ardupilot/libraries/AP_Baro/AP_Baro_MS5611.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

521 lines
15 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Baro_MS5611.h"
#if AP_BARO_MS56XX_ENABLED
#include <utility>
#include <stdio.h>
#include <AP_Math/AP_Math.h>
2019-04-24 03:51:54 -03:00
#include <AP_Math/crc.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
extern const AP_HAL::HAL &hal;
static const uint8_t CMD_MS56XX_RESET = 0x1E;
static const uint8_t CMD_MS56XX_READ_ADC = 0x00;
/* PROM start address */
static const uint8_t CMD_MS56XX_PROM = 0xA0;
/* write to one of these addresses to start pressure conversion */
#define ADDR_CMD_CONVERT_D1_OSR256 0x40
#define ADDR_CMD_CONVERT_D1_OSR512 0x42
#define ADDR_CMD_CONVERT_D1_OSR1024 0x44
#define ADDR_CMD_CONVERT_D1_OSR2048 0x46
#define ADDR_CMD_CONVERT_D1_OSR4096 0x48
/* write to one of these addresses to start temperature conversion */
#define ADDR_CMD_CONVERT_D2_OSR256 0x50
#define ADDR_CMD_CONVERT_D2_OSR512 0x52
#define ADDR_CMD_CONVERT_D2_OSR1024 0x54
#define ADDR_CMD_CONVERT_D2_OSR2048 0x56
#define ADDR_CMD_CONVERT_D2_OSR4096 0x58
/*
use an OSR of 1024 to reduce the self-heating effect of the
sensor. Information from MS tells us that some individual sensors
are quite sensitive to this effect and that reducing the OSR can
make a big difference
*/
static const uint8_t ADDR_CMD_CONVERT_PRESSURE = ADDR_CMD_CONVERT_D1_OSR1024;
static const uint8_t ADDR_CMD_CONVERT_TEMPERATURE = ADDR_CMD_CONVERT_D2_OSR1024;
/*
constructor
*/
AP_Baro_MS56XX::AP_Baro_MS56XX(AP_Baro &baro, AP_HAL::OwnPtr<AP_HAL::Device> dev, enum MS56XX_TYPE ms56xx_type)
: AP_Baro_Backend(baro)
, _dev(std::move(dev))
, _ms56xx_type(ms56xx_type)
{
}
AP_Baro_Backend *AP_Baro_MS56XX::probe(AP_Baro &baro,
AP_HAL::OwnPtr<AP_HAL::Device> dev,
enum MS56XX_TYPE ms56xx_type)
{
if (!dev) {
return nullptr;
}
AP_Baro_MS56XX *sensor = NEW_NOTHROW AP_Baro_MS56XX(baro, std::move(dev), ms56xx_type);
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_Baro_MS56XX::_init()
{
if (!_dev) {
return false;
}
_dev->get_semaphore()->take_blocking();
// high retries for init
_dev->set_retries(10);
uint16_t prom[8];
bool prom_read_ok = false;
_dev->transfer(&CMD_MS56XX_RESET, 1, nullptr, 0);
hal.scheduler->delay(4);
/*
cope with vendors substituting a MS5607 for a MS5611 on Pixhawk1 'clone' boards
*/
if (_ms56xx_type == BARO_MS5611 && _frontend.option_enabled(AP_Baro::Options::TreatMS5611AsMS5607)) {
_ms56xx_type = BARO_MS5607;
}
const char *name = "MS5611";
switch (_ms56xx_type) {
case BARO_MS5607:
name = "MS5607";
FALLTHROUGH;
case BARO_MS5611:
prom_read_ok = _read_prom_5611(prom);
break;
case BARO_MS5837:
name = "MS5837";
prom_read_ok = _read_prom_5637(prom);
break;
case BARO_MS5637:
name = "MS5637";
prom_read_ok = _read_prom_5637(prom);
break;
}
if (!prom_read_ok) {
_dev->get_semaphore()->give();
return false;
}
printf("%s found on bus %u address 0x%02x\n", name, _dev->bus_num(), _dev->get_bus_address());
// Save factory calibration coefficients
_cal_reg.c1 = prom[1];
_cal_reg.c2 = prom[2];
