AP_InertialSensor: first steps in frontend/backend split

This converts the MPU6000 driver to a frontend/backend structure, and
disables all other drivers. They will be progressively re-enabled as
each is converted
This commit is contained in:
Andrew Tridgell 2014-10-14 15:48:33 +11:00
parent df16dd67d2
commit 448efc70a3
9 changed files with 399 additions and 243 deletions

View File

@ -219,18 +219,52 @@ const AP_Param::GroupInfo AP_InertialSensor::var_info[] PROGMEM = {
AP_InertialSensor::AP_InertialSensor() :
_accel(),
_gyro(),
_board_orientation(ROTATION_NONE)
_board_orientation(ROTATION_NONE),
_gyro_count(0),
_accel_count(0)
{
AP_Param::setup_object_defaults(this, var_info);
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
_backends[i] = NULL;
}
}
/*
register a new gyro instance
*/
uint8_t AP_InertialSensor::register_gyro(void)
{
if (_gyro_count == INS_MAX_INSTANCES) {
hal.scheduler->panic(PSTR("Too many gyros"));
}
return _gyro_count++;
}
/*
register a new accel instance
*/
uint8_t AP_InertialSensor::register_accel(void)
{
if (_accel_count == INS_MAX_INSTANCES) {
hal.scheduler->panic(PSTR("Too many accels"));
}
return _accel_count++;
}
void
AP_InertialSensor::init( Start_style style,
Sample_rate sample_rate)
{
_product_id = _init_sensor(sample_rate);
if (_gyro_count == 0 && _accel_count == 0) {
// detect available backends. Only called once
_detect_backends(sample_rate);
}
// check scaling
_product_id = 0; // FIX
// initialise accel scale if need be. This is needed as we can't
// give non-zero default values for vectors in AP_Param
for (uint8_t i=0; i<get_accel_count(); i++) {
if (_accel_scale[i].get().is_zero()) {
_accel_scale[i].set(Vector3f(1,1,1));
@ -241,6 +275,37 @@ AP_InertialSensor::init( Start_style style,
// do cold-start calibration for gyro only
_init_gyro();
}
switch (sample_rate) {
case RATE_50HZ:
_delta_time = 1.0f/50;
break;
case RATE_100HZ:
_delta_time = 1.0f/100;
break;
case RATE_200HZ:
_delta_time = 1.0f/200;
break;
case RATE_400HZ:
default:
_delta_time = 1.0f/400;
break;
}
}
/*
detect available backends for this board
*/
void
AP_InertialSensor::_detect_backends(Sample_rate sample_rate)
{
_backends[0] = AP_InertialSensor_MPU6000::detect(*this, sample_rate, _gyro[_gyro_count], _accel[_accel_count]);
if (_backends[0] == NULL ||
_gyro_count == 0 ||
_accel_count == 0) {
hal.scheduler->panic(PSTR("No INS backends available"));
}
}
void
@ -325,10 +390,7 @@ bool AP_InertialSensor::calibrate_accel(AP_InertialSensor_UserInteract* interact
}
uint8_t num_samples = 0;
while (num_samples < 32) {
if (!wait_for_sample(1000)) {
interact->printf_P(PSTR("Failed to get INS sample\n"));
goto failed;
}
wait_for_sample();
// read samples from ins
update();
// capture sample
@ -829,3 +891,35 @@ void AP_InertialSensor::_save_parameters()
_gyro_offset[i].save();
}
}
/*
update gyro and accel values from backends
*/
void AP_InertialSensor::update(void)
{
for (int8_t i=INS_MAX_INSTANCES-1; i>=0; i--) {
if (_backends[i] != NULL) {
_backends[i]->update();
}
}
}
/*
wait for a sample to be available
*/
void AP_InertialSensor::wait_for_sample(void)
{
bool gyro_available = false;
bool accel_available = false;
while (!gyro_available || !accel_available) {
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (_backends[i] != NULL) {
gyro_available |= _backends[i]->gyro_sample_available();
accel_available |= _backends[i]->gyro_sample_available();
}
}
hal.scheduler->delay_microseconds(100);
}
}

