ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_Backend.cpp

614 lines
21 KiB
C++
Raw Normal View History

#include <AP_HAL/AP_HAL.h>
#include "AP_InertialSensor.h"
#include "AP_InertialSensor_Backend.h"
#include <AP_Logger/AP_Logger.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#if AP_MODULE_SUPPORTED
#include <AP_Module/AP_Module.h>
#include <stdio.h>
#endif
#define SENSOR_RATE_DEBUG 0
const extern AP_HAL::HAL& hal;
AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu) :
_imu(imu)
{
}
/*
notify of a FIFO reset so we don't use bad data to update observed sensor rate
*/
void AP_InertialSensor_Backend::notify_accel_fifo_reset(uint8_t instance)
{
_imu._sample_accel_count[instance] = 0;
_imu._sample_accel_start_us[instance] = 0;
}
/*
notify of a FIFO reset so we don't use bad data to update observed sensor rate
*/
void AP_InertialSensor_Backend::notify_gyro_fifo_reset(uint8_t instance)
{
_imu._sample_gyro_count[instance] = 0;
_imu._sample_gyro_start_us[instance] = 0;
}
// set the amount of oversamping a accel is doing
void AP_InertialSensor_Backend::_set_accel_oversampling(uint8_t instance, uint8_t n)
{
_imu._accel_over_sampling[instance] = n;
}
// set the amount of oversamping a gyro is doing
void AP_InertialSensor_Backend::_set_gyro_oversampling(uint8_t instance, uint8_t n)
{
_imu._gyro_over_sampling[instance] = n;
}
/*
update the sensor rate for FIFO sensors
FIFO sensors produce samples at a fixed rate, but the clock in the
sensor may vary slightly from the system clock. This slowly adjusts
the rate to the observed rate
*/
void AP_InertialSensor_Backend::_update_sensor_rate(uint16_t &count, uint32_t &start_us, float &rate_hz) const
{
uint32_t now = AP_HAL::micros();
if (start_us == 0) {
count = 0;
start_us = now;
} else {
count++;
if (now - start_us > 1000000UL) {
float observed_rate_hz = count * 1.0e6f / (now - start_us);
#if 0
printf("IMU RATE: %.1f should be %.1f\n", observed_rate_hz, rate_hz);
#endif
float filter_constant = 0.98f;
float upper_limit = 1.05f;
float lower_limit = 0.95f;
if (sensors_converging()) {
// converge quickly for first 30s, then more slowly
filter_constant = 0.8f;
upper_limit = 2.0f;
lower_limit = 0.5f;
}
observed_rate_hz = constrain_float(observed_rate_hz, rate_hz*lower_limit, rate_hz*upper_limit);
rate_hz = filter_constant * rate_hz + (1-filter_constant) * observed_rate_hz;
count = 0;
start_us = now;
}
}
}
void AP_InertialSensor_Backend::_rotate_and_correct_accel(uint8_t instance, Vector3f &accel)
{
/*
accel calibration is always done in sensor frame with this
version of the code. That means we apply the rotation after the
offsets and scaling.