_cal_reg.c3 = prom[3];
_cal_reg.c4 = prom[4];
_cal_reg.c5 = prom[5];
_cal_reg.c6 = prom[6];
// Send a command to read temperature first
_dev->transfer(&ADDR_CMD_CONVERT_TEMPERATURE, 1, nullptr, 0);
_state = 0;
memset(&_accum, 0, sizeof(_accum));
_instance = _frontend.register_sensor();
enum DevTypes devtype = DEVTYPE_BARO_MS5611;
switch (_ms56xx_type) {
case BARO_MS5607:
devtype = DEVTYPE_BARO_MS5607;
break;
case BARO_MS5611:
devtype = DEVTYPE_BARO_MS5611;
break;
case BARO_MS5837:
devtype = DEVTYPE_BARO_MS5837;
break;
case BARO_MS5637:
devtype = DEVTYPE_BARO_MS5637;
break;
}
_dev->set_device_type(devtype);
set_bus_id(_instance, _dev->get_bus_id());
if (_ms56xx_type == BARO_MS5837) {
_frontend.set_type(_instance, AP_Baro::BARO_TYPE_WATER);
}
// lower retries for run
_dev->set_retries(3);
_dev->get_semaphore()->give();
/* Request 100Hz update */
_dev->register_periodic_callback(10 * AP_USEC_PER_MSEC,
FUNCTOR_BIND_MEMBER(&AP_Baro_MS56XX::_timer, void));
return true;
}
uint16_t AP_Baro_MS56XX::_read_prom_word(uint8_t word)
{
const uint8_t reg = CMD_MS56XX_PROM + (word << 1);
uint8_t val[2];
if (!_dev->transfer(&reg, 1, val, sizeof(val))) {
return 0;
}
return (val[0] << 8) | val[1];
}
uint32_t AP_Baro_MS56XX::_read_adc()
{
uint8_t val[3];
if (!_dev->transfer(&CMD_MS56XX_READ_ADC, 1, val, sizeof(val))) {
return 0;
}
return (val[0] << 16) | (val[1] << 8) | val[2];
}
bool AP_Baro_MS56XX::_read_prom_5611(uint16_t prom[8])
{
/*
* MS5611-01BA datasheet, CYCLIC REDUNDANCY CHECK (CRC): "MS5611-01BA
* contains a PROM memory with 128-Bit. A 4-bit CRC has been implemented
* to check the data validity in memory."
*
* CRC field must me removed for CRC-4 calculation.
*/
bool all_zero = true;
for (uint8_t i = 0; i < 8; i++) {
prom[i] = _read_prom_word(i);
if (prom[i] != 0) {
all_zero = false;
}
}
if (all_zero) {
return false;
}
/* save the read crc */
const uint16_t crc_read = prom[7] & 0xf;
/* remove CRC byte */
prom[7] &= 0xff00;
2019-04-24 03:51:54 -03:00
return crc_read == crc_crc4(prom);
}
bool AP_Baro_MS56XX::_read_prom_5637(uint16_t prom[8])
2015-11-11 19:00:57 -04:00
{
/*
* MS5637-02BA03 datasheet, CYCLIC REDUNDANCY CHECK (CRC): "MS5637
* contains a PROM memory with 112-Bit. A 4-bit CRC has been implemented
* to check the data validity in memory."
*
* 8th PROM word must be zeroed and CRC field removed for CRC-4
* calculation.
*/
bool all_zero = true;
for (uint8_t i = 0; i < 7; i++) {
prom[i] = _read_prom_word(i);
if (prom[i] != 0) {
all_zero = false;
}
}
if (all_zero) {
return false;
}
prom[7] = 0;
2015-11-11 19:00:57 -04:00
/* save the read crc */
const uint16_t crc_read = (prom[0] & 0xf000) >> 12;
2015-11-11 19:00:57 -04:00
/* remove CRC byte */
prom[0] &= ~0xf000;
2019-04-24 03:51:54 -03:00
return crc_read == crc_crc4(prom);
}
/*
* Read the sensor with a state machine
* We read one time temperature (state=0) and then 4 times pressure (states 1-4)
*
* Temperature is used to calculate the compensated pressure and doesn't vary
* as fast as pressure. Hence we reuse the same temperature for 4 samples of
* pressure.
