ardupilot/ArduCopter/mode.h

1467 lines
48 KiB
C
Raw Normal View History

2016-03-21 01:33:42 -03:00
#pragma once
#include "Copter.h"
class Parameters;
class ParametersG2;
class GCS_Copter;
class Mode {
public:
2016-03-21 01:33:42 -03:00
// Auto Pilot Modes enumeration
enum class Number : uint8_t {
STABILIZE = 0, // manual airframe angle with manual throttle
ACRO = 1, // manual body-frame angular rate with manual throttle
ALT_HOLD = 2, // manual airframe angle with automatic throttle
AUTO = 3, // fully automatic waypoint control using mission commands
GUIDED = 4, // fully automatic fly to coordinate or fly at velocity/direction using GCS immediate commands
LOITER = 5, // automatic horizontal acceleration with automatic throttle
RTL = 6, // automatic return to launching point
CIRCLE = 7, // automatic circular flight with automatic throttle
LAND = 9, // automatic landing with horizontal position control
DRIFT = 11, // semi-automous position, yaw and throttle control
SPORT = 13, // manual earth-frame angular rate control with manual throttle
FLIP = 14, // automatically flip the vehicle on the roll axis
AUTOTUNE = 15, // automatically tune the vehicle's roll and pitch gains
POSHOLD = 16, // automatic position hold with manual override, with automatic throttle
BRAKE = 17, // full-brake using inertial/GPS system, no pilot input
THROW = 18, // throw to launch mode using inertial/GPS system, no pilot input
AVOID_ADSB = 19, // automatic avoidance of obstacles in the macro scale - e.g. full-sized aircraft
GUIDED_NOGPS = 20, // guided mode but only accepts attitude and altitude
SMART_RTL = 21, // SMART_RTL returns to home by retracing its steps
FLOWHOLD = 22, // FLOWHOLD holds position with optical flow without rangefinder
FOLLOW = 23, // follow attempts to follow another vehicle or ground station
ZIGZAG = 24, // ZIGZAG mode is able to fly in a zigzag manner with predefined point A and point B
2019-07-29 04:55:40 -03:00
SYSTEMID = 25, // System ID mode produces automated system identification signals in the controllers
AUTOROTATE = 26, // Autonomous autorotation
};
// constructor
Mode(void);
// do not allow copying
Mode(const Mode &other) = delete;
Mode &operator=(const Mode&) = delete;
// child classes should override these methods
virtual bool init(bool ignore_checks) {
return true;
}
virtual void run() = 0;
virtual bool requires_GPS() const = 0;
virtual bool has_manual_throttle() const = 0;
virtual bool allows_arming(bool from_gcs) const = 0;
virtual bool is_autopilot() const { return false; }
virtual bool has_user_takeoff(bool must_navigate) const { return false; }
virtual bool in_guided_mode() const { return false; }
virtual bool logs_attitude() const { return false; }
// return a string for this flightmode
virtual const char *name() const = 0;
virtual const char *name4() const = 0;
bool do_user_takeoff(float takeoff_alt_cm, bool must_navigate);
virtual bool is_taking_off() const;
static void takeoff_stop() { takeoff.stop(); }
virtual bool is_landing() const { return false; }
2016-03-21 01:33:42 -03:00
2019-06-05 07:47:32 -03:00
// functions for reporting to GCS
virtual bool get_wp(Location &loc) { return false; };
virtual int32_t wp_bearing() const { return 0; }
virtual uint32_t wp_distance() const { return 0; }
virtual float crosstrack_error() const { return 0.0f;}
2019-06-05 07:47:32 -03:00
void update_navigation();
int32_t get_alt_above_ground_cm(void);
2016-03-21 01:33:42 -03:00
// pilot input processing
void get_pilot_desired_lean_angles(float &roll_out, float &pitch_out, float angle_max, float angle_limit) const;
float get_pilot_desired_yaw_rate(int16_t stick_angle);
float get_pilot_desired_throttle() const;
const Vector3f& get_desired_velocity() {
// note that position control isn't used in every mode, so
// this may return bogus data:
return pos_control->get_desired_velocity();
}
protected:
// navigation support functions
virtual void run_autopilot() {}
// helper functions
2019-04-08 05:15:57 -03:00
bool is_disarmed_or_landed() const;
void zero_throttle_and_relax_ac(bool spool_up = false);
void zero_throttle_and_hold_attitude();
void make_safe_spool_down();
// functions to control landing
// in modes that support landing
void land_run_horizontal_control();
void land_run_vertical_control(bool pause_descent = false);
// return expected input throttle setting to hover:
virtual float throttle_hover() const;
// Alt_Hold based flight mode states used in Alt_Hold, Loiter, and Sport
enum AltHoldModeState {
AltHold_MotorStopped,
AltHold_Takeoff,
AltHold_Landed_Ground_Idle,
AltHold_Landed_Pre_Takeoff,
AltHold_Flying
};
AltHoldModeState get_alt_hold_state(float target_climb_rate_cms);
2016-03-21 01:33:42 -03:00
// convenience references to avoid code churn in conversion:
Parameters &g;
ParametersG2 &g2;
AC_WPNav *&wp_nav;
AC_Loiter *&loiter_nav;
2016-03-21 01:33:42 -03:00
AC_PosControl *&pos_control;
AP_InertialNav &inertial_nav;
AP_AHRS &ahrs;
AC_AttitudeControl_t *&attitude_control;
MOTOR_CLASS *&motors;
RC_Channel *&channel_roll;
RC_Channel *&channel_pitch;
RC_Channel *&channel_throttle;
RC_Channel *&channel_yaw;
float &G_Dt;
2018-06-26 00:31:40 -03:00
// note that we support two entirely different automatic takeoffs:
// "user-takeoff", which is available in modes such as ALT_HOLD
// (see has_user_takeoff method). "user-takeoff" is a simple
// reach-altitude-based-on-pilot-input-or-parameter routine.