View File

@ -11,9 +11,7 @@
maximum number of INS instances available on this platform. If more
than 1 then redundent sensors may be available
*/
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_LINUX || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
#define INS_MAX_INSTANCES 3
#elif CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16
#define INS_MAX_INSTANCES 3
#else
#define INS_MAX_INSTANCES 1
@ -23,6 +21,9 @@
#include <AP_HAL.h>
#include <AP_Math.h>
#include "AP_InertialSensor_UserInteract.h"
class AP_InertialSensor_Backend;
/* AP_InertialSensor is an abstraction for gyro and accel measurements
* which are correctly aligned to the body axes and scaled to SI units.
*
@ -32,12 +33,11 @@
*/
class AP_InertialSensor
{
friend class AP_InertialSensor_Backend;
public:
AP_InertialSensor();
// empty virtual destructor
virtual ~AP_InertialSensor() {}
enum Start_style {
COLD_START = 0,
WARM_START
@ -64,22 +64,28 @@ public:
///
/// @param style The initialisation startup style.
///
virtual void init( Start_style style,
Sample_rate sample_rate);
void init( Start_style style,
Sample_rate sample_rate);
/// Perform cold startup initialisation for just the accelerometers.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work.
///
virtual void init_accel();
void init_accel();
/// Register a new gyro/accel driver, allocating an instance
/// number
uint8_t register_gyro(void);
uint8_t register_accel(void);
#if !defined( __AVR_ATmega1280__ )
// perform accelerometer calibration including providing user instructions
// and feedback
virtual bool calibrate_accel(AP_InertialSensor_UserInteract *interact,
float& trim_roll,
float& trim_pitch);
bool calibrate_accel(AP_InertialSensor_UserInteract *interact,
float& trim_roll,
float& trim_pitch);
#endif
/// calibrated - returns true if the accelerometers have been calibrated
@ -93,65 +99,63 @@ public:
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work
///
virtual void init_gyro(void);
void init_gyro(void);
/// Fetch the current gyro values
///
/// @returns vector of rotational rates in radians/sec
///
const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; }
const Vector3f &get_gyro(void) const { return get_gyro(_get_primary_gyro()); }
virtual void set_gyro(uint8_t instance, const Vector3f &gyro) {}
const Vector3f &get_gyro(void) const { return get_gyro(_primary_gyro); }
void set_gyro(uint8_t instance, const Vector3f &gyro);
// set gyro offsets in radians/sec
const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset[i]; }
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_get_primary_gyro()); }
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_primary_gyro); }
/// Fetch the current accelerometer values
///
/// @returns vector of current accelerations in m/s/s
///
const Vector3f &get_accel(uint8_t i) const { return _accel[i]; }
const Vector3f &get_accel(void) const { return get_accel(get_primary_accel()); }
virtual void set_accel(uint8_t instance, const Vector3f &accel) {}
const Vector3f &get_accel(void) const { return get_accel(_primary_accel); }
void set_accel(uint8_t instance, const Vector3f &accel);
// multi-device interface
virtual bool get_gyro_health(uint8_t instance) const { return true; }
bool get_gyro_health(void) const { return get_gyro_health(_get_primary_gyro()); }
