ardupilot/libraries/AP_InertialSensor/examples/MPU6000/MPU6000.pde

220 lines
5.3 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
//
2012-10-11 21:27:19 -03:00
// Simple test for the AP_InertialSensor driver.
//
2012-10-11 21:27:19 -03:00
#include <stdarg.h>
#include <AP_Common.h>
2012-10-11 21:27:19 -03:00
#include <AP_HAL.h>
#include <AP_HAL_AVR.h>
#include <AP_Math.h>
#include <AP_Param.h>
2012-10-11 21:27:19 -03:00
#include <AP_ADC.h>
#include <AP_InertialSensor.h>
#define APM_HARDWARE_APM1 1
#define APM_HARDWARE_APM2 2
#define CONFIG_APM_HARDWARE APM_HARDWARE_APM2
//#define CONFIG_APM_HARDWARE APM_HARDWARE_APM1
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
2012-10-11 21:27:19 -03:00
#define SAMPLE_UNIT 1
#define A_LED_PIN 27
#define C_LED_PIN 25
#else
2012-10-11 21:27:19 -03:00
// we need 5x as many samples on the oilpan
#define SAMPLE_UNIT 5
#define A_LED_PIN 37
#define C_LED_PIN 35
#endif
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
2012-10-11 21:27:19 -03:00
const AP_HAL::HAL& hal = AP_HAL_AVR_APM2;
AP_InertialSensor_MPU6000 ins;
2012-10-11 21:27:19 -03:00
#else
2012-10-11 21:27:19 -03:00
const AP_HAL::HAL& hal = AP_HAL_AVR_APM1;
AP_ADC_ADS7844 adc;
AP_InertialSensor_Oilpan ins(&adc);
2012-10-11 21:27:19 -03:00
#endif
2012-10-11 21:27:19 -03:00
static void flash_leds(bool on) {
hal.gpio->write(A_LED_PIN, on);
hal.gpio->write(C_LED_PIN, ~on);
}
void setup(void)
{
2012-10-11 21:27:19 -03:00
hal.console->println("AP_InertialSensor startup...");
2012-10-11 21:27:19 -03:00
hal.gpio->pinMode(A_LED_PIN, GPIO_OUTPUT);
hal.gpio->pinMode(C_LED_PIN, GPIO_OUTPUT);
2012-10-11 21:27:19 -03:00
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
// we need to stop the barometer from holding the SPI bus
2012-10-11 21:27:19 -03:00
hal.gpio->pinMode(40, GPIO_OUTPUT);
hal.gpio->write(40, 1);
#endif
2011-12-24 21:26:46 -04:00
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM1
adc.Init(&scheduler); // APM ADC library initialization
#endif
ins.init(AP_InertialSensor::COLD_START,
AP_InertialSensor::RATE_100HZ,
2012-10-11 21:27:19 -03:00
NULL);
// display initial values
display_offsets_and_scaling();
2012-10-11 21:27:19 -03:00
hal.console->println("Complete. Reading:");
}
void loop(void)
{
int16_t user_input;
2012-10-11 21:27:19 -03:00
hal.console->println();
hal.console->println_P(PSTR(
"Menu:\r\n"
" c) calibrate accelerometers\r\n"
" d) display offsets and scaling\r\n"
" l) level (capture offsets from level)\r\n"
" t) test"));
// wait for user input
2012-10-11 21:27:19 -03:00
while( !hal.console->available() ) {
hal.scheduler->delay(20);
}
// read in user input
2012-10-11 21:27:19 -03:00
while( hal.console->available() ) {
user_input = hal.console->read();
if( user_input == 'c' || user_input == 'C' ) {
run_calibration();
display_offsets_and_scaling();
}
if( user_input == 'd' || user_input == 'D' ) {
display_offsets_and_scaling();
}
if( user_input == 'l' || user_input == 'L' ) {
run_level();
display_offsets_and_scaling();
}
if( user_input == 't' || user_input == 'T' ) {
run_test();
}
}
}
void run_calibration()
{
// clear off any other characters (like line feeds,etc)
2012-10-11 21:27:19 -03:00
while( hal.console->available() ) {
hal.console->read();
}
2012-10-11 21:27:19 -03:00
ins.calibrate_accel(NULL, hal.console);
}
void display_offsets_and_scaling()
{
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f accel_scale = ins.get_accel_scale();
Vector3f gyro_offsets = ins.get_gyro_offsets();
// display results
2012-10-11 21:27:19 -03:00
hal.console->printf_P(
PSTR("\nAccel Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n"),
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
2012-10-11 21:27:19 -03:00
hal.console->printf_P(
PSTR("Accel Scale X:%10.8f \t Y:%10.8f \t Z:%10.8f\n"),
accel_scale.x,
accel_scale.y,
accel_scale.z);
2012-10-11 21:27:19 -03:00
hal.console->printf_P(
PSTR("Gyro Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n"),
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z);
}
void run_level()
{
// clear off any input in the buffer
2012-10-11 21:27:19 -03:00
while( hal.console->available() ) {
hal.console->read();
}
// display message to user
2012-10-11 21:27:19 -03:00
hal.console->print("Place APM on a level surface and press any key..\n");
// wait for user input
2012-10-11 21:27:19 -03:00
while( !hal.console->available() ) {
hal.scheduler->delay(20);
}
2012-10-11 21:27:19 -03:00
while( hal.console->available() ) {
hal.console->read();
}
// run accel level
2012-10-11 21:27:19 -03:00
ins.init_accel(flash_leds);
// display results
display_offsets_and_scaling();
}
void run_test()
{
Vector3f accel;
Vector3f gyro;
float temperature;
float length;
// flush any user input
2012-10-11 21:27:19 -03:00
while( hal.console->available() ) {
hal.console->read();
}
// clear out any existing samples from ins
ins.update();
// loop as long as user does not press a key
2012-10-11 21:27:19 -03:00
while( !hal.console->available() ) {
// wait until we have 8 samples
while( ins.num_samples_available() < 8 * SAMPLE_UNIT ) {
2012-10-11 21:27:19 -03:00
hal.scheduler->delay(1);
}
// read samples from ins
ins.update();
accel = ins.get_accel();
gyro = ins.get_gyro();
temperature = ins.temperature();
length = sqrt(accel.x*accel.x + accel.y*accel.y + accel.z*accel.z);
// display results
2012-10-11 21:27:19 -03:00
hal.console->printf_P(PSTR("Accel X:%4.2f \t Y:%4.2f \t Z:%4.2f \t len:%4.2f \t Gyro X:%4.2f \t Y:%4.2f \t Z:%4.2f \t Temp:%4.2f\n"),
accel.x, accel.y, accel.z, length, gyro.x, gyro.y, gyro.z, temperature);
}
// clear user input
2012-10-11 21:27:19 -03:00
while( hal.console->available() ) {
hal.console->read();
}
2012-11-24 06:08:06 -04:00
}
2012-10-11 21:27:19 -03:00
AP_HAL_MAIN();