mirror of https://github.com/ArduPilot/ardupilot
AP_InertialSensor: merged in Revo driver
This commit is contained in:
parent
ba32b06c59
commit
0e6497aa85
|
@ -23,6 +23,7 @@
|
|||
#include "AP_InertialSensor_SITL.h"
|
||||
#include "AP_InertialSensor_qflight.h"
|
||||
#include "AP_InertialSensor_RST.h"
|
||||
#include "AP_InertialSensor_Revo.h"
|
||||
|
||||
/* Define INS_TIMING_DEBUG to track down scheduling issues with the main loop.
|
||||
* Output is on the debug console. */
|
||||
|
@ -730,6 +731,8 @@ AP_InertialSensor::detect_backends(void)
|
|||
ADD_BACKEND(AP_InertialSensor_SITL::detect(*this));
|
||||
#elif HAL_INS_DEFAULT == HAL_INS_HIL
|
||||
ADD_BACKEND(AP_InertialSensor_HIL::detect(*this));
|
||||
#elif CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT
|
||||
ADD_BACKEND(AP_InertialSensor_Revo::probe(*this, hal.spi->get_device(HAL_INS_MPU60x0_NAME), HAL_INS_DEFAULT_ROTATION));
|
||||
#elif HAL_INS_DEFAULT == HAL_INS_MPU60XX_SPI && defined(HAL_INS_DEFAULT_ROTATION)
|
||||
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU60x0_NAME),
|
||||
HAL_INS_DEFAULT_ROTATION));
|
||||
|
|
|
@ -2,8 +2,10 @@
|
|||
#include "AP_InertialSensor.h"
|
||||
#include "AP_InertialSensor_Backend.h"
|
||||
#include <DataFlash/DataFlash.h>
|
||||
#if AP_MODULE_SUPPORTED
|
||||
#include <AP_Module/AP_Module.h>
|
||||
#include <stdio.h>
|
||||
#endif
|
||||
|
||||
#define SENSOR_RATE_DEBUG 0
|
||||
|
||||
|
@ -160,8 +162,10 @@ void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance,
|
|||
}
|
||||
_imu._gyro_last_sample_us[instance] = sample_us;
|
||||
|
||||
#if AP_MODULE_SUPPORTED
|
||||
// call gyro_sample hook if any
|
||||
AP_Module::call_hook_gyro_sample(instance, dt, gyro);
|
||||
#endif
|
||||
|
||||
// push gyros if optical flow present
|
||||
if (hal.opticalflow)
|
||||
|
@ -289,8 +293,10 @@ void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance,
|
|||
}
|
||||
_imu._accel_last_sample_us[instance] = sample_us;
|
||||
|
||||
#if AP_MODULE_SUPPORTED
|
||||
// call accel_sample hook if any
|
||||
AP_Module::call_hook_accel_sample(instance, dt, accel, fsync_set);
|
||||
#endif
|
||||
|
||||
_imu.calc_vibration_and_clipping(instance, accel, dt);
|
||||
|
||||
|
@ -447,3 +453,4 @@ bool AP_InertialSensor_Backend::should_log_imu_raw() const
|
|||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
@ -28,6 +28,13 @@
|
|||
|
||||
#include "AP_InertialSensor.h"
|
||||
|
||||
#if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT
|
||||
#include <AP_HAL_F4Light/AP_HAL_F4Light.h>
|
||||
#include <AP_HAL_F4Light/GPIO.h>
|
||||
#include <AP_HAL_F4Light/Scheduler.h>
|
||||
using namespace F4Light;
|
||||
#endif
|
||||
|
||||
class AuxiliaryBus;
|
||||
class DataFlash_Class;
|
||||
|
||||
|
|
|
@ -0,0 +1,996 @@
|
|||
/*
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
copied from AP_InertialSensor_Invensense, removed aux bus and FIFO usage
|
||||
this driver can be common Invensense driver for boards with connected DataReady pin if HAL API will be extended
|
||||
to support IO_Complete callbacks
|
||||
|
||||
driver for all supported Invensense IMUs, including MPU6000, MPU9250
|
||||
ICM-20608 and ICM-20602
|
||||
*/
|
||||
|
||||
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
|
||||
#if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT && defined(INVENSENSE_DRDY_PIN)
|
||||
|
||||
#include <assert.h>
|
||||
#include <utility>
|
||||
#include <stdio.h>
|
||||
#include <AP_HAL/Util.h>
|
||||
|
||||
#include <AP_HAL_F4Light/GPIO.h>
|
||||
#include <AP_HAL_F4Light/Scheduler.h>
|
||||
#include <AP_HAL_F4Light/SPIDevice.h>
|
||||
#include <AP_Param_Helper/AP_Param_Helper.h>
|
||||
|
||||
#include "AP_InertialSensor_Revo.h"
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
#define debug(fmt, args ...) do {printf("MPU: " fmt "\n", ## args); } while(0)
|
||||
|
||||
/*
|
||||
EXT_SYNC allows for frame synchronisation with an external device
|
||||
such as a camera. When enabled the LSB of AccelZ holds the FSYNC bit
|
||||
*/
|
||||
#ifndef INVENSENSE_EXT_SYNC_ENABLE
|
||||
#define INVENSENSE_EXT_SYNC_ENABLE 0
|
||||
#endif
|
||||
|
||||
// common registers
|
||||
#define MPUREG_XG_OFFS_TC 0x00
|
||||
#define MPUREG_YG_OFFS_TC 0x01
|
||||
#define MPUREG_ZG_OFFS_TC 0x02
|
||||
#define MPUREG_X_FINE_GAIN 0x03
|
||||
#define MPUREG_Y_FINE_GAIN 0x04
|
||||
#define MPUREG_Z_FINE_GAIN 0x05
|
||||
#define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte)
|
||||
#define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte)
|
||||
#define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte)
|
||||
#define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte)
|
||||
#define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte)
|
||||
#define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte)
|
||||
#define MPUREG_PRODUCT_ID 0x0C // Product ID Register
|
||||
#define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte)
|
||||
#define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte)
|
||||
#define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte)
|
||||
#define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte)
|
||||
#define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte)
|
||||
#define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte)
|
||||
#define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(<this value>+1) = 200Hz
|
||||
# define MPUREG_SMPLRT_1000HZ 0x00
|
||||
# define MPUREG_SMPLRT_500HZ 0x01
|
||||
# define MPUREG_SMPLRT_250HZ 0x03
|
||||
# define MPUREG_SMPLRT_200HZ 0x04
|
||||
# define MPUREG_SMPLRT_100HZ 0x09
|
||||
# define MPUREG_SMPLRT_50HZ 0x13
|
||||
#define MPUREG_CONFIG 0x1A
|
||||
# define MPUREG_CONFIG_EXT_SYNC_SHIFT 3
|
||||
# define MPUREG_CONFIG_EXT_SYNC_GX 0x02
|
||||
# define MPUREG_CONFIG_EXT_SYNC_GY 0x03
|
||||
# define MPUREG_CONFIG_EXT_SYNC_GZ 0x04
|
||||
# define MPUREG_CONFIG_EXT_SYNC_AX 0x05
|
||||
# define MPUREG_CONFIG_EXT_SYNC_AY 0x06
|
||||
# define MPUREG_CONFIG_EXT_SYNC_AZ 0x07
|
||||
# define MPUREG_CONFIG_FIFO_MODE_STOP 0x40
|
||||
#define MPUREG_GYRO_CONFIG 0x1B
|
||||
// bit definitions for MPUREG_GYRO_CONFIG
|
||||
# define BITS_GYRO_FS_250DPS 0x00
|
||||
# define BITS_GYRO_FS_500DPS 0x08
|
||||
# define BITS_GYRO_FS_1000DPS 0x10
|
||||
# define BITS_GYRO_FS_2000DPS 0x18
|
||||
# define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits
|
||||
# define BITS_GYRO_ZGYRO_SELFTEST 0x20
|
||||
# define BITS_GYRO_YGYRO_SELFTEST 0x40
|
||||
# define BITS_GYRO_XGYRO_SELFTEST 0x80
|
||||
#define MPUREG_ACCEL_CONFIG 0x1C
|
||||
#define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this
|
||||
#define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms
|
||||
#define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation.