// "auto-takeoff" is used by both Guided and Auto, and is
// basically waypoint navigation with pilot yaw permitted.
// user-takeoff support; takeoff state is shared across all mode instances
class _TakeOff {
public:
void start(float alt_cm);
void stop();
void get_climb_rates(float& pilot_climb_rate,
float& takeoff_climb_rate);
bool triggered(float target_climb_rate) const;
bool running() const { return _running; }
private:
bool _running;
float max_speed;
float alt_delta;
uint32_t start_ms;
};
static _TakeOff takeoff;
2017-12-12 06:09:48 -04:00
virtual bool do_user_takeoff_start(float takeoff_alt_cm);
// method shared by both Guided and Auto for takeoff. This is
// waypoint navigation but the user can control the yaw.
void auto_takeoff_run();
void auto_takeoff_set_start_alt(void);
void auto_takeoff_attitude_run(float target_yaw_rate);
// altitude below which we do no navigation in auto takeoff
static float auto_takeoff_no_nav_alt_cm;
public:
// Navigation Yaw control
class AutoYaw {
public:
// yaw(): main product of AutoYaw; the heading:
float yaw();
// mode(): current method of determining desired yaw:
autopilot_yaw_mode mode() const { return (autopilot_yaw_mode)_mode; }
void set_mode_to_default(bool rtl);
void set_mode(autopilot_yaw_mode new_mode);
autopilot_yaw_mode default_mode(bool rtl) const;
// rate_cds(): desired yaw rate in centidegrees/second:
float rate_cds() const;
void set_rate(float new_rate_cds);
// set_roi(...): set a "look at" location:
void set_roi(const Location &roi_location);
void set_fixed_yaw(float angle_deg,
float turn_rate_dps,
int8_t direction,
bool relative_angle);
private:
float look_ahead_yaw();
float roi_yaw();
// auto flight mode's yaw mode
uint8_t _mode = AUTO_YAW_LOOK_AT_NEXT_WP;
// Yaw will point at this location if mode is set to AUTO_YAW_ROI
Vector3f roi;
// bearing from current location to the ROI
float _roi_yaw;
// yaw used for YAW_FIXED yaw_mode
int32_t _fixed_yaw;
// Deg/s we should turn
int16_t _fixed_yaw_slewrate;
// heading when in yaw_look_ahead_yaw
float _look_ahead_yaw;
// turn rate (in cds) when auto_yaw_mode is set to AUTO_YAW_RATE
float _rate_cds;
// used to reduce update rate to 100hz:
uint8_t roi_yaw_counter;
};
static AutoYaw auto_yaw;
2016-03-21 01:33:42 -03:00
// pass-through functions to reduce code churn on conversion;
// these are candidates for moving into the Mode base
2016-03-21 01:33:42 -03:00
// class.