bool get_gyro_health(uint8_t instance) const { return true; }
bool get_gyro_health(void) const { return get_gyro_health(_primary_gyro); }
bool get_gyro_health_all(void) const;
virtual uint8_t get_gyro_count(void) const { return 1; };
uint8_t get_gyro_count(void) const { return _gyro_count; }
bool gyro_calibrated_ok(uint8_t instance) const { return _gyro_cal_ok[instance]; }
bool gyro_calibrated_ok_all() const;
virtual bool get_accel_health(uint8_t instance) const { return true; }
bool get_accel_health(void) const { return get_accel_health(get_primary_accel()); }
bool get_accel_health(uint8_t instance) const { return true; }
bool get_accel_health(void) const { return get_accel_health(_primary_accel); }
bool get_accel_health_all(void) const;
virtual uint8_t get_accel_count(void) const { return 1; };
uint8_t get_accel_count(void) const { return _accel_count; };
// get accel offsets in m/s/s
const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset[i]; }
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(get_primary_accel()); }
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_primary_accel); }
// get accel scale
const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale[i]; }
const Vector3f &get_accel_scale(void) const { return get_accel_scale(get_primary_accel()); }
/* Update the sensor data, so that getters are nonblocking.
* Returns a bool of whether data was updated or not.
*/
virtual bool update() = 0;
const Vector3f &get_accel_scale(void) const { return get_accel_scale(_primary_accel); }
/* get_delta_time returns the time period in seconds
* overwhich the sensor data was collected
*/
virtual float get_delta_time() const = 0;
float get_delta_time() const { return _delta_time; }
// return the maximum gyro drift rate in radians/s/s. This
// depends on what gyro chips are being used
virtual float get_gyro_drift_rate(void) = 0;
float get_gyro_drift_rate(void) const { return ToRad(0.5f/60); }
// wait for a sample to be available, with timeout in milliseconds
virtual bool wait_for_sample(uint16_t timeout_ms) = 0;
// update gyro and accel values from accumulated samples
void update(void);
// wait for a sample to be available
void wait_for_sample(void);
// class level parameters
static const struct AP_Param::GroupInfo var_info[];
@ -169,24 +173,21 @@ public:
}
// get_filter - return filter in hz
virtual uint8_t get_filter() const { return _mpu6000_filter.get(); }
uint8_t get_filter() const { return _mpu6000_filter.get(); }
virtual uint16_t error_count(void) const { return 0; }
virtual bool healthy(void) const { return get_gyro_health() && get_accel_health(); }
uint16_t error_count(void) const { return 0; }
bool healthy(void) const { return get_gyro_health() && get_accel_health(); }
virtual uint8_t get_primary_accel(void) const { return 0; }
uint8_t get_primary_accel(void) const { return 0; }
protected:
private:
virtual uint8_t _get_primary_gyro(void) const { return 0; }
// load backend drivers
void _detect_backends(Sample_rate sample_rate);
// sensor specific init to be overwritten by descendant classes
virtual uint16_t _init_sensor( Sample_rate sample_rate ) = 0;
// no-save implementations of accel and gyro initialisation routines
virtual void _init_accel();