|
||||
#define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms.
|
||||
#define MPUREG_FIFO_EN 0x23
|
||||
# define BIT_TEMP_FIFO_EN 0x80
|
||||
# define BIT_XG_FIFO_EN 0x40
|
||||
# define BIT_YG_FIFO_EN 0x20
|
||||
# define BIT_ZG_FIFO_EN 0x10
|
||||
# define BIT_ACCEL_FIFO_EN 0x08
|
||||
# define BIT_SLV2_FIFO_EN 0x04
|
||||
# define BIT_SLV1_FIFO_EN 0x02
|
||||
# define BIT_SLV0_FIFI_EN0 0x01
|
||||
#define MPUREG_I2C_MST_CTRL 0x24
|
||||
# define BIT_I2C_MST_P_NSR 0x10
|
||||
# define BIT_I2C_MST_CLK_400KHZ 0x0D
|
||||
#define MPUREG_I2C_SLV0_ADDR 0x25
|
||||
#define MPUREG_I2C_SLV1_ADDR 0x28
|
||||
#define MPUREG_I2C_SLV2_ADDR 0x2B
|
||||
#define MPUREG_I2C_SLV3_ADDR 0x2E
|
||||
#define MPUREG_INT_PIN_CFG 0x37
|
||||
# define BIT_BYPASS_EN 0x02
|
||||
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs
|
||||
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin
|
||||
#define MPUREG_I2C_SLV4_CTRL 0x34
|
||||
#define MPUREG_INT_ENABLE 0x38
|
||||
// bit definitions for MPUREG_INT_ENABLE
|
||||
# define BIT_RAW_RDY_EN 0x01
|
||||
# define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems
|
||||
# define BIT_UNKNOWN_INT_EN 0x04
|
||||
# define BIT_I2C_MST_INT_EN 0x08
|
||||
# define BIT_FIFO_OFLOW_EN 0x10
|
||||
# define BIT_ZMOT_EN 0x20
|
||||
# define BIT_MOT_EN 0x40
|
||||
# define BIT_FF_EN 0x80
|
||||
#define MPUREG_INT_STATUS 0x3A
|
||||
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired)
|
||||
# define BIT_RAW_RDY_INT 0x01
|
||||
# define BIT_DMP_INT 0x02
|
||||
# define BIT_UNKNOWN_INT 0x04
|
||||
# define BIT_I2C_MST_INT 0x08
|
||||
# define BIT_FIFO_OFLOW_INT 0x10
|
||||
# define BIT_ZMOT_INT 0x20
|
||||
# define BIT_MOT_INT 0x40
|
||||
# define BIT_FF_INT 0x80
|
||||
#define MPUREG_ACCEL_XOUT_H 0x3B
|
||||
#define MPUREG_ACCEL_XOUT_L 0x3C
|
||||
#define MPUREG_ACCEL_YOUT_H 0x3D
|
||||
#define MPUREG_ACCEL_YOUT_L 0x3E
|
||||
#define MPUREG_ACCEL_ZOUT_H 0x3F
|
||||
#define MPUREG_ACCEL_ZOUT_L 0x40
|
||||
#define MPUREG_TEMP_OUT_H 0x41
|
||||
#define MPUREG_TEMP_OUT_L 0x42
|
||||
#define MPUREG_GYRO_XOUT_H 0x43
|
||||
#define MPUREG_GYRO_XOUT_L 0x44
|
||||
#define MPUREG_GYRO_YOUT_H 0x45
|
||||
#define MPUREG_GYRO_YOUT_L 0x46
|
||||
#define MPUREG_GYRO_ZOUT_H 0x47
|
||||
#define MPUREG_GYRO_ZOUT_L 0x48
|
||||
#define MPUREG_EXT_SENS_DATA_00 0x49
|
||||
#define MPUREG_I2C_SLV0_DO 0x63
|
||||
#define MPUREG_I2C_MST_DELAY_CTRL 0x67
|
||||
# define BIT_I2C_SLV0_DLY_EN 0x01
|
||||
# define BIT_I2C_SLV1_DLY_EN 0x02
|
||||
# define BIT_I2C_SLV2_DLY_EN 0x04
|
||||
# define BIT_I2C_SLV3_DLY_EN 0x08
|
||||
#define MPUREG_USER_CTRL 0x6A
|
||||
// bit definitions for MPUREG_USER_CTRL
|
||||
# define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp)
|
||||
# define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set)
|
||||
# define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer
|
||||
# define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP
|
||||
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface
|
||||
# define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors
|
||||
# define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations
|
||||
# define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations
|
||||
#define MPUREG_PWR_MGMT_1 0x6B
|
||||
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
|
||||
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
|
||||
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
|
||||
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
|
||||
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
|
||||
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
|
||||
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
|
||||
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
|
||||
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
|
||||
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
|
||||
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
|
||||
#define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode
|
||||
#define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers)
|
||||
#define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory)
|
||||
#define MPUREG_MEM_R_W 0x6F // DMP related register
|
||||
#define MPUREG_DMP_CFG_1 0x70 // DMP related register
|
||||
#define MPUREG_DMP_CFG_2 0x71 // DMP related register
|
||||
#define MPUREG_FIFO_COUNTH 0x72
|
||||
#define MPUREG_FIFO_COUNTL 0x73
|
||||
#define MPUREG_FIFO_R_W 0x74
|
||||
#define MPUREG_WHOAMI 0x75
|
||||
|
||||
// ICM20608 specific registers
|
||||
#define ICMREG_ACCEL_CONFIG2 0x1D
|
||||
#define ICM_ACC_DLPF_CFG_1046HZ_NOLPF 0x00
|
||||
#define ICM_ACC_DLPF_CFG_218HZ 0x01
|
||||
#define ICM_ACC_DLPF_CFG_99HZ 0x02
|
||||
#define ICM_ACC_DLPF_CFG_44HZ 0x03
|
||||
#define ICM_ACC_DLPF_CFG_21HZ 0x04
|
||||
#define ICM_ACC_DLPF_CFG_10HZ 0x05
|
||||
#define ICM_ACC_DLPF_CFG_5HZ 0x06
|
||||
#define ICM_ACC_DLPF_CFG_420HZ 0x07
|
||||
#define ICM_ACC_FCHOICE_B 0x08
|
||||
|
||||
/* this is an undocumented register which
|
||||