*/
// rotate for sensor orientation
accel.rotate(_imu._accel_orientation[instance]);
#if HAL_INS_TEMPERATURE_CAL_ENABLE
if (_imu.tcal_learning) {
_imu.tcal[instance].update_accel_learning(accel, _imu.get_temperature(instance));
}
#endif
if (!_imu._calibrating_accel && (_imu._acal == nullptr || !_imu._acal->running())) {
#if HAL_INS_TEMPERATURE_CAL_ENABLE
// apply temperature corrections
_imu.tcal[instance].correct_accel(_imu.get_temperature(instance), _imu.caltemp_accel[instance], accel);
#endif
// apply offsets
accel -= _imu._accel_offset[instance];
// apply scaling
const Vector3f &accel_scale = _imu._accel_scale[instance].get();
accel.x *= accel_scale.x;
accel.y *= accel_scale.y;
accel.z *= accel_scale.z;
}
// rotate to body frame
if (_imu._board_orientation == ROTATION_CUSTOM && _imu._custom_rotation) {
accel = *_imu._custom_rotation * accel;
} else {
accel.rotate(_imu._board_orientation);
}
}
void AP_InertialSensor_Backend::_rotate_and_correct_gyro(uint8_t instance, Vector3f &gyro)
{
// rotate for sensor orientation
gyro.rotate(_imu._gyro_orientation[instance]);
#if HAL_INS_TEMPERATURE_CAL_ENABLE
if (_imu.tcal_learning) {
_imu.tcal[instance].update_gyro_learning(gyro, _imu.get_temperature(instance));
}
#endif
if (!_imu._calibrating_gyro) {
#if HAL_INS_TEMPERATURE_CAL_ENABLE
// apply temperature corrections
_imu.tcal[instance].correct_gyro(_imu.get_temperature(instance), _imu.caltemp_gyro[instance], gyro);
#endif
// gyro calibration is always assumed to have been done in sensor frame
gyro -= _imu._gyro_offset[instance];
}
if (_imu._board_orientation == ROTATION_CUSTOM && _imu._custom_rotation) {
gyro = *_imu._custom_rotation * gyro;
} else {
gyro.rotate(_imu._board_orientation);
}
}
/*
rotate gyro vector and add the gyro offset
*/
void AP_InertialSensor_Backend::_publish_gyro(uint8_t instance, const Vector3f &gyro)
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
_imu._gyro[instance] = gyro;
_imu._gyro_healthy[instance] = true;
// publish delta angle
_imu._delta_angle[instance] = _imu._delta_angle_acc[instance];
_imu._delta_angle_dt[instance] = _imu._delta_angle_acc_dt[instance];
_imu._delta_angle_valid[instance] = true;
}
void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance,
const Vector3f &gyro,
uint64_t sample_us)
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
float dt;
_update_sensor_rate(_imu._sample_gyro_count[instance], _imu._sample_gyro_start_us[instance],
_imu._gyro_raw_sample_rates[instance]);
uint64_t last_sample_us = _imu._gyro_last_sample_us[instance];
/*
we have two classes of sensors. FIFO based sensors produce data
at a very predictable overall rate, but the data comes in
bunches, so we use the provided sample rate for deltaT. Non-FIFO
sensors don't bunch up samples, but also tend to vary in actual
rate, so we use the provided sample_us to get the deltaT. The
difference between the two is whether sample_us is provided.
*/
if (sample_us != 0 && _imu._gyro_last_sample_us[instance] != 0) {
dt = (sample_us - _imu._gyro_last_sample_us[instance]) * 1.0e-6f;
_imu._gyro_last_sample_us[instance] = sample_us;
} else {
// don't accept below 40Hz
if (_imu._gyro_raw_sample_rates[instance] < 40) {
return;
}
dt = 1.0f / _imu._gyro_raw_sample_rates[instance];
_imu._gyro_last_sample_us[instance] = AP_HAL::micros64();
sample_us = _imu._gyro_last_sample_us[instance];
}
#if AP_MODULE_SUPPORTED
// call gyro_sample hook if any
AP_Module::call_hook_gyro_sample(instance, dt, gyro);
#endif
// push gyros if optical flow present
if (hal.opticalflow) {
hal.opticalflow->push_gyro(gyro.x, gyro.y, dt);
}
// compute delta angle
Vector3f delta_angle = (gyro + _imu._last_raw_gyro[instance]) * 0.5f * dt;
// compute coning correction
// see page 26 of:
// Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation
// Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf
// see also examples/coning.py
Vector3f delta_coning = (_imu._delta_angle_acc[instance] +
_imu._last_delta_angle[instance] * (1.0f / 6.0f));
delta_coning = delta_coning % delta_angle;
delta_coning *= 0.5f;
{
WITH_SEMAPHORE(_sem);
uint64_t now = AP_HAL::micros64();
if (now - last_sample_us > 100000U) {
// zero accumulator if sensor was unhealthy for 0.1s