float get_pilot_desired_climb_rate(float throttle_control);
float get_non_takeoff_throttle(void);
void update_simple_mode(void);
bool set_mode(Mode::Number mode, ModeReason reason);
void set_land_complete(bool b);
GCS_Copter &gcs();
void Log_Write_Event(Log_Event id);
void set_throttle_takeoff(void);
float get_avoidance_adjusted_climbrate(float target_rate);
uint16_t get_pilot_speed_dn(void);
2016-03-21 01:33:42 -03:00
// end pass-through functions
};
#if MODE_ACRO_ENABLED == ENABLED
class ModeAcro : public Mode {
public:
// inherit constructor
using Mode::Mode;
virtual void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return true; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "ACRO"; }
const char *name4() const override { return "ACRO"; }
void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out);
float throttle_hover() const override;
private:
};
#endif
#if FRAME_CONFIG == HELI_FRAME
class ModeAcro_Heli : public ModeAcro {
public:
// inherit constructor
using ModeAcro::Mode;
bool init(bool ignore_checks) override;
void run() override;
void virtual_flybar( float &roll_out, float &pitch_out, float &yaw_out, float pitch_leak, float roll_leak);
protected:
private:
};
#endif
class ModeAltHold : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override {
return !must_navigate;
}
protected:
const char *name() const override { return "ALT_HOLD"; }
const char *name4() const override { return "ALTH"; }
private:
};
class ModeAuto : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return true; }
bool in_guided_mode() const override { return mode() == Auto_NavGuided; }
// Auto
AutoMode mode() const { return _mode; }
bool loiter_start();
void rtl_start();
void takeoff_start(const Location& dest_loc);
void wp_start(const Vector3f& destination, bool terrain_alt);
void wp_start(const Location& dest_loc);
void land_start();
void land_start(const Vector3f& destination);
void circle_movetoedge_start(const Location &circle_center, float radius_m);
void circle_start();
void spline_start(const Vector3f& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Vector3f& next_spline_destination);
void spline_start(const Location& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location& next_destination);
void nav_guided_start();
bool is_landing() const override;
bool is_taking_off() const override;
// return true if this flight mode supports user takeoff
// must_nagivate is true if mode must also control horizontal position
virtual bool has_user_takeoff(bool must_navigate) const override { return false; }
void payload_place_start();
// for GCS_MAVLink to call:
bool do_guided(const AP_Mission::Mission_Command& cmd);
2018-04-24 20:31:01 -03:00
AP_Mission mission{
FUNCTOR_BIND_MEMBER(&ModeAuto::start_command, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&ModeAuto::verify_command, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&ModeAuto::exit_mission, void)};
2018-04-24 20:31:01 -03:00
protected:
const char *name() const override { return "AUTO"; }
const char *name4() const override { return "AUTO"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
2018-05-23 12:34:24 -03:00
float crosstrack_error() const override { return wp_nav->crosstrack_error();}
bool get_wp(Location &loc) override;
void run_autopilot() override;
private:
2018-04-24 20:31:01 -03:00
bool start_command(const AP_Mission::Mission_Command& cmd);
bool verify_command(const AP_Mission::Mission_Command& cmd);
2018-04-24 20:31:01 -03:00
void exit_mission();
void takeoff_run();
void wp_run();
void spline_run();
void land_run();
void rtl_run();
void circle_run();
void nav_guided_run();
void loiter_run();
2018-07-25 00:39:43 -03:00
void loiter_to_alt_run();
Location loc_from_cmd(const AP_Mission::Mission_Command& cmd) const;
void payload_place_start(const Vector3f& destination);
void payload_place_run();
bool payload_place_run_should_run();
void payload_place_run_loiter();
void payload_place_run_descend();
void payload_place_run_release();
AutoMode _mode = Auto_TakeOff; // controls which auto controller is run
Location terrain_adjusted_location(const AP_Mission::Mission_Command& cmd) const;
void do_takeoff(const AP_Mission::Mission_Command& cmd);
void do_nav_wp(const AP_Mission::Mission_Command& cmd);
void do_land(const AP_Mission::Mission_Command& cmd);
void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd);
void do_circle(const AP_Mission::Mission_Command& cmd);
void do_loiter_time(const AP_Mission::Mission_Command& cmd);
2018-07-25 00:39:43 -03:00
void do_loiter_to_alt(const AP_Mission::Mission_Command& cmd);
void do_spline_wp(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
void do_guided_limits(const AP_Mission::Mission_Command& cmd);
#endif
void do_nav_delay(const AP_Mission::Mission_Command& cmd);