if set incorrectly results in getting a 2.7m/s/s offset
|
||||
on the Y axis of the accelerometer
|
||||
*/
|
||||
#define MPUREG_ICM_UNDOC1 0x11
|
||||
#define MPUREG_ICM_UNDOC1_VALUE 0xc9
|
||||
|
||||
// WHOAMI values
|
||||
#define MPU_WHOAMI_6000 0x68
|
||||
#define MPU_WHOAMI_20608 0xaf
|
||||
#define MPU_WHOAMI_20602 0x12
|
||||
#define MPU_WHOAMI_6500 0x70
|
||||
#define MPU_WHOAMI_MPU9250 0x71
|
||||
#define MPU_WHOAMI_MPU9255 0x73
|
||||
|
||||
#define BIT_READ_FLAG 0x80
|
||||
#define BIT_I2C_SLVX_EN 0x80
|
||||
|
||||
// Configuration bits MPU 3000 and MPU 6000 (not revised)?
|
||||
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00
|
||||
#define BITS_DLPF_CFG_188HZ 0x01
|
||||
#define BITS_DLPF_CFG_98HZ 0x02
|
||||
#define BITS_DLPF_CFG_42HZ 0x03
|
||||
#define BITS_DLPF_CFG_20HZ 0x04
|
||||
#define BITS_DLPF_CFG_10HZ 0x05
|
||||
#define BITS_DLPF_CFG_5HZ 0x06
|
||||
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
|
||||
#define BITS_DLPF_CFG_MASK 0x07
|
||||
|
||||
// Product ID Description for MPU6000. Used to detect buggy chips
|
||||
// high 4 bits low 4 bits
|
||||
// Product Name Product Revision
|
||||
#define MPU6000ES_REV_C4 0x14 // 0001 0100
|
||||
#define MPU6000ES_REV_C5 0x15 // 0001 0101
|
||||
#define MPU6000ES_REV_D6 0x16 // 0001 0110
|
||||
#define MPU6000ES_REV_D7 0x17 // 0001 0111
|
||||
#define MPU6000ES_REV_D8 0x18 // 0001 1000
|
||||
#define MPU6000_REV_C4 0x54 // 0101 0100
|
||||
#define MPU6000_REV_C5 0x55 // 0101 0101
|
||||
#define MPU6000_REV_D6 0x56 // 0101 0110
|
||||
#define MPU6000_REV_D7 0x57 // 0101 0111
|
||||
#define MPU6000_REV_D8 0x58 // 0101 1000
|
||||
#define MPU6000_REV_D9 0x59 // 0101 1001
|
||||
|
||||
#define MPU_SAMPLE_SIZE 14
|
||||
#define MPU_FIFO_DOWNSAMPLE_COUNT 8
|
||||
#define MPU_FIFO_BUFFER_LEN 64// ms of samples
|
||||
|
||||
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
|
||||
#define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])
|
||||
|
||||
/*
|
||||
* RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of
|
||||
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
|
||||
*/
|
||||
static const float GYRO_SCALE = (0.0174532f / 16.4f);
|
||||
|
||||
#ifdef MPU_DEBUG_LOG
|
||||
mpu_log_item AP_InertialSensor_Revo::mpu_log[MPU_LOG_SIZE] IN_CCM;
|
||||
uint16_t AP_InertialSensor_Revo::mpu_log_ptr=0;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of
|
||||
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2)
|
||||
*
|
||||
* See note below about accel scaling of engineering sample MPU6k
|
||||
* variants however
|
||||
*/
|
||||
|
||||
AP_InertialSensor_Revo::AP_InertialSensor_Revo(AP_InertialSensor &imu,
|
||||
AP_HAL::OwnPtr<AP_HAL::Device> dev,
|
||||
enum Rotation rotation)
|
||||
: AP_InertialSensor_Backend(imu)
|
||||
, _temp_filter(1000, 1)
|
||||
, _rotation(rotation)
|
||||
, _dev(std::move(dev))
|
||||
, nodata_count(0)
|
||||
, accel_len(0)
|
||||
{
|
||||
}
|
||||
|
||||
AP_InertialSensor_Revo::~AP_InertialSensor_Revo()
|
||||
{
|
||||
if (_fifo_buffer != nullptr) {
|
||||
hal.util->free_type(_fifo_buffer, MPU_FIFO_BUFFER_LEN * MPU_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE);
|
||||
}
|
||||
}
|
||||
|
||||
AP_InertialSensor_Backend *AP_InertialSensor_Revo::probe(AP_InertialSensor &imu,
|
||||
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev,
|
||||
enum Rotation rotation)
|
||||
{
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
||||
AP_InertialSensor_Backend *AP_InertialSensor_Revo::probe(AP_InertialSensor &imu,
|
||||
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev,
|
||||
enum Rotation rotation)
|
||||
{
|
||||
if (!dev) {
|
||||
return nullptr;
|
||||
}
|
||||
AP_InertialSensor_Revo *sensor;
|
||||
|
||||
dev->set_read_flag(0x80);
|
||||
|
||||
sensor = new AP_InertialSensor_Revo(imu, std::move(dev), rotation);
|
||||
if (!sensor || !sensor->_init()) {
|
||||
delete sensor;
|
||||
return nullptr;
|
||||
}
|
||||
if (sensor->_mpu_type == Invensense_MPU9250) {
|
||||
sensor->_id = HAL_INS_MPU9250_SPI;
|
||||
} else if (sensor->_mpu_type == Invensense_MPU6500) {
|
||||
sensor->_id = HAL_INS_MPU6500;
|
||||
} else {
|
||||
sensor->_id = HAL_INS_MPU60XX_SPI;
|
||||
}
|
||||
|
||||
return sensor;
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_Revo::_init()
|
||||
{
|
||||
_drdy_pin = hal.gpio->channel(INVENSENSE_DRDY_PIN);
|
||||
_drdy_pin->mode(INPUT_PULLDOWN);
|
||||
|
||||
bool success = _hardware_init();
|
||||
|
||||
return success;
|
||||
}
|
||||
|
||||
|
||||
void AP_InertialSensor_Revo::_start(){
|
||||
// initially run the bus at low speed
|
||||
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
|
||||
|
||||
// setup ODR and on-sensor filtering
|
||||
_set_filter_register();
|
||||
|
||||
// set sample rate to 1000Hz and apply a software filter
|
||||
// In this configuration, the gyro sample rate is 8kHz
|
||||
_register_write(MPUREG_SMPLRT_DIV, 0, true);
|
||||
hal.scheduler->delay_microseconds(10);
|
||||
|
||||
// Gyro scale 2000º/s
|
||||