*/
void AP_Baro_MS56XX::_timer(void)
{
uint8_t next_cmd;
uint8_t next_state;
uint32_t adc_val = _read_adc();
/*
* If read fails, re-initiate a read command for current state or we are
* stuck
*/
if (adc_val == 0) {
next_state = _state;
} else {
next_state = (_state + 1) % 5;
}
2012-02-14 12:55:32 -04:00
next_cmd = next_state == 0 ? ADDR_CMD_CONVERT_TEMPERATURE
: ADDR_CMD_CONVERT_PRESSURE;
if (!_dev->transfer(&next_cmd, 1, nullptr, 0)) {
return;
}
/* if we had a failed read we are all done */
if (adc_val == 0 || adc_val == 0xFFFFFF) {
// a failed read can mean the next returned value will be
// corrupt, we must discard it. This copes with MISO being
// pulled either high or low
_discard_next = true;
return;
}
if (_discard_next) {
_discard_next = false;
_state = next_state;
return;
}
WITH_SEMAPHORE(_sem);
if (_state == 0) {
_update_and_wrap_accumulator(&_accum.s_D2, adc_val,
&_accum.d2_count, 32);
} else if (pressure_ok(adc_val)) {
_update_and_wrap_accumulator(&_accum.s_D1, adc_val,
&_accum.d1_count, 128);
}
_state = next_state;
}
void AP_Baro_MS56XX::_update_and_wrap_accumulator(uint32_t *accum, uint32_t val,
uint8_t *count, uint8_t max_count)
{
*accum += val;
*count += 1;
if (*count == max_count) {
*count = max_count / 2;
*accum = *accum / 2;
}
}
void AP_Baro_MS56XX::update()
{
uint32_t sD1, sD2;
uint8_t d1count, d2count;
{
WITH_SEMAPHORE(_sem);
if (_accum.d1_count == 0) {
return;
}
sD1 = _accum.s_D1;
sD2 = _accum.s_D2;
d1count = _accum.d1_count;
d2count = _accum.d2_count;
memset(&_accum, 0, sizeof(_accum));
}
2015-09-28 15:43:04 -03:00
if (d1count != 0) {
2015-07-10 00:56:06 -03:00
_D1 = ((float)sD1) / d1count;
}
if (d2count != 0) {
2015-07-10 00:56:06 -03:00
_D2 = ((float)sD2) / d2count;
}
switch (_ms56xx_type) {
case BARO_MS5607:
_calculate_5607();
break;
case BARO_MS5611:
_calculate_5611();
break;
case BARO_MS5637:
_calculate_5637();
break;
case BARO_MS5837:
_calculate_5837();
}
}
2015-07-10 00:56:06 -03:00
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS56XX::_calculate_5611()
{
float dT;
float TEMP;
float OFF;
float SENS;
// we do the calculations using floating point allows us to take advantage
// of the averaging of D1 and D1 over multiple samples, giving us more
// precision
dT = _D2-(((uint32_t)_cal_reg.c5)<<8);
TEMP = (dT * _cal_reg.c6)/8388608;
OFF = _cal_reg.c2 * 65536.0f + (_cal_reg.c4 * dT) / 128;
SENS = _cal_reg.c1 * 32768.0f + (_cal_reg.c3 * dT) / 256;
TEMP += 2000;
if (TEMP < 2000) {
// second order temperature compensation when under 20 degrees C
float T2 = (dT*dT) / 0x80000000;
float Aux = sq(TEMP-2000.0);
float OFF2 = 2.5f*Aux;
float SENS2 = 1.25f*Aux;
if (TEMP < -1500) {
// extra compensation for temperatures below -15C
OFF2 += 7 * sq(TEMP+1500);
SENS2 += sq(TEMP+1500) * 11.0*0.5;
}
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
2015-07-10 00:56:06 -03:00
float pressure = (_D1*SENS/2097152 - OFF)/32768;
float temperature = TEMP * 0.01f;
2015-07-10 00:56:06 -03:00
_copy_to_frontend(_instance, pressure, temperature);
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS56XX::_calculate_5607()
2015-07-10 00:56:06 -03:00
{
float dT;
float TEMP;
float OFF;
float SENS;