void do_wait_delay(const AP_Mission::Mission_Command& cmd);
void do_within_distance(const AP_Mission::Mission_Command& cmd);
void do_yaw(const AP_Mission::Mission_Command& cmd);
void do_change_speed(const AP_Mission::Mission_Command& cmd);
void do_set_home(const AP_Mission::Mission_Command& cmd);
void do_roi(const AP_Mission::Mission_Command& cmd);
void do_mount_control(const AP_Mission::Mission_Command& cmd);
#if PARACHUTE == ENABLED
void do_parachute(const AP_Mission::Mission_Command& cmd);
#endif
2018-02-10 10:23:06 -04:00
#if WINCH_ENABLED == ENABLED
void do_winch(const AP_Mission::Mission_Command& cmd);
2018-02-10 10:23:06 -04:00
#endif
void do_payload_place(const AP_Mission::Mission_Command& cmd);
void do_RTL(void);
bool verify_takeoff();
bool verify_land();
bool verify_payload_place();
bool verify_loiter_unlimited();
bool verify_loiter_time(const AP_Mission::Mission_Command& cmd);
2018-07-25 00:39:43 -03:00
bool verify_loiter_to_alt();
bool verify_RTL();
bool verify_wait_delay();
bool verify_within_distance();
bool verify_yaw();
bool verify_nav_wp(const AP_Mission::Mission_Command& cmd);
bool verify_circle(const AP_Mission::Mission_Command& cmd);
bool verify_spline_wp(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
#endif
bool verify_nav_delay(const AP_Mission::Mission_Command& cmd);
// Loiter control
uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds)
uint32_t loiter_time; // How long have we been loitering - The start time in millis
2018-07-25 00:39:43 -03:00
struct {
bool reached_destination_xy : 1;
bool loiter_start_done : 1;
bool reached_alt : 1;
float alt_error_cm;
int32_t alt;
} loiter_to_alt;
// Delay the next navigation command
uint32_t nav_delay_time_max_ms; // used for delaying the navigation commands (eg land,takeoff etc.)
uint32_t nav_delay_time_start_ms;
// Delay Mission Scripting Command
int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
uint32_t condition_start;
LandStateType land_state = LandStateType_FlyToLocation; // records state of land (flying to location, descending)
struct {
PayloadPlaceStateType state = PayloadPlaceStateType_Calibrating_Hover_Start; // records state of place (descending, releasing, released, ...)
uint32_t hover_start_timestamp; // milliseconds
float hover_throttle_level;
uint32_t descend_start_timestamp; // milliseconds
uint32_t place_start_timestamp; // milliseconds
float descend_throttle_level;
float descend_start_altitude;
float descend_max; // centimetres
} nav_payload_place;
};
#if AUTOTUNE_ENABLED == ENABLED
/*
wrapper class for AC_AutoTune
*/
class AutoTune : public AC_AutoTune
{
public:
bool init() override;
void run() override;
protected:
bool start(void) override;
bool position_ok() override;
float get_pilot_desired_climb_rate_cms(void) const override;
void get_pilot_desired_rp_yrate_cd(float &roll_cd, float &pitch_cd, float &yaw_rate_cds) override;
void init_z_limits() override;
void Log_Write_Event(enum at_event id) override;
void log_pids() override;
};
class ModeAutoTune : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; }
bool is_autopilot() const override { return false; }
void save_tuning_gains();
void stop();
void reset();
protected:
const char *name() const override { return "AUTOTUNE"; }
const char *name4() const override { return "ATUN"; }
};
#endif
class ModeBrake : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return false; }
void timeout_to_loiter_ms(uint32_t timeout_ms);
protected:
const char *name() const override { return "BRAKE"; }
const char *name4() const override { return "BRAK"; }
private:
2019-06-12 03:42:55 -03:00
void init_target();
uint32_t _timeout_start;
uint32_t _timeout_ms;
};
class ModeCircle : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return true; }
protected:
const char *name() const override { return "CIRCLE"; }
const char *name4() const override { return "CIRC"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
private:
// Circle
bool pilot_yaw_override = false; // true if pilot is overriding yaw
bool speed_changing = false; // true when the roll stick is being held to facilitate stopping at 0 rate
};
class ModeDrift : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "DRIFT"; }
const char *name4() const override { return "DRIF"; }
private:
float get_throttle_assist(float velz, float pilot_throttle_scaled);
};
class ModeFlip : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "FLIP"; }
const char *name4() const override { return "FLIP"; }
private:
// Flip
Vector3f orig_attitude; // original vehicle attitude before flip
enum class FlipState : uint8_t {
Start,
Roll,
Pitch_A,
Pitch_B,
Recover,
Abandon
};
FlipState _state; // current state of flip
Mode::Number orig_control_mode; // flight mode when flip was initated