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS, true);
|
||||
hal.scheduler->delay_microseconds(10);
|
||||
|
||||
|
||||
if (_mpu_type == Invensense_MPU6000 &&
|
||||
((product_id == MPU6000ES_REV_C4) ||
|
||||
(product_id == MPU6000ES_REV_C5) ||
|
||||
(product_id == MPU6000_REV_C4) ||
|
||||
(product_id == MPU6000_REV_C5))) {
|
||||
// Accel scale 8g (4096 LSB/g)
|
||||
// Rev C has different scaling than rev D
|
||||
_register_write(MPUREG_ACCEL_CONFIG,1<<3, true);
|
||||
_accel_scale = GRAVITY_MSS / 4096.f;
|
||||
} else {
|
||||
// Accel scale 16g (2048 LSB/g)
|
||||
_register_write(MPUREG_ACCEL_CONFIG,3<<3, true);
|
||||
_accel_scale = GRAVITY_MSS / 2048.f;
|
||||
}
|
||||
hal.scheduler->delay_microseconds(10);
|
||||
|
||||
if (_mpu_type == Invensense_ICM20608 ||
|
||||
_mpu_type == Invensense_ICM20602) {
|
||||
// this avoids a sensor bug, see description above
|
||||
_register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true);
|
||||
}
|
||||
|
||||
// configure interrupt to fire when new data arrives
|
||||
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
|
||||
hal.scheduler->delay_microseconds(10);
|
||||
|
||||
// clear interrupt on any read, and hold the data ready pin high
|
||||
// until we clear the interrupt
|
||||
_register_write(MPUREG_INT_PIN_CFG, _register_read(MPUREG_INT_PIN_CFG) | BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN);
|
||||
|
||||
// now that we have initialised, we set the bus speed to high
|
||||
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
|
||||
}
|
||||
|
||||
void AP_InertialSensor_Revo::start()
|
||||
{
|
||||
if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// initially run the bus at low speed
|
||||
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
|
||||
|
||||
// only used for wake-up in accelerometer only low power mode
|
||||
_register_write(MPUREG_PWR_MGMT_2, 0x00);
|
||||
hal.scheduler->delay(1);
|
||||
|
||||
// never use buggy FIFO
|
||||
// _fifo_reset();
|
||||
|
||||
// grab the used instances
|
||||
enum DevTypes gdev, adev;
|
||||
switch (_mpu_type) {
|
||||
case Invensense_MPU9250:
|
||||
gdev = DEVTYPE_GYR_MPU9250;
|
||||
adev = DEVTYPE_ACC_MPU9250;
|
||||
break;
|
||||
case Invensense_MPU6000:
|
||||
case Invensense_MPU6500:
|
||||
case Invensense_ICM20608:
|
||||
case Invensense_ICM20602:
|
||||
default:
|
||||
gdev = DEVTYPE_GYR_MPU6000;
|
||||
adev = DEVTYPE_ACC_MPU6000;
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
setup temperature sensitivity and offset. This varies
|
||||
considerably between parts
|
||||
*/
|
||||
switch (_mpu_type) {
|
||||
case Invensense_MPU9250:
|
||||
temp_zero = 21;
|
||||
temp_sensitivity = 1.0/340;
|
||||
break;
|
||||
|
||||
case Invensense_MPU6000:
|
||||
case Invensense_MPU6500:
|
||||
temp_zero = 36.53;
|
||||
temp_sensitivity = 1.0/340;
|
||||
break;
|
||||
|
||||
case Invensense_ICM20608:
|
||||
case Invensense_ICM20602:
|
||||
temp_zero = 25;
|
||||
temp_sensitivity = 1.0/326.8;
|
||||
break;
|
||||
}
|
||||
|
||||
_gyro_instance = _imu.register_gyro(1000, _dev->get_bus_id_devtype(gdev));
|
||||
_accel_instance = _imu.register_accel(1000, _dev->get_bus_id_devtype(adev));
|
||||
|
||||
// read and remember the product ID rev c has 1/2 the sensitivity of rev d
|
||||
product_id = _register_read(MPUREG_PRODUCT_ID);
|
||||
|
||||
_start(); // start MPU
|
||||
|
||||
_dev->get_semaphore()->give();
|
||||
|
||||
// setup sensor rotations from probe()
|
||||
set_gyro_orientation(_gyro_instance, _rotation);
|
||||
set_accel_orientation(_accel_instance, _rotation);
|
||||
|
||||
// allocate fifo buffer
|
||||
_fifo_buffer = (uint8_t *)(hal.util->malloc_type((MPU_FIFO_BUFFER_LEN+1) * MPU_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE));
|
||||
if (_fifo_buffer == nullptr) {
|
||||
AP_HAL::panic("Invensense: Unable to allocate FIFO buffer");
|
||||
}
|
||||
|
||||
GPIO::_attach_interrupt(INVENSENSE_DRDY_PIN, Scheduler::get_handler(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Revo::_isr, void)), RISING, MPU_INT_PRIORITY);
|
||||
|
||||
_register_read(MPUREG_INT_STATUS); // reset interrupt request
|
||||
|
||||
// some longer than MPU period
|
||||
task_handle = Scheduler::register_timer_task(1010, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Revo::_poll_data, void), NULL); // period just for case, task will be activated by request
|
||||
// REVOMINIScheduler::set_task_priority(task_handle, DRIVER_PRIORITY); // like other drivers
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
publish any pending data
|
||||
*/
|
||||
bool AP_InertialSensor_Revo::update()
|
||||
{
|
||||
update_accel(_accel_instance);
|
||||
update_gyro(_gyro_instance);
|
||||
|
||||
_publish_temperature(_accel_instance, _temp_filtered);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
accumulate new samples
|
||||
*/
|
||||
void AP_InertialSensor_Revo::accumulate()
|
||||
{
|
||||
// nothing to do
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Return true if the Invensense has new data available for reading.
