ardupilot/libraries/AP_Baro/AP_Baro_MS5611.cpp

249 lines
6.6 KiB
C++
Raw Normal View History

/*
APM_MS5611.cpp - Arduino Library for MS5611-01BA01 absolute pressure sensor
Code by Jose Julio, Pat Hickey and Jordi Muñoz. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Sensor is conected to standard SPI port
Chip Select pin: Analog2 (provisional until Jordi defines the pin)!!
Variables:
Temp : Calculated temperature (in Celsius degrees * 100)
Press : Calculated pressure (in mbar units * 100)
Methods:
init() : Initialization and sensor reset
read() : Read sensor data and calculate Temperature, Pressure and Altitude
This function is optimized so the main host don´t need to wait
You can call this function in your main loop
Maximun data output frequency 100Hz
It returns a 1 if there are new data.
get_pressure() : return pressure in mbar*100 units
get_temperature() : return temperature in celsius degrees*100 units
get_altitude() : return altitude in meters
Internal functions:
calculate() : Calculate Temperature and Pressure (temperature compensated) in real units
*/
#include <SPI.h>
#include "AP_Baro_MS5611.h"
/* on APM v.24 MS5661_CS is PG1 (Arduino pin 40) */
#define MS5611_CS 40
#define CMD_MS5611_RESET 0x1E
#define CMD_MS5611_PROM_Setup 0xA0
#define CMD_MS5611_PROM_C1 0xA2
#define CMD_MS5611_PROM_C2 0xA4
#define CMD_MS5611_PROM_C3 0xA6
#define CMD_MS5611_PROM_C4 0xA8
#define CMD_MS5611_PROM_C5 0xAA
#define CMD_MS5611_PROM_C6 0xAC
#define CMD_MS5611_PROM_CRC 0xAE
#define CMD_CONVERT_D1_OSR4096 0x48 // Maximun resolution
#define CMD_CONVERT_D2_OSR4096 0x58 // Maximun resolution
uint8_t MS5611_SPI_read(byte reg)
{
byte dump;
uint8_t return_value;
byte addr = reg; // | 0x80; // Set most significant bit
digitalWrite(MS5611_CS, LOW);
dump = SPI.transfer(addr);
return_value = SPI.transfer(0);
digitalWrite(MS5611_CS, HIGH);
return(return_value);
}
uint16_t MS5611_SPI_read_16bits(byte reg)
{
byte dump,byteH,byteL;
uint16_t return_value;
byte addr = reg; // | 0x80; // Set most significant bit
digitalWrite(MS5611_CS, LOW);
dump = SPI.transfer(addr);
byteH = SPI.transfer(0);
byteL = SPI.transfer(0);
digitalWrite(MS5611_CS, HIGH);
return_value = ((uint16_t)byteH<<8) | (byteL);
return(return_value);
}
uint32_t MS5611_SPI_read_ADC()
{
byte dump,byteH,byteM,byteL;
uint32_t return_value;
byte addr = 0x00;
digitalWrite(MS5611_CS, LOW);
dump = SPI.transfer(addr);
byteH = SPI.transfer(0);
byteM = SPI.transfer(0);
byteL = SPI.transfer(0);
digitalWrite(MS5611_CS, HIGH);
return_value = (((uint32_t)byteH)<<16) | (((uint32_t)byteM)<<8) | (byteL);
return(return_value);
}
void MS5611_SPI_write(byte reg)
{
byte dump;
digitalWrite(MS5611_CS, LOW);
dump = SPI.transfer(reg);
digitalWrite(MS5611_CS, HIGH);
}
// The conversion proccess takes 8.2ms since the command
uint8_t AP_Baro_MS5611::MS5611_Ready()
{
if ((millis()-MS5611_timer)>10) // wait for more than 10ms
return(1);
else
return(0);
}
// Public Methods //////////////////////////////////////////////////////////////
// SPI should be initialized externally