uint32_t start_time_ms; // time since flip began
int8_t roll_dir; // roll direction (-1 = roll left, 1 = roll right)
int8_t pitch_dir; // pitch direction (-1 = pitch forward, 1 = pitch back)
};
#if !HAL_MINIMIZE_FEATURES && OPTFLOW == ENABLED
/*
class to support FLOWHOLD mode, which is a position hold mode using
optical flow directly, avoiding the need for a rangefinder
*/
class ModeFlowHold : public Mode {
public:
// need a constructor for parameters
ModeFlowHold(void);
bool init(bool ignore_checks) override;
void run(void) override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override {
return !must_navigate;
}
static const struct AP_Param::GroupInfo var_info[];
protected:
const char *name() const override { return "FLOWHOLD"; }
const char *name4() const override { return "FHLD"; }
private:
// FlowHold states
enum FlowHoldModeState {
FlowHold_MotorStopped,
FlowHold_Takeoff,
FlowHold_Flying,
FlowHold_Landed
};
// calculate attitude from flow data
void flow_to_angle(Vector2f &bf_angle);
LowPassFilterVector2f flow_filter;
bool flowhold_init(bool ignore_checks);
void flowhold_run();
void flowhold_flow_to_angle(Vector2f &angle, bool stick_input);
void update_height_estimate(void);
// minimum assumed height
const float height_min = 0.1f;
// maximum scaling height
const float height_max = 3.0f;
AP_Float flow_max;
AC_PI_2D flow_pi_xy{0.2f, 0.3f, 3000, 5, 0.0025f};
AP_Float flow_filter_hz;
AP_Int8 flow_min_quality;
AP_Int8 brake_rate_dps;
float quality_filtered;
uint8_t log_counter;
bool limited;
Vector2f xy_I;
// accumulated INS delta velocity in north-east form since last flow update
Vector2f delta_velocity_ne;
// last flow rate in radians/sec in north-east axis
Vector2f last_flow_rate_rps;
// timestamp of last flow data
uint32_t last_flow_ms;
float last_ins_height;
float height_offset;
// are we braking after pilot input?
bool braking;
// last time there was significant stick input
uint32_t last_stick_input_ms;
};
#endif // OPTFLOW
class ModeGuided : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return from_gcs; }
bool is_autopilot() const override { return true; }
bool has_user_takeoff(bool must_navigate) const override { return true; }
bool in_guided_mode() const override { return true; }
void set_angle(const Quaternion &q, float climb_rate_cms, bool use_yaw_rate, float yaw_rate_rads);
bool set_destination(const Vector3f& destination, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
bool set_destination(const Location& dest_loc, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
bool get_wp(Location &loc) override;
void set_velocity(const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool log_request = true);
bool set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
void limit_clear();
void limit_init_time_and_pos();
void limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm);
bool limit_check();
bool is_taking_off() const override;
2017-12-12 06:09:48 -04:00
bool do_user_takeoff_start(float final_alt_above_home) override;
GuidedMode mode() const { return guided_mode; }
void angle_control_start();
void angle_control_run();
protected:
const char *name() const override { return "GUIDED"; }
const char *name4() const override { return "GUID"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
2018-05-23 12:34:24 -03:00
float crosstrack_error() const override;
private:
void pos_control_start();
void vel_control_start();
void posvel_control_start();
void takeoff_run();
void pos_control_run();
void vel_control_run();
void posvel_control_run();
void set_desired_velocity_with_accel_and_fence_limits(const Vector3f& vel_des);
void set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle);
// controls which controller is run (pos or vel):
GuidedMode guided_mode = Guided_TakeOff;
};
class ModeGuidedNoGPS : public ModeGuided {
public:
// inherit constructor
using ModeGuided::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return from_gcs; }
bool is_autopilot() const override { return true; }
protected:
const char *name() const override { return "GUIDED_NOGPS"; }
const char *name4() const override { return "GNGP"; }
private:
};
class ModeLand : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return true; }
bool is_landing() const override { return true; };
void do_not_use_GPS();
protected:
const char *name() const override { return "LAND"; }
const char *name4() const override { return "LAND"; }
private:
void gps_run();
void nogps_run();
};
class ModeLoiter : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override { return true; }
#if PRECISION_LANDING == ENABLED
void set_precision_loiter_enabled(bool value) { _precision_loiter_enabled = value; }
#endif
protected:
const char *name() const override { return "LOITER"; }