virtual void _init_gyro();
// accel and gyro initialisation
void _init_accel();
void _init_gyro();
#if !defined( __AVR_ATmega1280__ )
// Calibration routines borrowed from Rolfe Schmidt
@ -194,54 +195,63 @@ protected:
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
// _calibrate_accel - perform low level accel calibration
virtual bool _calibrate_accel(Vector3f accel_sample[6], Vector3f& accel_offsets, Vector3f& accel_scale);
virtual void _calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3]);
virtual void _calibrate_reset_matrices(float dS[6], float JS[6][6]);
virtual void _calibrate_find_delta(float dS[6], float JS[6][6], float delta[6]);
virtual void _calculate_trim(Vector3f accel_sample, float& trim_roll, float& trim_pitch);
bool _calibrate_accel(Vector3f accel_sample[6], Vector3f& accel_offsets, Vector3f& accel_scale);
void _calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3]);
void _calibrate_reset_matrices(float dS[6], float JS[6][6]);
void _calibrate_find_delta(float dS[6], float JS[6][6], float delta[6]);
void _calculate_trim(Vector3f accel_sample, float& trim_roll, float& trim_pitch);
#endif
// save parameters to eeprom
void _save_parameters();
// Most recent accelerometer reading obtained by ::update
// backend objects
AP_InertialSensor_Backend *_backends[INS_MAX_INSTANCES];
// number of gyros and accel drivers. Note that most backends
// provide both accel and gyro data, so will increment both
// counters on initialisation
uint8_t _gyro_count;
uint8_t _accel_count;
// Most recent accelerometer reading
Vector3f _accel[INS_MAX_INSTANCES];
// previous accelerometer reading obtained by ::update
Vector3f _previous_accel[INS_MAX_INSTANCES];
// Most recent gyro reading obtained by ::update
// Most recent gyro reading
Vector3f _gyro[INS_MAX_INSTANCES];
// timestamp of latest gyro and accel readings
uint32_t _last_gyro_sample_time_usec[INS_MAX_INSTANCES];
uint32_t _last_accel_sample_time_usec[INS_MAX_INSTANCES];
// product id
AP_Int16 _product_id;
// accelerometer scaling and offsets
AP_Vector3f _accel_scale[INS_MAX_INSTANCES];
AP_Vector3f _accel_offset[INS_MAX_INSTANCES];
AP_Vector3f _gyro_offset[INS_MAX_INSTANCES];
AP_Vector3f _accel_scale[INS_MAX_INSTANCES];
AP_Vector3f _accel_offset[INS_MAX_INSTANCES];
AP_Vector3f _gyro_offset[INS_MAX_INSTANCES];
// filtering frequency (0 means default)
AP_Int8 _mpu6000_filter;
AP_Int8 _mpu6000_filter;
// board orientation from AHRS
enum Rotation _board_orientation;
enum Rotation _board_orientation;
// calibrated_ok flags
bool _gyro_cal_ok[INS_MAX_INSTANCES];
bool _gyro_cal_ok[INS_MAX_INSTANCES];
// primary accel and gyro
uint8_t _primary_gyro;
uint8_t _primary_accel;
// time between samples
float _delta_time;
};
#include "AP_InertialSensor_Oilpan.h"
#include "AP_InertialSensor_Backend.h"
#include "AP_InertialSensor_MPU6000.h"
#include "AP_InertialSensor_HIL.h"
#include "AP_InertialSensor_PX4.h"
#include "AP_InertialSensor_VRBRAIN.h"
#include "AP_InertialSensor_UserInteract_Stream.h"
#include "AP_InertialSensor_UserInteract_MAVLink.h"
#include "AP_InertialSensor_Flymaple.h"
#include "AP_InertialSensor_L3G4200D.h"
#include "AP_InertialSensor_MPU9150.h"
#include "AP_InertialSensor_MPU9250.h"
#include "AP_InertialSensor_L3GD20.h"
#endif // __AP_INERTIAL_SENSOR_H__