_imu._delta_angle_acc[instance].zero();
_imu._delta_angle_acc_dt[instance] = 0;
dt = 0;
delta_angle.zero();
}
// integrate delta angle accumulator
// the angles and coning corrections are accumulated separately in the
// referenced paper, but in simulation little difference was found between
// integrating together and integrating separately (see examples/coning.py)
_imu._delta_angle_acc[instance] += delta_angle + delta_coning;
_imu._delta_angle_acc_dt[instance] += dt;
// save previous delta angle for coning correction
_imu._last_delta_angle[instance] = delta_angle;
_imu._last_raw_gyro[instance] = gyro;
#if HAL_WITH_DSP
// capture gyro window for FFT analysis
if (_imu._gyro_window_size > 0) {
const Vector3f& scaled_gyro = gyro * _imu._gyro_raw_sampling_multiplier[instance];
_imu._gyro_window[instance][0].push(scaled_gyro.x);
_imu._gyro_window[instance][1].push(scaled_gyro.y);
_imu._gyro_window[instance][2].push(scaled_gyro.z);
}
#endif
Vector3f gyro_filtered = gyro;
// apply the notch filter
if (_gyro_notch_enabled()) {
gyro_filtered = _imu._gyro_notch_filter[instance].apply(gyro_filtered);
}
// apply the harmonic notch filter
if (gyro_harmonic_notch_enabled()) {
gyro_filtered = _imu._gyro_harmonic_notch_filter[instance].apply(gyro_filtered);
}
// apply the low pass filter last to attentuate any notch induced noise
gyro_filtered = _imu._gyro_filter[instance].apply(gyro_filtered);
// if the filtering failed in any way then reset the filters and keep the old value
if (gyro_filtered.is_nan() || gyro_filtered.is_inf()) {
_imu._gyro_filter[instance].reset();
_imu._gyro_notch_filter[instance].reset();
_imu._gyro_harmonic_notch_filter[instance].reset();
2019-09-06 05:05:20 -03:00
} else {
_imu._gyro_filtered[instance] = gyro_filtered;
}
_imu._new_gyro_data[instance] = true;
}
if (!_imu.batchsampler.doing_post_filter_logging()) {
log_gyro_raw(instance, sample_us, gyro);
}
else {
log_gyro_raw(instance, sample_us, _imu._gyro_filtered[instance]);
}
}
void AP_InertialSensor_Backend::log_gyro_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &gyro)
{
AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
// should not have been called
return;
}
if (should_log_imu_raw()) {
Write_GYR(instance, sample_us, gyro);
} else {
if (!_imu.batchsampler.doing_sensor_rate_logging()) {
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, sample_us, gyro);
}
}
}
/*
rotate accel vector, scale and add the accel offset
*/
void AP_InertialSensor_Backend::_publish_accel(uint8_t instance, const Vector3f &accel)
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
_imu._accel[instance] = accel;
_imu._accel_healthy[instance] = true;
// publish delta velocity
_imu._delta_velocity[instance] = _imu._delta_velocity_acc[instance];
_imu._delta_velocity_dt[instance] = _imu._delta_velocity_acc_dt[instance];
_imu._delta_velocity_valid[instance] = true;
2015-07-20 17:25:40 -03:00
if (_imu._accel_calibrator != nullptr && _imu._accel_calibrator[instance].get_status() == ACCEL_CAL_COLLECTING_SAMPLE) {
2015-07-20 17:25:40 -03:00
Vector3f cal_sample = _imu._delta_velocity[instance];
// remove rotation. Note that we don't need to remove offsets or scale factor as those
// are not applied when calibrating
2015-07-20 17:25:40 -03:00
cal_sample.rotate_inverse(_imu._board_orientation);
_imu._accel_calibrator[instance].new_sample(cal_sample, _imu._delta_velocity_dt[instance]);
}
}
void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance,
const Vector3f &accel,
uint64_t sample_us,
bool fsync_set)
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
float dt;
_update_sensor_rate(_imu._sample_accel_count[instance], _imu._sample_accel_start_us[instance],
_imu._accel_raw_sample_rates[instance]);
uint64_t last_sample_us = _imu._accel_last_sample_us[instance];
/*
we have two classes of sensors. FIFO based sensors produce data
at a very predictable overall rate, but the data comes in
bunches, so we use the provided sample rate for deltaT. Non-FIFO
sensors don't bunch up samples, but also tend to vary in actual
rate, so we use the provided sample_us to get the deltaT. The
difference between the two is whether sample_us is provided.