const char *name4() const override { return "LOIT"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
#if PRECISION_LANDING == ENABLED
bool do_precision_loiter();
void precision_loiter_xy();
#endif
private:
#if PRECISION_LANDING == ENABLED
bool _precision_loiter_enabled;
#endif
};
class ModePosHold : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override { return true; }
protected:
const char *name() const override { return "POSHOLD"; }
const char *name4() const override { return "PHLD"; }
private:
void update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw);
2019-07-07 10:13:43 -03:00
float mix_controls(float mix_ratio, float first_control, float second_control);
void update_brake_angle_from_velocity(float &brake_angle, float velocity);
void update_wind_comp_estimate();
2019-07-07 10:13:43 -03:00
void get_wind_comp_lean_angles(float &roll_angle, float &pitch_angle);
void roll_controller_to_pilot_override();
void pitch_controller_to_pilot_override();
enum class RPMode {
PILOT_OVERRIDE=0, // pilot is controlling this axis (i.e. roll or pitch)
BRAKE, // this axis is braking towards zero
BRAKE_READY_TO_LOITER, // this axis has completed braking and is ready to enter loiter mode (both modes must be this value before moving to next stage)
BRAKE_TO_LOITER, // both vehicle's axis (roll and pitch) are transitioning from braking to loiter mode (braking and loiter controls are mixed)
LOITER, // both vehicle axis are holding position
CONTROLLER_TO_PILOT_OVERRIDE // pilot has input controls on this axis and this axis is transitioning to pilot override (other axis will transition to brake if no pilot input)
};
RPMode roll_mode;
RPMode pitch_mode;
uint8_t braking_time_updated_roll : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking
uint8_t braking_time_updated_pitch : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking
// pilot input related variables
float pilot_roll; // pilot requested roll angle (filtered to slow returns to zero)
float pilot_pitch; // pilot requested roll angle (filtered to slow returns to zero)
// braking related variables
float brake_gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from brake_rate)
2019-07-07 10:13:43 -03:00
float brake_roll; // target roll angle during braking periods
float brake_pitch; // target pitch angle during braking periods
int16_t brake_timeout_roll; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking
int16_t brake_timeout_pitch; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking
2019-07-07 10:13:43 -03:00
float brake_angle_max_roll; // maximum lean angle achieved during braking. Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time
float brake_angle_max_pitch; // maximum lean angle achieved during braking Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time
int16_t brake_to_loiter_timer; // cycles to mix brake and loiter controls in POSHOLD_BRAKE_TO_LOITER
// loiter related variables
int16_t controller_to_pilot_timer_roll; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT
int16_t controller_to_pilot_timer_pitch; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT
2019-07-07 10:13:43 -03:00
float controller_final_roll; // final roll angle from controller as we exit brake or loiter mode (used for mixing with pilot input)
float controller_final_pitch; // final pitch angle from controller as we exit brake or loiter mode (used for mixing with pilot input)
// wind compensation related variables
Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller
2019-07-07 10:13:43 -03:00
float wind_comp_roll; // roll angle to compensate for wind
float wind_comp_pitch; // pitch angle to compensate for wind
uint16_t wind_comp_start_timer; // counter to delay start of wind compensation for a short time after loiter is engaged
int8_t wind_comp_timer; // counter to reduce wind comp roll/pitch lean angle calcs to 10hz
// final output
2019-07-07 10:13:43 -03:00
float roll; // final roll angle sent to attitude controller
float pitch; // final pitch angle sent to attitude controller
};
class ModeRTL : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override {
return run(true);
}
void run(bool disarm_on_land);
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
2018-01-24 20:34:57 -04:00
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return true; }
2019-06-05 07:47:32 -03:00
// for reporting to GCS
bool get_wp(Location &loc) override;
RTLState state() { return _state; }
// this should probably not be exposed
bool state_complete() { return _state_complete; }
bool is_landing() const override;
void restart_without_terrain();
protected:
const char *name() const override { return "RTL"; }
const char *name4() const override { return "RTL "; }
2019-06-05 07:47:32 -03:00