|
||||
*
|
||||
* We use the data ready pin if it is available. Otherwise, read the
|
||||
* status register.
|
||||
*/
|
||||
bool AP_InertialSensor_Revo::_data_ready()
|
||||
{
|
||||
return _drdy_pin->read() != 0;
|
||||
}
|
||||
|
||||
/*
|
||||
ISR procedure for data read. Ring buffer don't needs to use semaphores for data access
|
||||
|
||||
also we don't own a bus semaphore and can't guarantee that bus is free. But in Revo MPU uses personal SPI bus so it is ABSOLUTELY free :)
|
||||
*/
|
||||
void AP_InertialSensor_Revo::_isr(){
|
||||
uint8_t *data = _fifo_buffer + MPU_SAMPLE_SIZE * write_ptr;
|
||||
// _fifo_buffer[write_ptr].time = REVOMINIScheduler::_micros64();
|
||||
|
||||
_dev->register_completion_callback(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Revo::_ioc, void)); // IO completion interrupt
|
||||
|
||||
_block_read(MPUREG_ACCEL_XOUT_H, data, MPU_SAMPLE_SIZE); // start SPI transfer
|
||||
}
|
||||
|
||||
void AP_InertialSensor_Revo::_ioc(){ // io completion ISR, data already in its place
|
||||
uint16_t new_wp = write_ptr+1;
|
||||
if(new_wp >= MPU_FIFO_BUFFER_LEN) { // move write pointer
|
||||
new_wp=0; // ring
|
||||
}
|
||||
if(new_wp == read_ptr) { // buffer overflow
|
||||
#ifdef MPU_DEBUG
|
||||
REVOMINIScheduler::MPU_buffer_overflow(); // count them
|
||||
// not overwrite, just skip last data
|
||||
#endif
|
||||
} else {
|
||||
write_ptr=new_wp; // move forward
|
||||
}
|
||||
|
||||
//_dev->register_completion_callback(NULL);
|
||||
// we should release the bus semaphore if we use them
|
||||
// _dev->get_semaphore()->give(); // release
|
||||
|
||||
|
||||
if(Scheduler::get_current_task() != (void *)task_handle) {
|
||||
/*
|
||||
REVOMINIScheduler::set_task_active(task_handle); // resume task instead of using period.
|
||||
REVOMINIScheduler::context_switch_isr(); // and reschedule tasks after interrupt
|
||||
*/
|
||||
Scheduler::task_resume(task_handle); // resume task instead of using period.
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Timer process to poll for new data from the Invensense. Called from timer's interrupt or from personal thread
|
||||
*/
|
||||
void AP_InertialSensor_Revo::_poll_data()
|
||||
{
|
||||
_read_fifo();
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_Revo::_accumulate(uint8_t *samples, uint8_t n_samples)
|
||||
{
|
||||
bool ret=true;
|
||||
for (uint8_t i = 0; i < n_samples; i++) {
|
||||
const uint8_t *data = samples + MPU_SAMPLE_SIZE * i;
|
||||
Vector3f accel, gyro;
|
||||
bool fsync_set = false;
|
||||
|
||||
|
||||
accel = Vector3f(int16_val(data, 1),
|
||||
int16_val(data, 0),
|
||||
-int16_val(data, 2)) * _accel_scale;
|
||||
|
||||
int16_t t2 = int16_val(data, 3);
|
||||
/*
|
||||
if (!_check_raw_temp(t2)) {
|
||||
debug("temp reset %d %d i=%d", _raw_temp, t2, i);
|
||||
return false; // just skip this sample
|
||||
}
|
||||
*/
|
||||
float temp = t2 * temp_sensitivity + temp_zero;
|
||||
|
||||
gyro = Vector3f(int16_val(data, 5),
|
||||
int16_val(data, 4),
|
||||
-int16_val(data, 6)) * GYRO_SCALE;
|
||||
|
||||
_rotate_and_correct_accel(_accel_instance, accel);
|
||||
_rotate_and_correct_gyro(_gyro_instance, gyro);
|
||||
|
||||
#if 0 // filter out samples if vector length changed by 100% This is cool for debug but drops samples in the case of even weak blows
|
||||
|
||||
#define FILTER_KOEF 0.1
|
||||
float len = accel.length();
|
||||
if(is_zero(accel_len)) {
|
||||
accel_len=len;
|
||||
} else {
|
||||
float d = abs(accel_len-len)/(accel_len+len);
|
||||
if(d*100 > 50) { // difference more than 100% from mean value
|
||||
debug("accel len error: mean %f got %f", accel_len, len );
|
||||
ret= false; //just report
|
||||
float k = FILTER_KOEF / (d*10); // 5 and more, so one bad sample never change mean more than 4%
|
||||
accel_len = accel_len * (1-k) + len*k; // complimentary filter 1/k on bad samples
|
||||
} else {
|
||||
accel_len = accel_len * (1-FILTER_KOEF) + len*FILTER_KOEF; // complimentary filter 1/10 on good samples
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if(ret) {
|
||||
uint8_t kG = hal_param_helper->_correct_gyro;
|
||||
if(kG){ // compensate gyro drift by long-time mean
|
||||
float gyro_koef = 1.0 / (kG * 1000); // integrator time constant in seconds
|
||||
gyro_mean = gyro_mean * (1-gyro_koef) + gyro*gyro_koef;
|
||||
|
||||
gyro -= gyro_mean;
|
||||
}
|
||||
|
||||
_notify_new_accel_raw_sample(_accel_instance, accel, 0, fsync_set);
|
||||
_notify_new_gyro_raw_sample(_gyro_instance, gyro);
|
||||
|
||||
_temp_filtered = _temp_filter.apply(temp);
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
when doing fast sampling the sensor gives us 8k samples/second. Every 2nd accel sample is a duplicate.
|
||||
|
||||
To filter this we first apply a 1p low pass filter at 188Hz, then we
|
||||
average over 8 samples to bring the data rate down to 1kHz. This
|
||||
gives very good aliasing rejection at frequencies well above what
|
||||
can be handled with 1kHz sample rates.