View File

@ -0,0 +1,36 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include "AP_InertialSensor.h"
#include "AP_InertialSensor_Backend.h"
AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu, Vector3f &gyro, Vector3f &accel) :
_imu(imu),
_gyro(gyro),
_accel(accel)
{}
/*
rotate gyro vector and add the gyro offset
*/
void AP_InertialSensor_Backend::_rotate_and_offset_gyro(uint8_t instance, uint32_t now)
{
_imu._gyro[instance].rotate(_imu._board_orientation);
_imu._gyro[instance] -= _imu._gyro_offset[instance];
_imu._last_gyro_sample_time_usec[instance] = now;
}
/*
rotate accel vector, scale and add the accel offset
*/
void AP_InertialSensor_Backend::_rotate_and_offset_accel(uint8_t instance, uint32_t now)
{
_imu._accel[instance].rotate(_imu._board_orientation);
const Vector3f &accel_scale = _imu._accel_scale[instance].get();
_imu._accel[instance].x *= accel_scale.x;
_imu._accel[instance].y *= accel_scale.y;
_imu._accel[instance].z *= accel_scale.z;
_imu._accel[instance] -= _imu._accel_offset[instance];
_imu._last_accel_sample_time_usec[instance] = now;
}

View File

@ -0,0 +1,68 @@
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
IMU driver backend class
*/
#ifndef __AP_INERTIALSENSOR_BACKEND_H__
#define __AP_INERTIALSENSOR_BACKEND_H__
class AP_InertialSensor_Backend
{
public:
AP_InertialSensor_Backend(AP_InertialSensor &imu, Vector3f &gyro, Vector3f &accel);
// we declare a virtual destructor so that drivers can
// override with a custom destructor if need be.
virtual ~AP_InertialSensor_Backend(void) {}
/*
* Update the sensor data. Called by the frontend to transfer
* accumulated sensor readings to the frontend structure
*/
virtual bool update() = 0;
/*
* return true if at least one accel sample is available in the backend
* since the last call to update()
*/
virtual bool accel_sample_available() = 0;
/*
* return true if at least one gyro sample is available in the backend
* since the last call to update()
*/
virtual bool gyro_sample_available() = 0;
protected:
AP_InertialSensor &_imu; ///< access to frontend
// references to instance vectors
Vector3f &_gyro;
Vector3f &_accel;
// rotate gyro vector and offset
void _rotate_and_offset_gyro(uint8_t instance, uint32_t now);
// rotate accel vector, scale and offset
void _rotate_and_offset_accel(uint8_t instance, uint32_t now);
// note that each backend is also expected to have a detect()
// function which instantiates an instance of the backend sensor
// driver.
};
#endif // __AP_INERTIALSENSOR_BACKEND_H__

View File

@ -1,5 +1,6 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if NOT_YET
#include "AP_InertialSensor_HIL.h"
#include <AP_HAL.h>
const extern AP_HAL::HAL& hal;
@ -128,3 +129,4 @@ uint8_t AP_InertialSensor_HIL::get_accel_count(void) const
return 1;
}
#endif

View File

@ -36,6 +36,8 @@
****************************************************************************/
#include <AP_HAL.h>
#if NOT_YET
#include "AP_InertialSensor_L3GD20.h"
extern const AP_HAL::HAL& hal;
@ -630,3 +632,4 @@ float AP_InertialSensor_L3GD20::get_delta_time() const
// the sensor runs at 200Hz
return 0.005 * _num_samples;
}
#endif

View File

@ -1,5 +1,7 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if NOT_YET
/****************************************************************************
*
* Coded by Víctor Mayoral Vilches <v.mayoralv@gmail.com> using
@ -826,3 +828,4 @@ float AP_InertialSensor_LSM303D::get_delta_time() const
// the sensor runs at 200Hz
return 0.005 * _num_samples;
}
#endif

