mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-28 19:48:31 -04:00
AP_InertialSensor: add IMU batch sampling
This commit is contained in:
parent
5096e2fca9
commit
9566abb3a8
@ -429,7 +429,13 @@ const AP_Param::GroupInfo AP_InertialSensor::var_info[] = {
|
||||
// @Description: Gyro notch filter
|
||||
// @User: Advanced
|
||||
AP_SUBGROUPINFO(_notch_filter, "NOTCH_", 37, AP_InertialSensor, NotchFilterVector3fParam),
|
||||
|
||||
|
||||
// @Param: LOG_
|
||||
// @DisplayName: Log Settings
|
||||
// @Description: Log Settings
|
||||
// @User: Advanced
|
||||
AP_SUBGROUPINFO(batchsampler, "LOG_", 39, AP_InertialSensor, AP_InertialSensor::BatchSampler),
|
||||
|
||||
/*
|
||||
NOTE: parameter indexes have gaps above. When adding new
|
||||
parameters check for conflicts carefully
|
||||
@ -651,6 +657,9 @@ AP_InertialSensor::init(uint16_t sample_rate)
|
||||
_next_sample_usec = 0;
|
||||
_last_sample_usec = 0;
|
||||
_have_sample = false;
|
||||
|
||||
// initialise IMU batch logging
|
||||
batchsampler.init();
|
||||
}
|
||||
|
||||
bool AP_InertialSensor::_add_backend(AP_InertialSensor_Backend *backend)
|
||||
@ -834,6 +843,14 @@ AP_InertialSensor::detect_backends(void)
|
||||
}
|
||||
}
|
||||
|
||||
// Armed, Copter, PixHawk:
|
||||
// ins_periodic: 57500 events, 0 overruns, 208754us elapsed, 3us avg, min 1us max 218us 40.662us rms
|
||||
void AP_InertialSensor::periodic()
|
||||
{
|
||||
batchsampler.periodic();
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
_calculate_trim - calculates the x and y trim angles. The
|
||||
accel_sample must be correctly scaled, offset and oriented for the
|
||||
|
@ -16,6 +16,8 @@
|
||||
#define INS_MAX_BACKENDS 6
|
||||
#define INS_VIBRATION_CHECK_INSTANCES 2
|
||||
|
||||
#define DEFAULT_IMU_LOG_BAT_MASK 0
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <AP_AccelCal/AP_AccelCal.h>
|
||||
@ -77,6 +79,9 @@ public:
|
||||
uint8_t register_gyro(uint16_t raw_sample_rate_hz, uint32_t id);
|
||||
uint8_t register_accel(uint16_t raw_sample_rate_hz, uint32_t id);
|
||||
|
||||
// a function called by the main thread at the main loop rate:
|
||||
void periodic();
|
||||
|
||||
bool calibrate_trim(float &trim_roll, float &trim_pitch);
|
||||
|
||||
/// calibrating - returns true if the gyros or accels are currently being calibrated
|
||||
@ -272,6 +277,74 @@ public:
|
||||
// return time in microseconds of last update() call
|
||||
uint32_t get_last_update_usec(void) const { return _last_update_usec; }
|
||||
|
||||
enum IMU_SENSOR_TYPE {
|
||||
IMU_SENSOR_TYPE_ACCEL = 0,
|
||||
IMU_SENSOR_TYPE_GYRO = 1,
|
||||
};
|
||||
|
||||
class BatchSampler {
|
||||
public:
|
||||
BatchSampler(const AP_InertialSensor &imu) :
|
||||
type(IMU_SENSOR_TYPE_ACCEL),
|
||||
_imu(imu) {
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
};
|
||||
|
||||
void init();
|
||||
void sample(uint8_t instance, IMU_SENSOR_TYPE _type, uint64_t sample_us, const Vector3f &sample);
|
||||
|
||||
// a function called by the main thread at the main loop rate:
|