|
||||
*/
|
||||
bool AP_InertialSensor_Revo::_accumulate_fast_sampling(uint8_t *samples, uint8_t n_samples)
|
||||
{
|
||||
int32_t tsum = 0;
|
||||
const int32_t clip_limit = AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS / _accel_scale;
|
||||
bool clipped = false;
|
||||
bool ret = true;
|
||||
|
||||
for (uint8_t i = 0; i < n_samples; i++) {
|
||||
const uint8_t *data = samples + MPU_SAMPLE_SIZE * i;
|
||||
|
||||
// use temperatue to detect FIFO corruption
|
||||
int16_t t2 = int16_val(data, 3);
|
||||
/* MPU don't likes such reads
|
||||
if (!_check_raw_temp(t2)) {
|
||||
debug("temp reset %d %d", _raw_temp, t2);
|
||||
// _fifo_reset();
|
||||
ret = false;
|
||||
break;
|
||||
}
|
||||
*/
|
||||
tsum += t2;
|
||||
|
||||
if ((_accum.count & 1) == 0) {
|
||||
// accel data is at 4kHz
|
||||
Vector3f a(int16_val(data, 1),
|
||||
int16_val(data, 0),
|
||||
-int16_val(data, 2));
|
||||
if (fabsf(a.x) > clip_limit ||
|
||||
fabsf(a.y) > clip_limit ||
|
||||
fabsf(a.z) > clip_limit) {
|
||||
clipped = true;
|
||||
}
|
||||
_accum.accel += _accum.accel_filter.apply(a);
|
||||
}
|
||||
|
||||
Vector3f g(int16_val(data, 5),
|
||||
int16_val(data, 4),
|
||||
-int16_val(data, 6));
|
||||
|
||||
_accum.gyro += _accum.gyro_filter.apply(g);
|
||||
_accum.count++;
|
||||
|
||||
if (_accum.count == MPU_FIFO_DOWNSAMPLE_COUNT) {
|
||||
float ascale = _accel_scale / (MPU_FIFO_DOWNSAMPLE_COUNT/2);
|
||||
_accum.accel *= ascale;
|
||||
|
||||
float gscale = GYRO_SCALE / MPU_FIFO_DOWNSAMPLE_COUNT;
|
||||
_accum.gyro *= gscale;
|
||||
|
||||
_rotate_and_correct_accel(_accel_instance, _accum.accel);
|
||||
_rotate_and_correct_gyro(_gyro_instance, _accum.gyro);
|
||||
|
||||
_notify_new_accel_raw_sample(_accel_instance, _accum.accel, 0, false);
|
||||
_notify_new_gyro_raw_sample(_gyro_instance, _accum.gyro);
|
||||
|
||||
_accum.accel.zero();
|
||||
_accum.gyro.zero();
|
||||
_accum.count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (clipped) {
|
||||
increment_clip_count(_accel_instance);
|
||||
}
|
||||
|
||||
if (ret) {
|
||||
float temp = (static_cast<float>(tsum)/n_samples)*temp_sensitivity + temp_zero;
|
||||
_temp_filtered = _temp_filter.apply(temp);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
#define MAX_NODATA_TIME 5000 // 5ms
|
||||
|
||||
void AP_InertialSensor_Revo::_read_fifo()
|
||||
{
|
||||
uint32_t now=Scheduler::_micros();
|
||||
|
||||
#ifdef MPU_DEBUG_LOG
|
||||
uint16_t old_log_ptr=mpu_log_ptr;
|
||||
mpu_log_item & p = mpu_log[mpu_log_ptr++];
|
||||
if(mpu_log_ptr>=MPU_LOG_SIZE) mpu_log_ptr=0;
|
||||
p.t=now;
|
||||
p.read_ptr=read_ptr;
|
||||
p.write_ptr=write_ptr;
|
||||
#endif
|
||||
|
||||
if(read_ptr == write_ptr) {
|
||||
if(_data_ready()){ // no interrupt for some reason?
|
||||
_isr();
|
||||
}
|
||||
if(now - last_sample > MAX_NODATA_TIME) { // something went wrong - data stream stopped
|
||||
_start(); // try to restart MPU
|
||||
last_sample=now;
|
||||
#ifdef MPU_DEBUG
|
||||
REVOMINIScheduler::MPU_restarted(); // count them
|
||||
#endif
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
last_sample=now;
|
||||
|
||||
uint16_t count = 0;
|
||||
#ifdef MPU_DEBUG
|
||||
uint32_t dt = 0;
|
||||
uint32_t t = now;
|
||||
#endif
|
||||
|
||||
while(read_ptr != write_ptr) { // there are samples
|
||||
// uint64_t time = _fifo_buffer[read_ptr++].time; // we can get exact time
|
||||
uint8_t *rx = _fifo_buffer + MPU_SAMPLE_SIZE * read_ptr++; // calculate address and move to next item
|
||||
if(read_ptr >= MPU_FIFO_BUFFER_LEN) { // move write pointer
|
||||
read_ptr=0; // ring
|
||||
}
|
||||
|
||||
|
||||
if (_fast_sampling) {
|
||||
if (!_accumulate_fast_sampling(rx, 1)) {
|
||||
// debug("stop at %u of %u", n_samples, bytes_read/MPU_SAMPLE_SIZE);
|
||||
// break; don't break before all items in queue will be readed
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
if (!_accumulate(rx, 1)) {
|
||||
// break; don't break before all items in queue will be readed
|
||||
continue;
|
||||
}
|
||||
}
|
||||
count++;
|
||||
}
|
||||
now = Scheduler::_micros();
|
||||
last_sample=now;
|
||||
|
||||
#ifdef MPU_DEBUG_LOG
|
||||
if(count==1) {
|
||||
mpu_log_ptr = old_log_ptr;
|
||||
}
|
||||
#endif
|
||||
#ifdef MPU_DEBUG
|
||||
dt= now - t;// time from entry
|
||||
REVOMINIScheduler::MPU_stats(count,dt);
|
||||
#endif
|
||||
|
||||
// only wait_for_sample() uses delay_microseconds_boost() so
|
||||
// resume main thread then it waits for this sample - sample already got
|
||||
Scheduler::resume_boost();
|
||||
}
|
||||
|
||||
/*
|
||||
fetch temperature in order to detect FIFO sync errors
|
||||
*/
|
||||
bool AP_InertialSensor_Revo::_check_raw_temp(int16_t t2)
|
||||
{
|
||||
if (abs(t2 - _raw_temp) < 400) {
|
||||
// cached copy OK
|
||||
return true;
|
||||
}
|
||||
uint8_t trx[2];
|
||||
if (_block_read(MPUREG_TEMP_OUT_H, trx, 2)) {
|
||||
_raw_temp = int16_val(trx, 0);
|
||||
}
|
||||
return (abs(t2 - _raw_temp) < 400);
|
||||
}
|
||||
|
||||
bool AP_InertialSensor_Revo::_block_read(uint8_t reg, uint8_t *buf,
|
||||
uint32_t size)
|
||||
{
|
||||
return _dev->read_registers(reg, buf, size);
|
||||
}
|
||||
|
||||
uint8_t AP_InertialSensor_Revo::_register_read(uint8_t reg)
|
||||
{
|
||||
uint8_t val = 0;
|
||||
_dev->read_registers(reg, &val, 1);
|
||||
return val;
|
||||
}
|
||||
|
||||