*/
if (sample_us != 0 && _imu._accel_last_sample_us[instance] != 0) {
dt = (sample_us - _imu._accel_last_sample_us[instance]) * 1.0e-6f;
_imu._accel_last_sample_us[instance] = sample_us;
} else {
// don't accept below 40Hz
if (_imu._accel_raw_sample_rates[instance] < 40) {
return;
}
dt = 1.0f / _imu._accel_raw_sample_rates[instance];
_imu._accel_last_sample_us[instance] = AP_HAL::micros64();
sample_us = _imu._accel_last_sample_us[instance];
}
#if AP_MODULE_SUPPORTED
// call accel_sample hook if any
AP_Module::call_hook_accel_sample(instance, dt, accel, fsync_set);
#endif
_imu.calc_vibration_and_clipping(instance, accel, dt);
{
WITH_SEMAPHORE(_sem);
uint64_t now = AP_HAL::micros64();
if (now - last_sample_us > 100000U) {
// zero accumulator if sensor was unhealthy for 0.1s
_imu._delta_velocity_acc[instance].zero();
_imu._delta_velocity_acc_dt[instance] = 0;
dt = 0;
}
// delta velocity
_imu._delta_velocity_acc[instance] += accel * dt;
_imu._delta_velocity_acc_dt[instance] += dt;
_imu._accel_filtered[instance] = _imu._accel_filter[instance].apply(accel);
if (_imu._accel_filtered[instance].is_nan() || _imu._accel_filtered[instance].is_inf()) {
_imu._accel_filter[instance].reset();
}
_imu.set_accel_peak_hold(instance, _imu._accel_filtered[instance]);
_imu._new_accel_data[instance] = true;
}
if (!_imu.batchsampler.doing_post_filter_logging()) {
log_accel_raw(instance, sample_us, accel);
} else {
log_accel_raw(instance, sample_us, _imu._accel_filtered[instance]);
}
}
void AP_InertialSensor_Backend::_notify_new_accel_sensor_rate_sample(uint8_t instance, const Vector3f &accel)
2018-03-07 04:09:15 -04:00
{
if (!_imu.batchsampler.doing_sensor_rate_logging()) {
return;
}
2018-03-07 04:09:15 -04:00
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, AP_HAL::micros64(), accel);
}
void AP_InertialSensor_Backend::_notify_new_gyro_sensor_rate_sample(uint8_t instance, const Vector3f &gyro)
2018-03-07 04:09:15 -04:00
{
if (!_imu.batchsampler.doing_sensor_rate_logging()) {
return;
}
2018-03-07 04:09:15 -04:00
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, AP_HAL::micros64(), gyro);
}
void AP_InertialSensor_Backend::log_accel_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &accel)
{
AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
// should not have been called
return;
}
if (should_log_imu_raw()) {
Write_ACC(instance, sample_us, accel);
} else {
if (!_imu.batchsampler.doing_sensor_rate_logging()) {
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, sample_us, accel);
}
}
}
void AP_InertialSensor_Backend::_set_accel_max_abs_offset(uint8_t instance,
float max_offset)
{
_imu._accel_max_abs_offsets[instance] = max_offset;
}
// set accelerometer error_count
void AP_InertialSensor_Backend::_set_accel_error_count(uint8_t instance, uint32_t error_count)
{
_imu._accel_error_count[instance] = error_count;
}
// set gyro error_count
void AP_InertialSensor_Backend::_set_gyro_error_count(uint8_t instance, uint32_t error_count)
{
_imu._gyro_error_count[instance] = error_count;
}
// increment accelerometer error_count
void AP_InertialSensor_Backend::_inc_accel_error_count(uint8_t instance)
{
_imu._accel_error_count[instance]++;
}
// increment gyro error_count
void AP_InertialSensor_Backend::_inc_gyro_error_count(uint8_t instance)
{
_imu._gyro_error_count[instance]++;
}
// return the requested loop rate at which samples will be made available in Hz
uint16_t AP_InertialSensor_Backend::get_loop_rate_hz(void) const
{
// enum can be directly cast to Hz
return (uint16_t)_imu._loop_rate;
}
/*
publish a temperature value for an instance
*/
void AP_InertialSensor_Backend::_publish_temperature(uint8_t instance, float temperature)
{
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
_imu._temperature[instance] = temperature;
#if HAL_HAVE_IMU_HEATER
/* give the temperature to the control loop in order to keep it constant*/