View File

@ -173,26 +173,47 @@ const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532f / 16.4f);
* variants however
*/
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000() :
AP_InertialSensor(),
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu,
Vector3f &gyro,
Vector3f &accel) :
AP_InertialSensor_Backend(imu, gyro, accel),
_drdy_pin(NULL),
_spi(NULL),
_spi_sem(NULL),
_num_samples(0),
_last_sample_time_micros(0),
_initialised(false),
_mpu6000_product_id(AP_PRODUCT_ID_NONE),
_sample_shift(0),
_sample_count(0),
_last_filter_hz(0),
_error_count(0)
_error_count(0),
_sum_count(0)
{
_accel_sum.zero();
_gyro_sum.zero();
}
uint16_t AP_InertialSensor_MPU6000::_init_sensor( Sample_rate sample_rate )
/*
detect the sensor
*/
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::detect(AP_InertialSensor &_imu,
AP_InertialSensor::Sample_rate sample_rate,
Vector3f &gyro,
Vector3f &accel)
{
if (_initialised) return _mpu6000_product_id;
_initialised = true;
AP_InertialSensor_MPU6000 *sensor = new AP_InertialSensor_MPU6000(_imu, gyro, accel);
if (sensor == NULL) {
return NULL;
}
if (!sensor->_init_sensor(sample_rate)) {
delete sensor;
return NULL;
}
return sensor;
}
/*
initialise the sensor
*/
bool AP_InertialSensor_MPU6000::_init_sensor(AP_InertialSensor::Sample_rate sample_rate)
{
_spi = hal.spi->device(AP_HAL::SPIDevice_MPU6000);
_spi_sem = _spi->get_semaphore();
@ -209,99 +230,73 @@ uint16_t AP_InertialSensor_MPU6000::_init_sensor( Sample_rate sample_rate )
if (success) {
hal.scheduler->delay(5+2);
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("MPU6000: Unable to get semaphore"));
return false;
}
if (_data_ready()) {
_spi_sem->give();
break;
} else {
hal.console->println_P(
PSTR("MPU6000 startup failed: no data ready"));
return false;
}
_spi_sem->give();
}
if (tries++ > 5) {
hal.scheduler->panic(PSTR("PANIC: failed to boot MPU6000 5 times"));
hal.console->print_P(PSTR("failed to boot MPU6000 5 times"));
return false;
}
} while (1);
// grab the used instances
_gyro_instance = _imu.register_gyro();
_accel_instance = _imu.register_accel();
hal.scheduler->resume_timer_procs();
/* read the first lot of data.
* _read_data_transaction requires the spi semaphore to be taken by
* its caller. */
_last_sample_time_micros = hal.scheduler->micros();
hal.scheduler->delay(10);
if (_spi_sem->take(100)) {
_read_data_transaction();
_spi_sem->give();
}
// start the timer process to read samples
hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_MPU6000::_poll_data));
#if MPU6000_DEBUG
_dump_registers();
#endif
return _mpu6000_product_id;
return true;
}
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_MPU6000::wait_for_sample(uint16_t timeout_ms)
{
if (_sample_available()) {
return true;
}
uint32_t start = hal.scheduler->millis();
while ((hal.scheduler->millis() - start) < timeout_ms) {
hal.scheduler->delay_microseconds(100);
if (_sample_available()) {
return true;
}
}
return false;
}
/*
process any
*/
bool AP_InertialSensor_MPU6000::update( void )
{
// wait for at least 1 sample
if (!wait_for_sample(1000)) {
{
if (_sum_count < _sample_count) {
// we don't have enough samples yet
return false;
}
_previous_accel[0] = _accel[0];
// we have a full set of samples
uint16_t num_samples;
uint32_t now = hal.scheduler->micros();
// disable timer procs for mininum time
hal.scheduler->suspend_timer_procs();
_gyro[0] = Vector3f(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z);
_accel[0] = Vector3f(_accel_sum.x, _accel_sum.y, _accel_sum.z);
_num_samples = _sum_count;
_gyro(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z);
_accel(_accel_sum.x, _accel_sum.y, _accel_sum.z);
num_samples = _sum_count;
_accel_sum.zero();
_gyro_sum.zero();
_sum_count = 0;
hal.scheduler->resume_timer_procs();
_gyro[0].rotate(_board_orientation);
_gyro[0] *= _gyro_scale / _num_samples;
_gyro[0] -= _gyro_offset[0];
_gyro *= _gyro_scale / num_samples;
_rotate_and_offset_gyro(_gyro_instance, now);
_accel[0].rotate(_board_orientation);
_accel[0] *= MPU6000_ACCEL_SCALE_1G / _num_samples;
_accel *= MPU6000_ACCEL_SCALE_1G / num_samples;
_rotate_and_offset_accel(_accel_instance, now);
Vector3f accel_scale = _accel_scale[0].get();
_accel[0].x *= accel_scale.x;
_accel[0].y *= accel_scale.y;
_accel[0].z *= accel_scale.z;
_accel[0] -= _accel_offset[0];
if (_last_filter_hz != _mpu6000_filter) {
