ardupilot/libraries/AP_HAL_ChibiOS/Util.cpp

359 lines
10 KiB
C++
Raw Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "Util.h"
#include <ch.h>
#include "RCOutput.h"
#include "hwdef/common/stm32_util.h"
#include "hwdef/common/watchdog.h"
#include "hwdef/common/flash.h"
#include <AP_ROMFS/AP_ROMFS.h>
#include "sdcard.h"
#include "shared_dma.h"
#if HAL_WITH_IO_MCU
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
extern const AP_HAL::HAL& hal;
using namespace ChibiOS;
#if CH_CFG_USE_HEAP == TRUE
/**
how much free memory do we have in bytes.
*/
uint32_t Util::available_memory(void)
{
// from malloc.c in hwdef
return mem_available();
}
/*
Special Allocation Routines
*/
void* Util::malloc_type(size_t size, AP_HAL::Util::Memory_Type mem_type)
{
if (mem_type == AP_HAL::Util::MEM_DMA_SAFE) {
return malloc_dma(size);
} else if (mem_type == AP_HAL::Util::MEM_FAST) {
return malloc_fastmem(size);
} else {
return calloc(1, size);
}
}
void Util::free_type(void *ptr, size_t size, AP_HAL::Util::Memory_Type mem_type)
{
if (ptr != NULL) {
free(ptr);
}
}
2018-12-08 22:34:39 -04:00
#ifdef ENABLE_HEAP
void *Util::allocate_heap_memory(size_t size)
{
void *buf = malloc(size);
if (buf == nullptr) {
return nullptr;
}
memory_heap_t *heap = (memory_heap_t *)malloc(sizeof(memory_heap_t));
if (heap != nullptr) {
chHeapObjectInit(heap, buf, size);
}
return heap;
}
/*
realloc implementation thanks to wolfssl, used by AP_Scripting
*/
void *Util::std_realloc(void *addr, size_t size)
{
if (size == 0) {
free(addr);
return nullptr;
}
if (addr == nullptr) {
return malloc(size);
}
void *new_mem = malloc(size);
if (new_mem != nullptr) {
memcpy(new_mem, addr, chHeapGetSize(addr) > size ? size : chHeapGetSize(addr));
free(addr);
}
return new_mem;
}
2018-12-08 22:34:39 -04:00
void *Util::heap_realloc(void *heap, void *ptr, size_t new_size)
{
if (heap == nullptr) {
return nullptr;
}
if (new_size == 0) {
if (ptr != nullptr) {
chHeapFree(ptr);
}
return nullptr;
}
if (ptr == nullptr) {
return chHeapAlloc((memory_heap_t *)heap, new_size);
}
void *new_mem = chHeapAlloc((memory_heap_t *)heap, new_size);
if (new_mem != nullptr) {
memcpy(new_mem, ptr, chHeapGetSize(ptr) > new_size ? new_size : chHeapGetSize(ptr));
chHeapFree(ptr);
}
return new_mem;
}
#endif // ENABLE_HEAP
#endif // CH_CFG_USE_HEAP
/*
get safety switch state
*/
Util::safety_state Util::safety_switch_state(void)
{
#if HAL_USE_PWM == TRUE
return ((RCOutput *)hal.rcout)->_safety_switch_state();
#else
return SAFETY_NONE;
#endif
}
#ifdef HAL_PWM_ALARM
struct Util::ToneAlarmPwmGroup Util::_toneAlarm_pwm_group = HAL_PWM_ALARM;
bool Util::toneAlarm_init()
{
_toneAlarm_pwm_group.pwm_cfg.period = 1000;
pwmStart(_toneAlarm_pwm_group.pwm_drv, &_toneAlarm_pwm_group.pwm_cfg);
return true;
}
void Util::toneAlarm_set_buzzer_tone(float frequency, float volume, uint32_t duration_ms)
{
if (is_zero(frequency) || is_zero(volume)) {
pwmDisableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan);
} else {
pwmChangePeriod(_toneAlarm_pwm_group.pwm_drv,
roundf(_toneAlarm_pwm_group.pwm_cfg.frequency/frequency));
pwmEnableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan, roundf(volume*_toneAlarm_pwm_group.pwm_cfg.frequency/frequency)/2);
}
}
#endif // HAL_PWM_ALARM
/*
set HW RTC in UTC microseconds
*/
void Util::set_hw_rtc(uint64_t time_utc_usec)
{
stm32_set_utc_usec(time_utc_usec);
}
/*
get system clock in UTC microseconds
*/
uint64_t Util::get_hw_rtc() const
{
return stm32_get_utc_usec();
}
#if !defined(HAL_NO_FLASH_SUPPORT) && !defined(HAL_NO_ROMFS_SUPPORT)
#if defined(HAL_NO_GCS) || defined(HAL_BOOTLOADER_BUILD)
#define Debug(fmt, args ...) do { hal.console->printf(fmt, ## args); } while (0)
#else
#include <GCS_MAVLink/GCS.h>
#define Debug(fmt, args ...) do { gcs().send_text(MAV_SEVERITY_INFO, fmt, ## args); } while (0)
#endif
Util::FlashBootloader Util::flash_bootloader()
{
uint32_t fw_size;
const char *fw_name = "bootloader.bin";
EXPECT_DELAY_MS(11000);
const uint8_t *fw = AP_ROMFS::find_decompress(fw_name, fw_size);
if (!fw) {
Debug("failed to find %s\n", fw_name);