||||
void periodic();
|
||||
|
||||
// class level parameters
|
||||
static const struct AP_Param::GroupInfo var_info[];
|
||||
|
||||
// Parameters
|
||||
AP_Int16 _required_count;
|
||||
AP_Int8 _sensor_mask;
|
||||
// end Parameters
|
||||
|
||||
private:
|
||||
|
||||
void rotate_to_next_sensor();
|
||||
|
||||
bool should_log(uint8_t instance, IMU_SENSOR_TYPE type);
|
||||
void push_data_to_log();
|
||||
|
||||
uint64_t measurement_started_us;
|
||||
|
||||
bool initialised : 1;
|
||||
bool isbh_sent : 1;
|
||||
uint8_t instance : 3; // instance we are sending data for
|
||||
AP_InertialSensor::IMU_SENSOR_TYPE type : 1;
|
||||
uint16_t isb_seqnum;
|
||||
int16_t *data_x;
|
||||
int16_t *data_y;
|
||||
int16_t *data_z;
|
||||
uint16_t data_write_offset; // units: samples
|
||||
uint16_t data_read_offset; // units: samples
|
||||
uint32_t last_sent_ms;
|
||||
|
||||
// all samples are multiplied by this
|
||||
static const uint16_t multiplier_accel = INT16_MAX/radians(2000);
|
||||
static const uint16_t multiplier_gyro = INT16_MAX/(16*GRAVITY_MSS);
|
||||
uint16_t multiplier = multiplier_accel;
|
||||
|
||||
// push blocks to DataFlash at regular intervals. each
|
||||
// message is ~ 108 bytes in size, so we use about 1kB/s of
|
||||
// logging bandwidth with a 100ms interval. If we are taking
|
||||
// 1024 samples then we need to send 32 packets, so it will
|
||||
// take ~3 seconds to push a complete batch to the log. If
|
||||
// you are running a on an FMU with three IMUs then you
|
||||
// will loop back around to the first sensor after about
|
||||
// twenty seconds.
|
||||
const uint8_t push_interval_ms = 100;
|
||||
const uint16_t samples_per_msg = 32;
|
||||
|
||||
const AP_InertialSensor &_imu;
|
||||
};
|
||||
BatchSampler batchsampler{*this};
|
||||
|
||||
private:
|
||||
AP_InertialSensor();
|
||||
|
||||
|
@ -221,6 +221,8 @@ void AP_InertialSensor_Backend::log_gyro_raw(uint8_t instance, const uint64_t sa
|
||||
GyrZ : gyro.z
|
||||
};
|
||||
dataflash->WriteBlock(&pkt, sizeof(pkt));
|
||||
} else {
|
||||
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, sample_us, gyro);
|
||||
}
|
||||
}
|
||||
|
||||
@ -329,6 +331,8 @@ void AP_InertialSensor_Backend::log_accel_raw(uint8_t instance, const uint64_t s
|
||||
AccZ : accel.z
|
||||
};
|
||||
dataflash->WriteBlock(&pkt, sizeof(pkt));
|
||||
} else {
|
||||
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, sample_us, accel);
|
||||
}
|
||||
}
|
||||
|
||||
|
216
libraries/AP_InertialSensor/BatchSampler.cpp
Normal file
216
libraries/AP_InertialSensor/BatchSampler.cpp
Normal file
@ -0,0 +1,216 @@
|
||||
#include "AP_InertialSensor.h"
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
|
||||
// Class level parameters
|
||||
const AP_Param::GroupInfo AP_InertialSensor::BatchSampler::var_info[] = {
|
||||
// @Param: BAT_CNT
|
||||
// @DisplayName: sample count per batch
|
||||
// @Description: Number of samples to take when logging streams of IMU sensor readings. Will be rounded down to a multiple of 32.