// we do the calculations using floating point allows us to take advantage
// of the averaging of D1 and D1 over multiple samples, giving us more
// precision
dT = _D2-(((uint32_t)_cal_reg.c5)<<8);
TEMP = (dT * _cal_reg.c6)/8388608;
OFF = _cal_reg.c2 * 131072.0f + (_cal_reg.c4 * dT) / 64;
SENS = _cal_reg.c1 * 65536.0f + (_cal_reg.c3 * dT) / 128;
2015-07-10 00:56:06 -03:00
TEMP += 2000;
if (TEMP < 2000) {
2015-07-10 00:56:06 -03:00
// second order temperature compensation when under 20 degrees C
float T2 = (dT*dT) / 0x80000000;
float Aux = sq(TEMP-2000);
2015-07-10 00:56:06 -03:00
float OFF2 = 61.0f*Aux/16.0f;
float SENS2 = 2.0f*Aux;
if (TEMP < -1500) {
OFF2 += 15 * sq(TEMP+1500);
SENS2 += 8 * sq(TEMP+1500);
}
2015-07-10 00:56:06 -03:00
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
float pressure = (_D1*SENS/2097152 - OFF)/32768;
float temperature = TEMP * 0.01f;
_copy_to_frontend(_instance, pressure, temperature);
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS56XX::_calculate_5637()
{
int32_t dT, TEMP;
int64_t OFF, SENS;
int32_t raw_pressure = _D1;
int32_t raw_temperature = _D2;
dT = raw_temperature - (((uint32_t)_cal_reg.c5) << 8);
TEMP = 2000 + ((int64_t)dT * (int64_t)_cal_reg.c6) / 8388608;
OFF = (int64_t)_cal_reg.c2 * (int64_t)131072 + ((int64_t)_cal_reg.c4 * (int64_t)dT) / (int64_t)64;
SENS = (int64_t)_cal_reg.c1 * (int64_t)65536 + ((int64_t)_cal_reg.c3 * (int64_t)dT) / (int64_t)128;
if (TEMP < 2000) {
// second order temperature compensation when under 20 degrees C
int32_t T2 = ((int64_t)3 * ((int64_t)dT * (int64_t)dT) / (int64_t)8589934592);
int64_t aux = (TEMP - 2000) * (TEMP - 2000);
int64_t OFF2 = 61 * aux / 16;
int64_t SENS2 = 29 * aux / 16;
if (TEMP < -1500) {
OFF2 += 17 * sq(TEMP+1500);
SENS2 += 9 * sq(TEMP+1500);
}
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
int32_t pressure = ((int64_t)raw_pressure * SENS / (int64_t)2097152 - OFF) / (int64_t)32768;
float temperature = TEMP * 0.01f;
_copy_to_frontend(_instance, (float)pressure, temperature);
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS56XX::_calculate_5837()
{
int32_t dT, TEMP;
int64_t OFF, SENS;
int32_t raw_pressure = _D1;
int32_t raw_temperature = _D2;
// note that MS5837 has no compensation for temperatures below -15C in the datasheet
dT = raw_temperature - (((uint32_t)_cal_reg.c5) << 8);
TEMP = 2000 + ((int64_t)dT * (int64_t)_cal_reg.c6) / 8388608;
OFF = (int64_t)_cal_reg.c2 * (int64_t)65536 + ((int64_t)_cal_reg.c4 * (int64_t)dT) / (int64_t)128;
SENS = (int64_t)_cal_reg.c1 * (int64_t)32768 + ((int64_t)_cal_reg.c3 * (int64_t)dT) / (int64_t)256;
if (TEMP < 2000) {
// second order temperature compensation when under 20 degrees C
int32_t T2 = ((int64_t)3 * ((int64_t)dT * (int64_t)dT) / (int64_t)8589934592);
int64_t aux = (TEMP - 2000) * (TEMP - 2000);
int64_t OFF2 = 3 * aux / 2;
int64_t SENS2 = 5 * aux / 8;
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
int32_t pressure = ((int64_t)raw_pressure * SENS / (int64_t)2097152 - OFF) / (int64_t)8192;
pressure = pressure * 10; // MS5837 only reports to 0.1 mbar
float temperature = TEMP * 0.01f;
_copy_to_frontend(_instance, (float)pressure, temperature);
}
#endif // AP_BARO_MS56XX_ENABLED