabled_pins & check_pins) == check_pins;
|
|
}
|
|
|
|
|
|
/*
|
|
clear a stuck bus (bus held by a device that is holding SDA low) by
|
|
clocking out pulses on SCL to let the device complete its
|
|
transaction
|
|
*/
|
|
void I2CBus::clear_bus(uint8_t busidx)
|
|
{
|
|
#if HAL_I2C_CLEAR_ON_TIMEOUT
|
|
const struct I2CInfo &info = I2CD[busidx];
|
|
const ioline_t scl_line = GPIO::resolve_alt_config(info.scl_line, PERIPH_TYPE::I2C_SCL, info.instance);
|
|
if (scl_line == 0) {
|
|
return;
|
|
}
|
|
const iomode_t mode_saved = palReadLineMode(scl_line);
|
|
palSetLineMode(scl_line, PAL_MODE_OUTPUT_PUSHPULL);
|
|
for(uint8_t j = 0; j < 20; j++) {
|
|
palToggleLine(scl_line);
|
|
hal.scheduler->delay_microseconds(10);
|
|
}
|
|
palSetLineMode(scl_line, mode_saved);
|
|
#endif
|
|
}
|
|
|
|
#if HAL_I2C_CLEAR_ON_TIMEOUT
|
|
/*
|
|
read SDA on a bus, to check if it may be stuck
|
|
*/
|
|
uint8_t I2CBus::read_sda(uint8_t busidx)
|
|
{
|
|
const struct I2CInfo &info = I2CD[busidx];
|
|
const ioline_t sda_line = GPIO::resolve_alt_config(info.sda_line, PERIPH_TYPE::I2C_SDA, info.instance);
|
|
if (sda_line == 0) {
|
|
return 0;
|
|
}
|
|
const iomode_t mode_saved = palReadLineMode(sda_line);
|
|
palSetLineMode(sda_line, PAL_MODE_INPUT);
|
|
uint8_t ret = palReadLine(sda_line);
|
|
palSetLineMode(sda_line, mode_saved);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
// setup I2C buses
|
|
I2CDeviceManager::I2CDeviceManager(void)
|
|
{
|
|
for (uint8_t i=0; i<ARRAY_SIZE(I2CD); i++) {
|
|
businfo[i].busnum = i;
|
|
businfo[i].dma_init();
|
|
/*
|
|
setup default I2C config. As each device is opened we will
|
|
drop the speed to be the minimum speed requested
|
|
*/
|
|
businfo[i].busclock = HAL_I2C_MAX_CLOCK;
|
|
#if defined(STM32F7) || defined(STM32F3)
|
|
if (businfo[i].busclock <= 100000) {
|
|
businfo[i].i2ccfg.timingr = HAL_I2C_F7_100_TIMINGR;
|
|
businfo[i].busclock = 100000;
|
|
} else {
|
|
businfo[i].i2ccfg.timingr = HAL_I2C_F7_400_TIMINGR;
|
|
businfo[i].busclock = 400000;
|
|
}
|
|
#elif defined(STM32H7)
|
|
if (businfo[i].busclock <= 100000) {
|
|
businfo[i].i2ccfg.timingr = HAL_I2C_H7_100_TIMINGR;
|
|
businfo[i].busclock = 100000;
|
|
} else {
|
|
businfo[i].i2ccfg.timingr = HAL_I2C_H7_400_TIMINGR;
|
|
businfo[i].busclock = 400000;
|
|
}
|
|
#elif defined(STM32L4)
|
|
if (businfo[i].busclock <= 100000) {
|
|
businfo[i].i2ccfg.timingr = HAL_I2C_L4_100_TIMINGR;
|
|
businfo[i].busclock = 100000;
|
|
} else {
|
|
businfo[i].i2ccfg.timingr = HAL_I2C_L4_400_TIMINGR;
|
|
businfo[i].busclock = 400000;
|
|
}
|
|
#elif defined(STM32G4)
|
|
if (businfo[i].busclock <= 100000) {
|
|
businfo[i].i2ccfg.timingr = HAL_I2C_G4_100_TIMINGR;
|
|
businfo[i].busclock = 100000;
|
|
} else {
|
|
businfo[i].i2ccfg.timingr = HAL_I2C_G4_400_TIMINGR;
|
|
businfo[i].busclock = 400000;
|
|
}
|
|
#else // F1 or F4
|
|
businfo[i].i2ccfg.op_mode = OPMODE_I2C;
|
|
businfo[i].i2ccfg.clock_speed = businfo[i].busclock;
|
|
if (businfo[i].i2ccfg.clock_speed <= 100000) {
|
|
businfo[i].i2ccfg.duty_cycle = STD_DUTY_CYCLE;
|
|
} else {
|
|
businfo[i].i2ccfg.duty_cycle = FAST_DUTY_CYCLE_2;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