|
||||
// @User: Advanced
|
||||
// @Increment: 32
|
||||
AP_GROUPINFO("BAT_CNT", 1, AP_InertialSensor::BatchSampler, _required_count, 1024),
|
||||
|
||||
// @Param: BAT_MASK
|
||||
// @DisplayName: Sensor Bitmask
|
||||
// @Description: Bitmap of which IMUs to log batch data for
|
||||
// @User: Advanced
|
||||
// @Values: 0:None,1:First IMU,255:All
|
||||
// @Bitmask: 0:IMU1,1:IMU2,2:IMU3
|
||||
AP_GROUPINFO("BAT_MASK", 2, AP_InertialSensor::BatchSampler, _sensor_mask, DEFAULT_IMU_LOG_BAT_MASK),
|
||||
|
||||
AP_GROUPEND
|
||||
};
|
||||
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
void AP_InertialSensor::BatchSampler::init()
|
||||
{
|
||||
if (_sensor_mask == 0) {
|
||||
return;
|
||||
}
|
||||
if (_required_count <= 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
_required_count -= _required_count % 32; // round down to nearest multiple of 32
|
||||
|
||||
const uint32_t total_allocation = 3*_required_count*sizeof(uint16_t);
|
||||
gcs().send_text(MAV_SEVERITY_DEBUG, "INS: alloc %u bytes for ISB (free=%u)", total_allocation, hal.util->available_memory());
|
||||
|
||||
data_x = (int16_t*)calloc(_required_count, sizeof(int16_t));
|
||||
data_y = (int16_t*)calloc(_required_count, sizeof(int16_t));
|
||||
data_z = (int16_t*)calloc(_required_count, sizeof(int16_t));
|
||||
if (data_x == nullptr || data_y == nullptr || data_z == nullptr) {
|
||||
free(data_x);
|
||||
free(data_y);
|
||||
free(data_z);
|
||||
data_x = nullptr;
|
||||
data_y = nullptr;
|
||||
data_z = nullptr;
|
||||
gcs().send_text(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for IMU batch sampling", total_allocation);
|
||||
return;
|
||||
}
|
||||
|
||||
rotate_to_next_sensor();
|
||||
|
||||
initialised = true;
|
||||
}
|
||||
|
||||
void AP_InertialSensor::BatchSampler::periodic()
|
||||
{
|
||||
if (_sensor_mask == 0) {
|
||||
return;
|
||||
}
|
||||
push_data_to_log();
|
||||
}
|
||||
|
||||
void AP_InertialSensor::BatchSampler::rotate_to_next_sensor()
|
||||
{
|
||||
if (_sensor_mask == 0) {
|
||||
// should not have been called
|
||||
return;
|
||||
}
|
||||
if ((1U<<instance) > (uint8_t)_sensor_mask) {
|
||||
// should only ever happen if user resets _sensor_mask
|
||||
instance = 0;
|
||||
}
|
||||
|
||||
if (type == IMU_SENSOR_TYPE_ACCEL) {
|
||||
// we have logged accelerometers, now log gyros:
|
||||
type = IMU_SENSOR_TYPE_GYRO;
|
||||
multiplier = multiplier_gyro;
|
||||
return;
|
||||
}
|
||||
|
||||
// log for accel sensor:
|
||||
type = IMU_SENSOR_TYPE_ACCEL;
|
||||
multiplier = multiplier_accel;
|
||||
|
||||
// move to next IMU backend:
|
||||
|
||||
// we assume the number of gyros and accels is the same, taking
|
||||
// this minimum stops us doing bad things if that isn't true:
|
||||
const uint8_t _count = MIN(_imu._accel_count, _imu._gyro_count);
|
||||
|
||||
// find next backend instance to log:
|
||||
for (uint8_t i=instance+1; i<_count; i++) {
|
||||
if (_sensor_mask & (1U<<i)) {
|
||||
instance = i;
|
||||
return;
|
||||
}
|
||||
}
|
||||
for (uint8_t i=0; i<instance; i++) {
|
||||
if (_sensor_mask & (1U<<i)) {
|
||||
instance = i;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void AP_InertialSensor::BatchSampler::push_data_to_log()