if (instance == 0) {
AP_BoardConfig *bc = AP::boardConfig();
if (bc) {
bc->set_imu_temp(temperature);
}
}
#endif
}
/*
common gyro update function for all backends
*/
void AP_InertialSensor_Backend::update_gyro(uint8_t instance)
{
WITH_SEMAPHORE(_sem);
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
if (_imu._new_gyro_data[instance]) {
_publish_gyro(instance, _imu._gyro_filtered[instance]);
// copy the gyro samples from the backend to the frontend window
#if HAL_WITH_DSP
_imu._gyro_raw[instance] = _imu._last_raw_gyro[instance] * _imu._gyro_raw_sampling_multiplier[instance];
#endif
_imu._new_gyro_data[instance] = false;
}
// possibly update filter frequency
if (_last_gyro_filter_hz != _gyro_filter_cutoff() || sensors_converging()) {
_imu._gyro_filter[instance].set_cutoff_frequency(_gyro_raw_sample_rate(instance), _gyro_filter_cutoff());
_last_gyro_filter_hz = _gyro_filter_cutoff();
}
// possily update the harmonic notch filter parameters
if (!is_equal(_last_harmonic_notch_bandwidth_hz, gyro_harmonic_notch_bandwidth_hz()) ||
!is_equal(_last_harmonic_notch_attenuation_dB, gyro_harmonic_notch_attenuation_dB()) ||
sensors_converging()) {
_imu._gyro_harmonic_notch_filter[instance].init(_gyro_raw_sample_rate(instance), gyro_harmonic_notch_center_freq_hz(), gyro_harmonic_notch_bandwidth_hz(), gyro_harmonic_notch_attenuation_dB());
_last_harmonic_notch_center_freq_hz = gyro_harmonic_notch_center_freq_hz();
_last_harmonic_notch_bandwidth_hz = gyro_harmonic_notch_bandwidth_hz();
_last_harmonic_notch_attenuation_dB = gyro_harmonic_notch_attenuation_dB();
} else if (!is_equal(_last_harmonic_notch_center_freq_hz, gyro_harmonic_notch_center_freq_hz())) {
if (num_gyro_harmonic_notch_center_frequencies() > 1) {
_imu._gyro_harmonic_notch_filter[instance].update(num_gyro_harmonic_notch_center_frequencies(), gyro_harmonic_notch_center_frequencies_hz());
} else {
_imu._gyro_harmonic_notch_filter[instance].update(gyro_harmonic_notch_center_freq_hz());
}
_last_harmonic_notch_center_freq_hz = gyro_harmonic_notch_center_freq_hz();
}
// possily update the notch filter parameters
if (!is_equal(_last_notch_center_freq_hz, _gyro_notch_center_freq_hz()) ||
!is_equal(_last_notch_bandwidth_hz, _gyro_notch_bandwidth_hz()) ||
!is_equal(_last_notch_attenuation_dB, _gyro_notch_attenuation_dB()) ||
sensors_converging()) {
_imu._gyro_notch_filter[instance].init(_gyro_raw_sample_rate(instance), _gyro_notch_center_freq_hz(), _gyro_notch_bandwidth_hz(), _gyro_notch_attenuation_dB());
_last_notch_center_freq_hz = _gyro_notch_center_freq_hz();
_last_notch_bandwidth_hz = _gyro_notch_bandwidth_hz();
_last_notch_attenuation_dB = _gyro_notch_attenuation_dB();
}
}
/*
common accel update function for all backends
*/
void AP_InertialSensor_Backend::update_accel(uint8_t instance)
{
WITH_SEMAPHORE(_sem);
if ((1U<<instance) & _imu.imu_kill_mask) {
return;
}
if (_imu._new_accel_data[instance]) {
_publish_accel(instance, _imu._accel_filtered[instance]);
_imu._new_accel_data[instance] = false;
}
// possibly update filter frequency
if (_last_accel_filter_hz != _accel_filter_cutoff()) {
_imu._accel_filter[instance].set_cutoff_frequency(_accel_raw_sample_rate(instance), _accel_filter_cutoff());
_last_accel_filter_hz = _accel_filter_cutoff();
}
}
bool AP_InertialSensor_Backend::should_log_imu_raw() const
{
if (_imu._log_raw_bit == (uint32_t)-1) {
// tracker does not set a bit
return false;
}
const AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
return false;
}
if (!logger->should_log(_imu._log_raw_bit)) {
return false;
}
return true;
}
// log an unexpected change in a register for an IMU
void AP_InertialSensor_Backend::log_register_change(uint32_t bus_id, const AP_HAL::Device::checkreg &reg)
{
AP::logger().Write("IREG", "TimeUS,DevID,Bank,Reg,Val", "QUBBB",
AP_HAL::micros64(),
bus_id,
reg.bank,
reg.regnum,
reg.value);
}