I2CDevice::I2CDevice(uint8_t busnum, uint8_t address, uint32_t bus_clock, bool use_smbus, uint32_t timeout_ms) :
|
|
_retries(2),
|
|
_address(address),
|
|
_use_smbus(use_smbus),
|
|
_timeout_ms(timeout_ms),
|
|
bus(I2CDeviceManager::businfo[busnum])
|
|
{
|
|
set_device_bus(busnum+HAL_I2C_BUS_BASE);
|
|
set_device_address(address);
|
|
asprintf(&pname, "I2C:%u:%02x",
|
|
(unsigned)busnum, (unsigned)address);
|
|
if (bus_clock < bus.busclock) {
|
|
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F3) || defined(STM32G4) || defined(STM32L4)
|
|
if (bus_clock <= 100000) {
|
|
bus.i2ccfg.timingr = HAL_I2C_F7_100_TIMINGR;
|
|
bus.busclock = 100000;
|
|
}
|
|
#else
|
|
bus.i2ccfg.clock_speed = bus_clock;
|
|
bus.busclock = bus_clock;
|
|
if (bus_clock <= 100000) {
|
|
bus.i2ccfg.duty_cycle = STD_DUTY_CYCLE;
|
|
}
|
|
#endif
|
|
DEV_PRINTF("I2C%u clock %ukHz\n", busnum, unsigned(bus.busclock/1000));
|
|
}
|
|
}
|
|
|
|
I2CDevice::~I2CDevice()
|
|
{
|
|
#if 0
|
|
printf("I2C device bus %u address 0x%02x closed\n",
|
|
(unsigned)bus.busnum, (unsigned)_address);
|
|
#endif
|
|
free(pname);
|
|
}
|
|
|
|
/*
|
|
allocate DMA channel, nothing to do, as we don't keep the bus active between transactions
|
|
*/
|
|
void I2CBus::dma_allocate(Shared_DMA *ctx)
|
|
{
|
|
}
|
|
|
|
/*
|
|
deallocate DMA channel
|
|
*/
|
|
void I2CBus::dma_deallocate(Shared_DMA *)
|
|
{
|
|
}
|
|
|
|
bool I2CDevice::transfer(const uint8_t *send, uint32_t send_len,
|
|
uint8_t *recv, uint32_t recv_len)
|
|
{
|
|
if (!bus.semaphore.check_owner()) {
|
|
DEV_PRINTF("I2C: not owner of 0x%x for addr 0x%02x\n", (unsigned)get_bus_id(), _address);
|
|
return false;
|
|
}
|
|
|
|
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F3) || defined(STM32G4) || defined(STM32L4)
|
|
if (_use_smbus) {
|
|
bus.i2ccfg.cr1 |= I2C_CR1_SMBHEN;
|
|
} else {
|
|
bus.i2ccfg.cr1 &= ~I2C_CR1_SMBHEN;
|
|
}
|
|
#else
|
|
if (_use_smbus) {
|
|
bus.i2ccfg.op_mode = OPMODE_SMBUS_HOST;
|
|
} else {
|
|
bus.i2ccfg.op_mode = OPMODE_I2C;
|
|
}
|
|
#endif
|
|
|
|
if (_split_transfers) {
|
|
/*
|
|
splitting the transfer() into two pieces avoids a stop condition
|
|
with SCL low which is not supported on some devices (such as
|
|
LidarLite blue label)
|
|
*/
|
|
if (send && send_len) {
|
|
if (!_transfer(send, send_len, nullptr, 0)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (recv && recv_len) {
|
|
if (!_transfer(nullptr, 0, recv, recv_len)) {
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
// combined transfer
|
|
if (!_transfer(send, send_len, recv, recv_len)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool I2CDevice::_transfer(const uint8_t *send, uint32_t send_len,
|
|
uint8_t *recv, uint32_t recv_len)
|
|
{
|
|
i2cAcquireBus(I2CD[bus.busnum].i2c);
|
|
|
|
if (!bus.bouncebuffer_setup(send, send_len, recv, recv_len)) {
|
|
i2cReleaseBus(I2CD[bus.busnum].i2c);
|
|
return false;
|
|
}
|
|
|
|
for(uint8_t i=0 ; i <= _retries; i++) {
|
|
int ret;
|
|
// calculate a timeout as twice the expected transfer time, and set as min of 4ms
|
|
uint32_t timeout_ms = 1+2*(((8*1000000UL/bus.busclock)*(send_len+recv_len))/1000);
|
|
timeout_ms = MAX(timeout_ms, _timeout_ms);
|
|
|
|
// we get the lock and start the bus inside the retry loop to
|
|