// for reporting to GCS
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
2018-05-23 12:34:24 -03:00
float crosstrack_error() const override { return wp_nav->crosstrack_error();}
void descent_start();
void descent_run();
void land_start();
void land_run(bool disarm_on_land);
void set_descent_target_alt(uint32_t alt) { rtl_path.descent_target.alt = alt; }
private:
void climb_start();
void return_start();
void climb_return_run();
void loiterathome_start();
void loiterathome_run();
void build_path();
void compute_return_target();
RTLState _state = RTL_InitialClimb; // records state of rtl (initial climb, returning home, etc)
bool _state_complete = false; // set to true if the current state is completed
struct {
// NEU w/ Z element alt-above-ekf-origin unless use_terrain is true in which case Z element is alt-above-terrain
Location origin_point;
Location climb_target;
Location return_target;
Location descent_target;
bool land;
bool terrain_used;
} rtl_path;
// Loiter timer - Records how long we have been in loiter
uint32_t _loiter_start_time;
bool terrain_following_allowed;
};
class ModeSmartRTL : public ModeRTL {
public:
// inherit constructor
using ModeRTL::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; }
bool is_autopilot() const override { return true; }
void save_position();
void exit();
protected:
const char *name() const override { return "SMARTRTL"; }
const char *name4() const override { return "SRTL"; }
2019-06-05 07:47:32 -03:00
// for reporting to GCS
bool get_wp(Location &loc) override;
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
2018-05-23 12:34:24 -03:00
float crosstrack_error() const override { return wp_nav->crosstrack_error();}
private:
void wait_cleanup_run();
void path_follow_run();
void pre_land_position_run();
void land();
SmartRTLState smart_rtl_state = SmartRTL_PathFollow;
};
class ModeSport : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override {
return !must_navigate;
}
protected:
const char *name() const override { return "SPORT"; }
const char *name4() const override { return "SPRT"; }
private:
};
class ModeStabilize : public Mode {
public:
// inherit constructor
using Mode::Mode;
virtual void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return true; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "STABILIZE"; }
const char *name4() const override { return "STAB"; }
private:
};
#if FRAME_CONFIG == HELI_FRAME
class ModeStabilize_Heli : public ModeStabilize {
public:
// inherit constructor
using ModeStabilize::Mode;
bool init(bool ignore_checks) override;
void run() override;
protected:
private:
};
#endif
2019-07-29 04:55:40 -03:00
class ModeSystemId : public Mode {
public:
ModeSystemId(void);
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
bool logs_attitude() const override { return true; }
void set_magnitude(float input) { waveform_magnitude = input; }
2019-07-29 04:55:40 -03:00
static const struct AP_Param::GroupInfo var_info[];
protected:
const char *name() const override { return "SYSTEMID"; }
const char *name4() const override { return "SYSI"; }
private:
void log_data();
float waveform(float time);
enum class AxisType {
NONE = 0, // none
INPUT_ROLL = 1, // angle input roll axis is being excited
INPUT_PITCH = 2, // angle pitch axis is being excited
INPUT_YAW = 3, // angle yaw axis is being excited
RECOVER_ROLL = 4, // angle roll axis is being excited
RECOVER_PITCH = 5, // angle pitch axis is being excited
RECOVER_YAW = 6, // angle yaw axis is being excited
RATE_ROLL = 7, // rate roll axis is being excited
RATE_PITCH = 8, // rate pitch axis is being excited
RATE_YAW = 9, // rate yaw axis is being excited
MIX_ROLL = 10, // mixer roll axis is being excited
MIX_PITCH = 11, // mixer pitch axis is being excited
MIX_YAW = 12, // mixer pitch axis is being excited
MIX_THROTTLE = 13, // mixer throttle axis is being excited
2019-07-29 04:55:40 -03:00
};
AP_Int8 axis; // Controls which axis are being excited. Set to non-zero to display other parameters
AP_Float waveform_magnitude;// Magnitude of chirp waveform
AP_Float frequency_start; // Frequency at the start of the chirp
AP_Float frequency_stop; // Frequency at the end of the chirp
AP_Float time_fade_in; // Time to reach maximum amplitude of chirp
AP_Float time_record; // Time taken to complete the chirp waveform
AP_Float time_fade_out; // Time to reach zero amplitude after chirp finishes
bool att_bf_feedforward; // Setting of attitude_control->get_bf_feedforward
float waveform_time; // Time reference for waveform
float waveform_sample; // Current waveform sample
float waveform_freq_rads; // Instantaneous waveform frequency
float time_const_freq; // Time at constant frequency before chirp starts
int8_t log_subsample; // Subsample multiple for logging.