if (_last_filter_hz != _imu.get_filter()) {
if (_spi_sem->take(10)) {
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
_set_filter_register(_mpu6000_filter, 0);
_set_filter_register(_imu.get_filter(), 0);
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
_error_count = 0;
_spi_sem->give();
}
}
@ -331,35 +326,13 @@ bool AP_InertialSensor_MPU6000::_data_ready()
*/
void AP_InertialSensor_MPU6000::_poll_data(void)
{
if (hal.scheduler->in_timerprocess()) {
if (!_spi_sem->take_nonblocking()) {
/*
the semaphore being busy is an expected condition when the
mainline code is calling wait_for_sample() which will
grab the semaphore. We return now and rely on the mainline
code grabbing the latest sample.
*/
return;
}
if (_data_ready()) {
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction();
}
_spi_sem->give();
} else {
/* Synchronous read - take semaphore */
if (_spi_sem->take(10)) {
if (_data_ready()) {
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction();
}
_spi_sem->give();
} else {
hal.scheduler->panic(
PSTR("PANIC: AP_InertialSensor_MPU6000::_poll_data "
"failed to take SPI semaphore synchronously"));
}
if (!_spi_sem->take_nonblocking()) {
return;
}
if (_data_ready()) {
_read_data_transaction();
}
_spi_sem->give();
}
@ -477,7 +450,7 @@ void AP_InertialSensor_MPU6000::_set_filter_register(uint8_t filter_hz, uint8_t
}
bool AP_InertialSensor_MPU6000::_hardware_init(Sample_rate sample_rate)
bool AP_InertialSensor_MPU6000::_hardware_init(AP_InertialSensor::Sample_rate sample_rate)
{
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("MPU6000: Unable to get semaphore"));
@ -525,25 +498,25 @@ bool AP_InertialSensor_MPU6000::_hardware_init(Sample_rate sample_rate)
// to minimise the effects of aliasing we choose a filter
// that is less than half of the sample rate
switch (sample_rate) {
case RATE_50HZ:
case AP_InertialSensor::RATE_50HZ:
// this is used for plane and rover, where noise resistance is
// more important than update rate. Tests on an aerobatic plane
// show that 10Hz is fine, and makes it very noise resistant
default_filter = BITS_DLPF_CFG_10HZ;
_sample_shift = 2;
_sample_count = 4;
break;
case RATE_100HZ:
case AP_InertialSensor::RATE_100HZ:
default_filter = BITS_DLPF_CFG_20HZ;
_sample_shift = 1;
_sample_count = 2;
break;
case RATE_200HZ:
case AP_InertialSensor::RATE_200HZ:
default:
default_filter = BITS_DLPF_CFG_20HZ;
_sample_shift = 0;
_sample_count = 1;
break;
}
_set_filter_register(_mpu6000_filter, default_filter);
_set_filter_register(_imu.get_filter(), default_filter);
// set sample rate to 200Hz, and use _sample_divider to give
// the requested rate to the application
@ -554,11 +527,13 @@ bool AP_InertialSensor_MPU6000::_hardware_init(Sample_rate sample_rate)
hal.scheduler->delay(1);
// read the product ID rev c has 1/2 the sensitivity of rev d
_mpu6000_product_id = _register_read(MPUREG_PRODUCT_ID);
uint8_t product_id = _register_read(MPUREG_PRODUCT_ID);
//Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id);
if ((_mpu6000_product_id == MPU6000ES_REV_C4) || (_mpu6000_product_id == MPU6000ES_REV_C5) ||
(_mpu6000_product_id == MPU6000_REV_C4) || (_mpu6000_product_id == MPU6000_REV_C5)) {
if ((product_id == MPU6000ES_REV_C4) ||
(product_id == MPU6000ES_REV_C5) ||
(product_id == MPU6000_REV_C4) ||
(product_id == MPU6000_REV_C5)) {
// Accel scale 8g (4096 LSB/g)
// Rev C has different scaling than rev D
_register_write(MPUREG_ACCEL_CONFIG,1<<3);
@ -585,22 +560,6 @@ bool AP_InertialSensor_MPU6000::_hardware_init(Sample_rate sample_rate)
return true;
}
// return the MPU6k gyro drift rate in radian/s/s
// note that this is much better than the oilpan gyros
float AP_InertialSensor_MPU6000::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}
// return true if a sample is available
bool AP_InertialSensor_MPU6000::_sample_available()
{
_poll_data();
return (_sum_count >> _sample_shift) > 0;
}
#if MPU6000_DEBUG
// dump all config registers - used for debug
void AP_InertialSensor_MPU6000::_dump_registers(void)
@ -619,11 +578,3 @@ void AP_InertialSensor_MPU6000::_dump_registers(void)
}
}
#endif
// get_delta_time returns the time period in seconds overwhich the sensor data was collected
float AP_InertialSensor_MPU6000::get_delta_time() const
{
// the sensor runs at 200Hz
return 0.005 * _num_samples;
}