|
||||
{
|
||||
if (!initialised) {
|
||||
return;
|
||||
}
|
||||
if (_sensor_mask == 0) {
|
||||
return;
|
||||
}
|
||||
if (data_write_offset - data_read_offset < samples_per_msg) {
|
||||
// insuffucient data to pack a packet
|
||||
return;
|
||||
}
|
||||
const uint32_t now = AP_HAL::millis();
|
||||
if (now - last_sent_ms < push_interval_ms) {
|
||||
// avoid flooding DataFlash's buffer
|
||||
return;
|
||||
}
|
||||
DataFlash_Class *dataflash = DataFlash_Class::instance();
|
||||
if (dataflash == nullptr) {
|
||||
// should not have been called
|
||||
return;
|
||||
}
|
||||
|
||||
// possibly send isb header:
|
||||
if (!isbh_sent && data_read_offset == 0) {
|
||||
float sample_rate = 0; // avoid warning about uninitialised values
|
||||
switch(type) {
|
||||
case IMU_SENSOR_TYPE_GYRO:
|
||||
sample_rate = _imu._gyro_raw_sample_rates[instance];
|
||||
break;
|
||||
case IMU_SENSOR_TYPE_ACCEL:
|
||||
sample_rate = _imu._accel_raw_sample_rates[instance];
|
||||
break;
|
||||
}
|
||||
if (!dataflash->Log_Write_ISBH(isb_seqnum,
|
||||
type,
|
||||
instance,
|
||||
multiplier,
|
||||
measurement_started_us,
|
||||
sample_rate)) {
|
||||
// buffer full?
|
||||
return;
|
||||
}
|
||||
isbh_sent = true;
|
||||
}
|
||||
// pack and send a data packet:
|
||||
if (!dataflash->Log_Write_ISBD(isb_seqnum,
|
||||
data_read_offset/samples_per_msg,
|
||||
&data_x[data_read_offset],
|
||||
&data_y[data_read_offset],
|
||||
&data_z[data_read_offset])) {
|
||||
// maybe later?!
|
||||
return;
|
||||
}
|
||||
data_read_offset += samples_per_msg;
|
||||
last_sent_ms = AP_HAL::millis();
|
||||
if (data_read_offset >= _required_count) {
|
||||
// that was the last one. Clean up:
|
||||
data_read_offset = 0;
|
||||
isb_seqnum++;
|
||||
isbh_sent = false;
|
||||
// rotate to next instance:
|
||||
rotate_to_next_sensor();
|
||||
data_write_offset = 0; // unlocks writing process
|
||||
}
|
||||
}
|
||||
|
||||
bool AP_InertialSensor::BatchSampler::should_log(uint8_t _instance, IMU_SENSOR_TYPE _type)
|
||||
{
|
||||
if (_sensor_mask == 0) {
|
||||
return false;
|
||||
}
|
||||
if (!initialised) {
|
||||
return false;
|
||||
}
|
||||
if (_instance != instance) {
|
||||
return false;
|
||||
}
|
||||
if (_type != type) {
|
||||
return false;
|
||||
}
|
||||
if (data_write_offset >= _required_count) {
|
||||
return false;
|
||||
}
|
||||
DataFlash_Class *dataflash = DataFlash_Class::instance();
|
||||
#define MASK_LOG_ANY 0xFFFF
|
||||
if (!dataflash->should_log(MASK_LOG_ANY)) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void AP_InertialSensor::BatchSampler::sample(uint8_t _instance, AP_InertialSensor::IMU_SENSOR_TYPE _type, uint64_t sample_us, const Vector3f &_sample)
|
||||
{
|
||||
if (!should_log(_instance, _type)) {
|
||||
return;
|
||||
}
|
||||
if (data_write_offset == 0) {
|
||||
measurement_started_us = sample_us;
|
||||
}
|
||||
|
||||
data_x[data_write_offset] = multiplier*_sample.x;
|
||||
data_y[data_write_offset] = multiplier*_sample.y;
|
||||
data_z[data_write_offset] = multiplier*_sample.z;
|
||||
|
||||
data_write_offset++; // may unblock the reading process
|
||||
}
|
Loading…
Reference in New Issue
Block a user