void AP_InertialSensor_Revo::_register_write(uint8_t reg, uint8_t val, bool checked)
|
||||
{
|
||||
_dev->write_register(reg, val, checked);
|
||||
}
|
||||
|
||||
/*
|
||||
set the DLPF filter frequency. Assumes caller has taken semaphore
|
||||
*/
|
||||
void AP_InertialSensor_Revo::_set_filter_register(void)
|
||||
{
|
||||
uint8_t config;
|
||||
|
||||
#if INVENSENSE_EXT_SYNC_ENABLE
|
||||
// add in EXT_SYNC bit if enabled
|
||||
config = (MPUREG_CONFIG_EXT_SYNC_AZ << MPUREG_CONFIG_EXT_SYNC_SHIFT);
|
||||
#else
|
||||
config = 0;
|
||||
#endif
|
||||
|
||||
if (enable_fast_sampling(_accel_instance)) {
|
||||
_fast_sampling = (_mpu_type != Invensense_MPU6000 && _dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI);
|
||||
if (_fast_sampling) {
|
||||
#ifdef DEBUG_BUILD
|
||||
printf("MPU[%u]: enabled fast sampling\n", _accel_instance);
|
||||
#endif
|
||||
// for logging purposes set the oversamping rate
|
||||
_set_accel_oversampling(_accel_instance, MPU_FIFO_DOWNSAMPLE_COUNT/2);
|
||||
_set_gyro_oversampling(_gyro_instance, MPU_FIFO_DOWNSAMPLE_COUNT);
|
||||
|
||||
/* set divider for internal sample rate to 0x1F when fast
|
||||
sampling enabled. This reduces the impact of the slave
|
||||
sensor on the sample rate. It ends up with around 75Hz
|
||||
slave rate, and reduces the impact on the gyro and accel
|
||||
sample rate, ending up with around 7760Hz gyro rate and
|
||||
3880Hz accel rate
|
||||
*/
|
||||
_register_write(MPUREG_I2C_SLV4_CTRL, 0x1F);
|
||||
}
|
||||
}
|
||||
|
||||
if (_fast_sampling) {
|
||||
// this gives us 8kHz sampling on gyros and 4kHz on accels
|
||||
config |= BITS_DLPF_CFG_256HZ_NOLPF2;
|
||||
} else {
|
||||
// limit to 1kHz if not on SPI
|
||||
config |= BITS_DLPF_CFG_188HZ;
|
||||
}
|
||||
|
||||
config |= MPUREG_CONFIG_FIFO_MODE_STOP;
|
||||
_register_write(MPUREG_CONFIG, config, true);
|
||||
|
||||
if (_mpu_type != Invensense_MPU6000) {
|
||||
if (_fast_sampling) {
|
||||
// setup for 4kHz accels
|
||||
_register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_FCHOICE_B, true);
|
||||
} else {
|
||||
_register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_DLPF_CFG_218HZ, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
check whoami for sensor type
|
||||
*/
|
||||
bool AP_InertialSensor_Revo::_check_whoami(void)
|
||||
{
|
||||
uint8_t whoami = _register_read(MPUREG_WHOAMI);
|
||||
switch (whoami) {
|
||||
case MPU_WHOAMI_6000:
|
||||
_mpu_type = Invensense_MPU6000;
|
||||
return true;
|
||||
case MPU_WHOAMI_6500:
|
||||
_mpu_type = Invensense_MPU6500;
|
||||
return true;
|
||||
case MPU_WHOAMI_MPU9250:
|
||||
case MPU_WHOAMI_MPU9255:
|
||||
_mpu_type = Invensense_MPU9250;
|
||||
return true;
|
||||
case MPU_WHOAMI_20608:
|
||||
_mpu_type = Invensense_ICM20608;
|
||||
return true;
|
||||
case MPU_WHOAMI_20602:
|
||||
_mpu_type = Invensense_ICM20602;
|
||||
return true;
|
||||
}
|
||||
// not a value WHOAMI result
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
bool AP_InertialSensor_Revo::_hardware_init(void)
|
||||
{
|
||||
if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// setup for register checking
|
||||
_dev->setup_checked_registers(7, 20);
|
||||
|
||||
// initially run the bus at low speed
|
||||
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
|
||||
|
||||
if (!_check_whoami()) {
|
||||
_dev->get_semaphore()->give();
|
||||
return false;
|
||||
}
|
||||
|
||||
// Chip reset
|
||||
uint8_t tries;
|
||||
for (tries = 0; tries < 5; tries++) {
|
||||
_last_stat_user_ctrl = _register_read(MPUREG_USER_CTRL);
|
||||
|
||||
/* First disable the master I2C to avoid hanging the slaves on the
|
||||
* aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus
|
||||
* is used */
|
||||
if (_last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN) {
|
||||
_last_stat_user_ctrl &= ~BIT_USER_CTRL_I2C_MST_EN;
|
||||
_register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl);
|
||||
hal.scheduler->delay(10);
|
||||
}
|
||||
|
||||
/* reset device */
|
||||
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
|
||||
hal.scheduler->delay(100);
|
||||
|
||||
/* bus-dependent initialization */
|
||||
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
|
||||
/* Disable I2C bus if SPI selected (Recommended in Datasheet to be
|
||||
* done just after the device is reset) */
|
||||
_last_stat_user_ctrl |= BIT_USER_CTRL_I2C_IF_DIS;
|
||||
_register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl);
|
||||
}
|
||||
|
||||
/* bus-dependent initialization */
|
||||
if ((_dev->bus_type() == AP_HAL::Device::BUS_TYPE_I2C) && (_mpu_type == Invensense_MPU9250)) {
|
||||
/* Enable I2C bypass to access internal AK8963 */
|
||||
_register_write(MPUREG_INT_PIN_CFG, BIT_BYPASS_EN);
|
||||
}
|
||||
|
||||
// Wake up device and select GyroZ clock. Note that the
|
||||
// Invensense starts up in sleep mode, and it can take some time
|
||||
// for it to come out of sleep
|
||||
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
|
||||
hal.scheduler->delay(5);
|
||||
|
||||
// check it has woken up
|
||||
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) {
|
||||
break;
|
||||
}
|
||||
|
||||
hal.scheduler->delay(10);
|
||||
if (_data_ready()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
|
||||
_dev->get_semaphore()->give();
|
||||
|
||||
if (tries == 5) {
|
||||
#ifdef DEBUG_BUILD
|
||||