View File

@ -12,33 +12,34 @@
// enable debug to see a register dump on startup
#define MPU6000_DEBUG 0
class AP_InertialSensor_MPU6000 : public AP_InertialSensor
class AP_InertialSensor_MPU6000 : public AP_InertialSensor_Backend
{
public:
AP_InertialSensor_MPU6000(AP_InertialSensor &imu, Vector3f &gyro, Vector3f &accel);
AP_InertialSensor_MPU6000();
/* update accel and gyro state */
bool update();
/* Concrete implementation of AP_InertialSensor functions: */
bool update();
float get_gyro_drift_rate();
// wait for a sample to be available, with timeout in milliseconds
bool wait_for_sample(uint16_t timeout_ms);
// get_delta_time returns the time period in seconds overwhich the sensor data was collected
float get_delta_time() const;
uint16_t error_count(void) const { return _error_count; }
bool healthy(void) const { return _error_count <= 4; }
bool get_gyro_health(uint8_t instance) const { return healthy(); }
bool get_accel_health(uint8_t instance) const { return healthy(); }
protected:
uint16_t _init_sensor( Sample_rate sample_rate );
bool gyro_sample_available(void) { return _sum_count >= _sample_count; }
bool accel_sample_available(void) { return _sum_count >= _sample_count; }
// detect the sensor
static AP_InertialSensor_Backend *detect(AP_InertialSensor &imu,
AP_InertialSensor::Sample_rate sample_rate,
Vector3f &gyro,
Vector3f &accel);
private:
#if MPU6000_DEBUG
void _dump_registers(void);
#endif
// instance numbers of accel and gyro data
uint8_t _gyro_instance;
uint8_t _accel_instance;
AP_HAL::DigitalSource *_drdy_pin;
bool _init_sensor(AP_InertialSensor::Sample_rate sample_rate);
bool _sample_available();
void _read_data_transaction();
bool _data_ready();
@ -46,41 +47,29 @@ private:
uint8_t _register_read( uint8_t reg );
void _register_write( uint8_t reg, uint8_t val );
void _register_write_check(uint8_t reg, uint8_t val);
bool _hardware_init(Sample_rate sample_rate);
bool _hardware_init(AP_InertialSensor::Sample_rate sample_rate);
AP_HAL::SPIDeviceDriver *_spi;
AP_HAL::Semaphore *_spi_sem;
uint16_t _num_samples;
static const float _gyro_scale;
uint32_t _last_sample_time_micros;
// ensure we can't initialise twice
bool _initialised;
int16_t _mpu6000_product_id;
// how many hardware samples before we report a sample to the caller
uint8_t _sample_shift;
uint8_t _sample_count;
// support for updating filter at runtime
uint8_t _last_filter_hz;
void _set_filter_register(uint8_t filter_hz, uint8_t default_filter);
// count of bus errors
uint16_t _error_count;
// accumulation in timer - must be read with timer disabled
// the sum of the values since last read
Vector3l _accel_sum;
Vector3l _gyro_sum;
volatile int16_t _sum_count;
public:
#if MPU6000_DEBUG
void _dump_registers(void);
#endif
volatile uint16_t _sum_count;
};
#endif // __AP_INERTIAL_SENSOR_MPU6000_H__