/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*/
#include
#include "I2CDevice.h"
#include
#include
#include "Util.h"
#include "GPIO.h"
#if HAL_USE_I2C == TRUE && defined(HAL_I2C_DEVICE_LIST)
#include "Scheduler.h"
#include "hwdef/common/stm32_util.h"
#include
#include "ch.h"
#include "hal.h"
static const struct I2CInfo {
I2CDriver *i2c;
uint8_t instance;
uint8_t dma_channel_rx;
uint8_t dma_channel_tx;
ioline_t scl_line;
ioline_t sda_line;
} I2CD[] = { HAL_I2C_DEVICE_LIST };
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
I2CBus I2CDeviceManager::businfo[ARRAY_SIZE(I2CD)];
#ifndef HAL_I2C_BUS_BASE
#define HAL_I2C_BUS_BASE 0
#endif
// default to 100kHz clock for maximum reliability. This can be
// changed in hwdef.dat
#ifndef HAL_I2C_MAX_CLOCK
#define HAL_I2C_MAX_CLOCK 100000
#endif
// values calculated with STM32CubeMX tool, PCLK=54MHz
#ifndef HAL_I2C_F7_100_TIMINGR
#define HAL_I2C_F7_100_TIMINGR 0x30812E3E
#endif
#ifndef HAL_I2C_F7_400_TIMINGR
#define HAL_I2C_F7_400_TIMINGR 0x6000030D
#endif
#ifndef HAL_I2C_H7_100_TIMINGR
#define HAL_I2C_H7_100_TIMINGR 0x00707CBB
#endif
#ifndef HAL_I2C_H7_400_TIMINGR
#define HAL_I2C_H7_400_TIMINGR 0x00300F38
#endif
#ifndef HAL_I2C_L4_100_TIMINGR
#define HAL_I2C_L4_100_TIMINGR 0x10909CEC
#endif
#ifndef HAL_I2C_L4_400_TIMINGR
#define HAL_I2C_L4_400_TIMINGR 0x00702991
#endif
#ifndef HAL_I2C_G4_100_TIMINGR
#define HAL_I2C_G4_100_TIMINGR 0x60505F8C
#endif
#ifndef HAL_I2C_G4_400_TIMINGR
#define HAL_I2C_G4_400_TIMINGR 0x20501E65
#endif
/*
enable clear (toggling SCL) on I2C bus timeouts which leave SDA stuck low
*/
#ifndef HAL_I2C_CLEAR_ON_TIMEOUT
#define HAL_I2C_CLEAR_ON_TIMEOUT 1
#endif
// get a handle for DMA sharing DMA channels with other subsystems
void I2CBus::dma_init(void)
{
chMtxObjectInit(&dma_lock);
dma_handle = new Shared_DMA(I2CD[busnum].dma_channel_tx, I2CD[busnum].dma_channel_rx,
FUNCTOR_BIND_MEMBER(&I2CBus::dma_allocate, void, Shared_DMA *),
FUNCTOR_BIND_MEMBER(&I2CBus::dma_deallocate, void, Shared_DMA *));
}
// Clear Bus to avoid bus lockup
void I2CBus::clear_all()
{
for (uint8_t i=0; idelay_microseconds(10);
}
palSetLineMode(scl_line, mode_saved);
#endif
}
#if HAL_I2C_CLEAR_ON_TIMEOUT
/*
read SDA on a bus, to check if it may be stuck
*/
uint8_t I2CBus::read_sda(uint8_t busidx)
{
const struct I2CInfo &info = I2CD[busidx];
const ioline_t sda_line = GPIO::resolve_alt_config(info.sda_line, PERIPH_TYPE::I2C_SDA, info.instance);
if (sda_line == 0) {
return 0;
}
const iomode_t mode_saved = palReadLineMode(sda_line);
palSetLineMode(sda_line, PAL_MODE_INPUT);
uint8_t ret = palReadLine(sda_line);
palSetLineMode(sda_line, mode_saved);
return ret;
}
#endif
// setup I2C buses
I2CDeviceManager::I2CDeviceManager(void)
{
for (uint8_t i=0; ilock();
i2cStart(I2CD[bus.busnum].i2c, &bus.i2ccfg);
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state");
osalSysLock();
hal.util->persistent_data.i2c_count++;
osalSysUnlock();
if(send_len == 0) {
ret = i2cMasterReceiveTimeout(I2CD[bus.busnum].i2c, _address, recv, recv_len, chTimeMS2I(timeout_ms));
} else {
ret = i2cMasterTransmitTimeout(I2CD[bus.busnum].i2c, _address, send, send_len,
recv, recv_len, chTimeMS2I(timeout_ms));
}
i2cSoftStop(I2CD[bus.busnum].i2c);
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_STOP, "i2cStart state");
bus.dma_handle->unlock();
if (I2CD[bus.busnum].i2c->errors & I2C_ISR_LIMIT) {
INTERNAL_ERROR(AP_InternalError::error_t::i2c_isr);
break;
}
#ifdef STM32_I2C_ISR_LIMIT
AP_HAL::Util::PersistentData &pd = hal.util->persistent_data;
pd.i2c_isr_count += I2CD[bus.busnum].i2c->isr_count;
#endif
if (ret == MSG_OK) {
bus.bouncebuffer_finish(send, recv, recv_len);
i2cReleaseBus(I2CD[bus.busnum].i2c);
return true;
}
#if HAL_I2C_CLEAR_ON_TIMEOUT
if (ret == MSG_TIMEOUT && I2CBus::read_sda(bus.busnum) == 0) {
I2CBus::clear_bus(bus.busnum);
}
#endif
}
bus.bouncebuffer_finish(send, recv, recv_len);
i2cReleaseBus(I2CD[bus.busnum].i2c);
return false;
}
bool I2CDevice::read_registers_multiple(uint8_t first_reg, uint8_t *recv,
uint32_t recv_len, uint8_t times)
{
return false;
}
/*
register a periodic callback
*/
AP_HAL::Device::PeriodicHandle I2CDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return bus.register_periodic_callback(period_usec, cb, this);
}
/*
adjust a periodic callback
*/
bool I2CDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec)
{
return bus.adjust_timer(h, period_usec);
}
AP_HAL::OwnPtr
I2CDeviceManager::get_device(uint8_t bus, uint8_t address,
uint32_t bus_clock,
bool use_smbus,
uint32_t timeout_ms)
{
bus -= HAL_I2C_BUS_BASE;
if (bus >= ARRAY_SIZE(I2CD)) {
return AP_HAL::OwnPtr(nullptr);
}
auto dev = AP_HAL::OwnPtr(new I2CDevice(bus, address, bus_clock, use_smbus, timeout_ms));
return dev;
}
/*
get mask of bus numbers for all configured I2C buses
*/
uint32_t I2CDeviceManager::get_bus_mask(void) const
{
return ((1U << ARRAY_SIZE(I2CD)) - 1) << HAL_I2C_BUS_BASE;
}
/*
get mask of bus numbers for all configured internal I2C buses
*/
uint32_t I2CDeviceManager::get_bus_mask_internal(void) const
{
// assume first bus is internal
return get_bus_mask() & HAL_I2C_INTERNAL_MASK;
}
/*
get mask of bus numbers for all configured external I2C buses
*/
uint32_t I2CDeviceManager::get_bus_mask_external(void) const
{
// assume first bus is internal
return get_bus_mask() & ~HAL_I2C_INTERNAL_MASK;
}
#endif // HAL_USE_I2C