// allow us to give up the DMA channel to an SPI device on
|
|
// retries
|
|
bus.dma_handle->lock();
|
|
|
|
i2cStart(I2CD[bus.busnum].i2c, &bus.i2ccfg);
|
|
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state");
|
|
|
|
osalSysLock();
|
|
hal.util->persistent_data.i2c_count++;
|
|
osalSysUnlock();
|
|
|
|
if(send_len == 0) {
|
|
ret = i2cMasterReceiveTimeout(I2CD[bus.busnum].i2c, _address, recv, recv_len, chTimeMS2I(timeout_ms));
|
|
} else {
|
|
ret = i2cMasterTransmitTimeout(I2CD[bus.busnum].i2c, _address, send, send_len,
|
|
recv, recv_len, chTimeMS2I(timeout_ms));
|
|
}
|
|
|
|
i2cSoftStop(I2CD[bus.busnum].i2c);
|
|
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_STOP, "i2cStart state");
|
|
|
|
bus.dma_handle->unlock();
|
|
|
|
if (I2CD[bus.busnum].i2c->errors & I2C_ISR_LIMIT) {
|
|
INTERNAL_ERROR(AP_InternalError::error_t::i2c_isr);
|
|
break;
|
|
}
|
|
|
|
#ifdef STM32_I2C_ISR_LIMIT
|
|
AP_HAL::Util::PersistentData &pd = hal.util->persistent_data;
|
|
pd.i2c_isr_count += I2CD[bus.busnum].i2c->isr_count;
|
|
#endif
|
|
|
|
if (ret == MSG_OK) {
|
|
bus.bouncebuffer_finish(send, recv, recv_len);
|
|
i2cReleaseBus(I2CD[bus.busnum].i2c);
|
|
return true;
|
|
}
|
|
#if HAL_I2C_CLEAR_ON_TIMEOUT
|
|
if (ret == MSG_TIMEOUT && I2CBus::read_sda(bus.busnum) == 0) {
|
|
I2CBus::clear_bus(bus.busnum);
|
|
}
|
|
#endif
|
|
}
|
|
bus.bouncebuffer_finish(send, recv, recv_len);
|
|
i2cReleaseBus(I2CD[bus.busnum].i2c);
|
|
return false;
|
|
}
|
|
|
|
bool I2CDevice::read_registers_multiple(uint8_t first_reg, uint8_t *recv,
|
|
uint32_t recv_len, uint8_t times)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
register a periodic callback
|
|
*/
|
|
AP_HAL::Device::PeriodicHandle I2CDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
|
|
{
|
|
return bus.register_periodic_callback(period_usec, cb, this);
|
|
}
|
|
|
|
|
|
/*
|
|
adjust a periodic callback
|
|
*/
|
|
bool I2CDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec)
|
|
{
|
|
return bus.adjust_timer(h, period_usec);
|
|
}
|
|
|
|
AP_HAL::OwnPtr<AP_HAL::I2CDevice>
|
|
I2CDeviceManager::get_device(uint8_t bus, uint8_t address,
|
|
uint32_t bus_clock,
|
|
bool use_smbus,
|
|
uint32_t timeout_ms)
|
|
{
|
|
bus -= HAL_I2C_BUS_BASE;
|
|
if (bus >= ARRAY_SIZE(I2CD)) {
|
|
return AP_HAL::OwnPtr<AP_HAL::I2CDevice>(nullptr);
|
|
}
|
|
auto dev = AP_HAL::OwnPtr<AP_HAL::I2CDevice>(new I2CDevice(bus, address, bus_clock, use_smbus, timeout_ms));
|
|
return dev;
|
|
}
|
|
|
|
/*
|
|
get mask of bus numbers for all configured I2C buses
|
|
*/
|
|
uint32_t I2CDeviceManager::get_bus_mask(void) const
|
|
{
|
|
return ((1U << ARRAY_SIZE(I2CD)) - 1) << HAL_I2C_BUS_BASE;
|
|
}
|
|
|
|
/*
|
|
get mask of bus numbers for all configured internal I2C buses
|
|
*/
|
|
uint32_t I2CDeviceManager::get_bus_mask_internal(void) const
|
|
{
|
|
// assume first bus is internal
|
|
return get_bus_mask() & HAL_I2C_INTERNAL_MASK;
|
|
}
|
|
|
|
/*
|
|
get mask of bus numbers for all configured external I2C buses
|
|
*/
|
|
uint32_t I2CDeviceManager::get_bus_mask_external(void) const
|
|
{
|
|
// assume first bus is internal
|
|
return get_bus_mask() & ~HAL_I2C_INTERNAL_MASK;
|
|
}
|
|
|
|
#endif // HAL_USE_I2C
|