2019-07-29 04:55:40 -03:00
// System ID states
enum class SystemIDModeState {
SYSTEMID_STATE_STOPPED,
SYSTEMID_STATE_TESTING
} systemid_state;
2019-07-29 04:55:40 -03:00
};
class ModeThrow : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
// Throw types
enum ThrowModeType {
ThrowType_Upward = 0,
ThrowType_Drop = 1
};
protected:
const char *name() const override { return "THROW"; }
const char *name4() const override { return "THRW"; }
private:
bool throw_detected();
bool throw_position_good();
bool throw_height_good();
bool throw_attitude_good();
// Throw stages
enum ThrowModeStage {
Throw_Disarmed,
Throw_Detecting,
Throw_Uprighting,
Throw_HgtStabilise,
Throw_PosHold
};
ThrowModeStage stage = Throw_Disarmed;
ThrowModeStage prev_stage = Throw_Disarmed;
uint32_t last_log_ms;
bool nextmode_attempted;
uint32_t free_fall_start_ms; // system time free fall was detected
float free_fall_start_velz; // vertical velocity when free fall was detected
};
2018-02-05 22:44:05 -04:00
// modes below rely on Guided mode so must be declared at the end (instead of in alphabetical order)
class ModeAvoidADSB : public ModeGuided {
public:
// inherit constructor
using ModeGuided::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; }
bool is_autopilot() const override { return true; }
bool set_velocity(const Vector3f& velocity_neu);
protected:
const char *name() const override { return "AVOID_ADSB"; }
const char *name4() const override { return "AVOI"; }
private:
};
2017-12-26 19:09:11 -04:00
2018-02-05 22:44:05 -04:00
class ModeFollow : public ModeGuided {
2017-12-26 19:09:11 -04:00
public:
// inherit constructor
using ModeGuided::Mode;
2017-12-26 19:09:11 -04:00
bool init(bool ignore_checks) override;
void exit();
2017-12-26 19:09:11 -04:00
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; }
bool is_autopilot() const override { return true; }
protected:
2018-02-05 22:44:05 -04:00
const char *name() const override { return "FOLLOW"; }
const char *name4() const override { return "FOLL"; }
2019-06-05 07:47:32 -03:00
// for reporting to GCS
bool get_wp(Location &loc) override;
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
uint32_t last_log_ms; // system time of last time desired velocity was logging
2017-12-26 19:09:11 -04:00
};
class ModeZigZag : public Mode {
public:
// Inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; }
bool is_autopilot() const override { return true; }
// save current position as A (dest_num = 0) or B (dest_num = 1). If both A and B have been saved move to the one specified
void save_or_move_to_destination(uint8_t dest_num);
// return manual control to the pilot
void return_to_manual_control(bool maintain_target);
protected:
const char *name() const override { return "ZIGZAG"; }
const char *name4() const override { return "ZIGZ"; }
private:
void auto_control();
void manual_control();
bool reached_destination();
bool calculate_next_dest(uint8_t position_num, bool use_wpnav_alt, Vector3f& next_dest, bool& terrain_alt) const;
Vector2f dest_A; // in NEU frame in cm relative to ekf origin
Vector2f dest_B; // in NEU frame in cm relative to ekf origin
enum zigzag_state {
STORING_POINTS, // storing points A and B, pilot has manual control
AUTO, // after A and B defined, pilot toggle the switch from one side to the other, vehicle flies autonomously
MANUAL_REGAIN // pilot toggle the switch to middle position, has manual control
} stage;
uint32_t reach_wp_time_ms = 0; // time since vehicle reached destination (or zero if not yet reached)
};
#if MODE_AUTOROTATE_ENABLED == ENABLED
class ModeAutorotate : public Mode {
public:
// inherit constructor
using Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool is_autopilot() const override { return true; }
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
static const struct AP_Param::GroupInfo var_info[];
protected:
const char *name() const override { return "AUTOROTATE"; }
const char *name4() const override { return "AROT"; }
private:
// --- Internal variables ---
float _initial_rpm; // Head speed recorded at initiation of flight mode (RPM)
float _target_head_speed; // The terget head main rotor head speed. Normalised by main rotor set point
float _fwd_speed_target; // Target forward speed (cm/s)
float _desired_v_z; // Desired vertical
int32_t _pitch_target; // Target pitch attitude to pass to attitude controller
float _collective_aggression; // The 'aggresiveness' of collective appliction
float _z_touch_down_start; // The height in cm that the touch down phase began
float _t_touch_down_initiate; // The time in ms that the touch down phase began
float now; // Current time in millis
float _entry_time_start; // Time remaining until entry phase moves on to glide phase
float _hs_decay; // The head accerleration during the entry phase
float _bail_time; // Timer for exiting the bail out phase (s)
float _bail_time_start; // Time at start of bail out
float _des_z; // Desired vertical position
float _target_climb_rate_adjust;// Target vertical acceleration used during bail out phase
float _target_pitch_adjust; // Target pitch rate used during bail out phase
uint16_t log_counter; // Used to reduce the data flash logging rate
enum class Autorotation_Phase {
ENTRY,
SS_GLIDE,
FLARE,
TOUCH_DOWN,
BAIL_OUT } phase_switch;
enum class Navigation_Decision {
USER_CONTROL_STABILISED,
STRAIGHT_AHEAD,
INTO_WIND,
NEAREST_RALLY} nav_pos_switch;
// --- Internal flags ---
struct controller_flags {
bool entry_initial : 1;
bool ss_glide_initial : 1;
bool flare_initial : 1;
bool touch_down_initial : 1;
bool straight_ahead_initial : 1;
bool level_initial : 1;
bool break_initial : 1;
bool bail_out_initial : 1;
bool bad_rpm : 1;
} _flags;
struct message_flags {
bool bad_rpm : 1;
} _msg_flags;
//--- Internal functions ---
void warning_message(uint8_t message_n); //Handles output messages to the terminal
};
#endif