void AP_Baro_MS5611::init( AP_PeriodicProcess *scheduler )
{
pinMode(MS5611_CS, OUTPUT); // Chip select Pin
digitalWrite(MS5611_CS, HIGH);
delay(1);
MS5611_SPI_write(CMD_MS5611_RESET);
delay(4);
// We read the factory calibration
C1 = MS5611_SPI_read_16bits(CMD_MS5611_PROM_C1);
C2 = MS5611_SPI_read_16bits(CMD_MS5611_PROM_C2);
C3 = MS5611_SPI_read_16bits(CMD_MS5611_PROM_C3);
C4 = MS5611_SPI_read_16bits(CMD_MS5611_PROM_C4);
C5 = MS5611_SPI_read_16bits(CMD_MS5611_PROM_C5);
C6 = MS5611_SPI_read_16bits(CMD_MS5611_PROM_C6);
//Send a command to read Temp first
MS5611_SPI_write(CMD_CONVERT_D2_OSR4096);
MS5611_timer = millis();
MS5611_State = 1;
Temp=0;
Press=0;
}
// Read the sensor. This is a state machine
// We read one time Temperature (state=1) and then 4 times Pressure (states 2-5)
// temperature does not change so quickly...
uint8_t AP_Baro_MS5611::read()
{
uint8_t result = 0;
if (MS5611_State == 1){
if (MS5611_Ready()){
D2=MS5611_SPI_read_ADC(); // On state 1 we read temp
_raw_temp = D2;
MS5611_State++;
MS5611_SPI_write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
MS5611_timer = millis();
}
}else{
if (MS5611_State == 5){
if (MS5611_Ready()){
D1=MS5611_SPI_read_ADC();
_raw_press = D1;
calculate();
MS5611_State = 1; // Start again from state = 1
MS5611_SPI_write(CMD_CONVERT_D2_OSR4096); // Command to read temperature
MS5611_timer = millis();
result = 1; // New pressure reading
}
}else{
if (MS5611_Ready()){
D1=MS5611_SPI_read_ADC();
_raw_press = D1;
calculate();
MS5611_State++;
MS5611_SPI_write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
MS5611_timer = millis();
result = 1; // New pressure reading
}
}
}
return(result);
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS5611::calculate()
{
int32_t dT;
long long TEMP; // 64 bits
long long OFF;
long long SENS;
long long P;
// Formulas from manufacturer datasheet
// TODO: optimization with shift operations... (shift operations works well on 64 bits variables?)
// We define parameters as 64 bits to prevent overflow on operations
dT = D2-((long)C5*256);
TEMP = 2000 + ((long long)dT * C6)/8388608;
OFF = (long long)C2 * 65536 + ((long long)C4 * dT ) / 128;
SENS = (long long)C1 * 32768 + ((long long)C3 * dT) / 256;
/*
if (TEMP < 2000){ // second order temperature compensation
long long T2 = (long long)dT*dT / 2147483648;
long long Aux_64 = (TEMP-2000)*(TEMP-2000);
long long OFF2 = 5*Aux_64/2;
long long SENS2 = 5*Aux_64/4;
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
*/
P = (D1*SENS/2097152 - OFF)/32768;
Temp = TEMP;
Press = P;
}
int32_t AP_Baro_MS5611::get_pressure()
{
return(Press);
}
int16_t AP_Baro_MS5611::get_temperature()
{
return(Temp);
}
// Return altitude using the standard 1013.25 mbar at sea level reference
float AP_Baro_MS5611::get_altitude()
{
float tmp_float;
float Altitude;
tmp_float = (Press / 101325.0);
tmp_float = pow(tmp_float, 0.190295);
Altitude = 44330 * (1.0 - tmp_float);
return (Altitude);
}
int32_t AP_Baro_MS5611::get_raw_pressure() {
return _raw_press;
}
int32_t AP_Baro_MS5611::get_raw_temp() {
return _raw_temp;
}