printf("Failed to boot Invensense 5 times\n");
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
if (_mpu_type == Invensense_ICM20608 ||
|
||||
_mpu_type == Invensense_ICM20602) {
|
||||
// this avoids a sensor bug, see description above
|
||||
_register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
#endif // BOARD_REVO
|
|
@ -0,0 +1,180 @@
|
|||
#pragma once
|
||||
/*
|
||||
copied from AP_InertialSensor_Invensense
|
||||
|
||||
driver for the invensense range of IMUs, including:
|
||||
|
||||
MPU6000
|
||||
MPU9250
|
||||
ICM-20608
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
#include <AP_HAL/I2CDevice.h>
|
||||
#include <AP_HAL/SPIDevice.h>
|
||||
#include <AP_HAL/utility/OwnPtr.h>
|
||||
#include <AP_Math/AP_Math.h>
|
||||
#include <Filter/Filter.h>
|
||||
#include <Filter/LowPassFilter.h>
|
||||
#include <Filter/LowPassFilter2p.h>
|
||||
|
||||
#include "AP_InertialSensor.h"
|
||||
#include "AP_InertialSensor_Backend.h"
|
||||
#include "AuxiliaryBus.h"
|
||||
|
||||
typedef struct MPU_Item {
|
||||
uint64_t time;
|
||||
uint16_t ax;
|
||||
uint16_t ay;
|
||||
uint16_t az;
|
||||
uint16_t temp;
|
||||
uint16_t gx;
|
||||
uint16_t gy;
|
||||
uint16_t gz;
|
||||
} mpu_item;
|
||||
|
||||
|
||||
typedef struct {
|
||||
uint32_t t;
|
||||
uint16_t read_ptr;
|
||||
uint16_t write_ptr;
|
||||
} mpu_log_item;
|
||||
|
||||
class AP_Invensense_AuxiliaryBus;
|
||||
|
||||
class AP_InertialSensor_Revo : public AP_InertialSensor_Backend
|
||||
{
|
||||
friend AP_Invensense_AuxiliaryBus;
|
||||
|
||||
public:
|
||||
virtual ~AP_InertialSensor_Revo();
|
||||
|
||||
static AP_InertialSensor_Revo &from(AP_InertialSensor_Backend &backend) {
|
||||
return static_cast<AP_InertialSensor_Revo&>(backend);
|
||||
}
|
||||
|
||||
static AP_InertialSensor_Backend *probe(AP_InertialSensor &imu,
|
||||
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev,
|
||||
enum Rotation rotation = ROTATION_NONE);
|
||||
|
||||
static AP_InertialSensor_Backend *probe(AP_InertialSensor &imu,
|
||||
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev,
|
||||
enum Rotation rotation = ROTATION_NONE);
|
||||
|
||||
/* update accel and gyro state */
|
||||
bool update() override;
|
||||
void accumulate() override;
|
||||
|
||||
void start() override;
|
||||
|
||||
void _isr();
|
||||
void _ioc();
|
||||
|
||||
enum Invensense_Type {
|
||||
Invensense_MPU6000=0,
|
||||
Invensense_MPU6500,
|
||||
Invensense_MPU9250,
|
||||
Invensense_ICM20608,
|
||||
Invensense_ICM20602,
|
||||
};
|
||||
|
||||
private:
|
||||
AP_InertialSensor_Revo(AP_InertialSensor &imu,
|
||||
AP_HAL::OwnPtr<AP_HAL::Device> dev,
|
||||
enum Rotation rotation);
|
||||
|
||||
/* Initialize sensor*/
|
||||
bool _init();
|
||||
bool _hardware_init();
|
||||
bool _check_whoami();
|
||||
void _start(); // used for start and restart
|
||||
|
||||
void _set_filter_register(void);
|
||||
|
||||
/* Read samples from FIFO in RAM */
|
||||
void _read_fifo();
|
||||
|
||||
/* Check if there's data available by either reading DRDY pin or register */
|
||||
bool _data_ready();
|
||||
|
||||
/* Poll for new data (non-blocking) */
|
||||
void _poll_data();
|
||||
|
||||
/* Read and write functions taking the differences between buses into
|
||||
* account */
|
||||
bool _block_read(uint8_t reg, uint8_t *buf, uint32_t size);
|
||||
uint8_t _register_read(uint8_t reg);
|
||||
void _register_write(uint8_t reg, uint8_t val, bool checked=false);
|
||||
|
||||
bool _accumulate(uint8_t *samples, uint8_t n_samples);
|
||||
bool _accumulate_fast_sampling(uint8_t *samples, uint8_t n_samples);
|
||||
|
||||
bool _check_raw_temp(int16_t t2);
|
||||
|
||||
int16_t _raw_temp;
|
||||
|
||||
// instance numbers of accel and gyro data
|
||||
uint8_t _gyro_instance;
|
||||
uint8_t _accel_instance;
|
||||
|
||||
uint16_t _error_count;
|
||||
|
||||
float temp_sensitivity = 1.0/340; // degC/LSB
|
||||
float temp_zero = 36.53; // degC
|
||||
|
||||
float _temp_filtered;
|
||||
float _accel_scale;
|
||||
LowPassFilter2pFloat _temp_filter;
|
||||
|
||||
enum Rotation _rotation;
|
||||
|
||||
AP_HAL::DigitalSource *_drdy_pin;
|
||||
AP_HAL::OwnPtr<AP_HAL::Device> _dev;
|
||||
|
||||
// which sensor type this is
|
||||
enum Invensense_Type _mpu_type;
|
||||
uint8_t product_id;
|
||||
|
||||
// are we doing more than 1kHz sampling?
|
||||
bool _fast_sampling;
|
||||
|
||||
// Last status from register user control
|
||||
uint8_t _last_stat_user_ctrl;
|
||||
|
||||
// buffer for fifo read
|
||||
uint8_t *_fifo_buffer;
|
||||
|
||||
|
||||
/*
|
||||
accumulators for fast sampling
|
||||
See description in _accumulate_fast_sampling()
|
||||
*/
|
||||
struct {
|
||||
Vector3f accel;
|
||||
Vector3f gyro;
|
||||
uint8_t count;
|
||||
LowPassFilterVector3f accel_filter{4000, 188};
|
||||
LowPassFilterVector3f gyro_filter{8000, 188};
|
||||
} _accum;
|
||||
|
||||
uint16_t read_ptr;
|
||||
volatile uint16_t write_ptr; // changed in interrupt
|
||||
uint16_t nodata_count;
|
||||
void * task_handle;
|
||||
float accel_len;
|
||||
uint32_t last_sample;
|
||||
|
||||
Vector3f gyro_mean;
|
||||
|
||||
|
||||
//#define MPU_DEBUG_LOG
|
||||
|
||||
#ifdef MPU_DEBUG_LOG
|
||||
#define MPU_LOG_SIZE 512
|
||||
static mpu_log_item mpu_log[MPU_LOG_SIZE];
|
||||
static uint16_t mpu_log_ptr;
|
||||
#endif
|
||||
};
|
||||
|
Loading…
Reference in New Issue