return FlashBootloader::NOT_AVAILABLE;
}
// make sure size is multiple of 32
fw_size = (fw_size + 31U) & ~31U;
2019-03-25 21:21:53 -03:00
const uint32_t addr = hal.flash->getpageaddr(0);
if (!memcmp(fw, (const void*)addr, fw_size)) {
Debug("Bootloader up-to-date\n");
AP_ROMFS::free(fw);
return FlashBootloader::NO_CHANGE;
}
Debug("Erasing\n");
uint32_t erased_size = 0;
uint8_t erase_page = 0;
while (erased_size < fw_size) {
uint32_t page_size = hal.flash->getpagesize(erase_page);
if (page_size == 0) {
AP_ROMFS::free(fw);
return FlashBootloader::FAIL;
}
hal.scheduler->expect_delay_ms(1000);
if (!hal.flash->erasepage(erase_page)) {
Debug("Erase %u failed\n", erase_page);
AP_ROMFS::free(fw);
return FlashBootloader::FAIL;
}
erased_size += page_size;
erase_page++;
}
Debug("Flashing %s @%08x\n", fw_name, (unsigned int)addr);
const uint8_t max_attempts = 10;
hal.flash->keep_unlocked(true);
for (uint8_t i=0; i<max_attempts; i++) {
hal.scheduler->expect_delay_ms(1000);
2019-03-25 21:21:53 -03:00
bool ok = hal.flash->write(addr, fw, fw_size);
if (!ok) {
Debug("Flash failed! (attempt=%u/%u)\n",
i+1,
max_attempts);
hal.scheduler->delay(100);
continue;
}
Debug("Flash OK\n");
hal.flash->keep_unlocked(false);
AP_ROMFS::free(fw);
return FlashBootloader::OK;
}
hal.flash->keep_unlocked(false);
Debug("Flash failed after %u attempts\n", max_attempts);
AP_ROMFS::free(fw);
return FlashBootloader::FAIL;
}
#endif // !HAL_NO_FLASH_SUPPORT && !HAL_NO_ROMFS_SUPPORT
/*
display system identifer - board type and serial number
*/
bool Util::get_system_id(char buf[40])
{
uint8_t serialid[12];
char board_name[14];
memcpy(serialid, (const void *)UDID_START, 12);
strncpy(board_name, CHIBIOS_SHORT_BOARD_NAME, 13);
board_name[13] = 0;
// this format is chosen to match the format used by HAL_PX4
snprintf(buf, 40, "%s %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
board_name,
(unsigned)serialid[3], (unsigned)serialid[2], (unsigned)serialid[1], (unsigned)serialid[0],
(unsigned)serialid[7], (unsigned)serialid[6], (unsigned)serialid[5], (unsigned)serialid[4],
(unsigned)serialid[11], (unsigned)serialid[10], (unsigned)serialid[9],(unsigned)serialid[8]);
buf[39] = 0;
return true;
}
bool Util::get_system_id_unformatted(uint8_t buf[], uint8_t &len)
{
len = MIN(12, len);
memcpy(buf, (const void *)UDID_START, len);
return true;
}
// return true if the reason for the reboot was a watchdog reset
bool Util::was_watchdog_reset() const
{
return stm32_was_watchdog_reset();
}
2020-03-27 17:29:12 -03:00
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
2020-03-27 17:29:12 -03:00
/*
display stack usage as text buffer for @SYS/threads.txt
*/
size_t Util::thread_info(char *buf, size_t bufsize)
{
size_t total = 0;
// a header to allow for machine parsers to determine format
const uint32_t isr_stack_size = uint32_t((const uint8_t *)&__main_stack_end__ - (const uint8_t *)&__main_stack_base__);
int n = snprintf(buf, bufsize, "ThreadsV2\nISR PRI=255 sp=%p STACK=%u/%u\n",
&__main_stack_base__, stack_free(&__main_stack_base__), isr_stack_size);
2020-03-27 17:29:12 -03:00
if (n <= 0) {
return 0;
}
buf += n;
bufsize -= n;
total += n;
for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) {
uint32_t total_stack;
if (tp->wabase == (void*)&__main_thread_stack_base__) {
// main thread has its stack separated from the thread context
total_stack = uint32_t((const uint8_t *)&__main_thread_stack_end__ - (const uint8_t *)&__main_thread_stack_base__);
} else {
// all other threads have their thread context pointer
// above the stack top
total_stack = uint32_t(tp) - uint32_t(tp->wabase);
}
if (bufsize > 0) {
#if HAL_ENABLE_THREAD_STATISTICS
n = snprintf(buf, bufsize, "%-13.13s PRI=%3u sp=%p STACK=%4u/%4u MIN=%4u AVG=%4u MAX=%4u\n",
tp->name, unsigned(tp->prio), tp->wabase,
stack_free(tp->wabase), total_stack, RTC2US(STM32_HSECLK, tp->stats.best),
RTC2US(STM32_HSECLK, uint32_t(tp->stats.cumulative / uint64_t(tp->stats.n))),
RTC2US(STM32_HSECLK, tp->stats.worst));
chTMObjectInit(&tp->stats); // reset counters to zero
#else
n = snprintf(buf, bufsize, "%-13.13s PRI=%3u sp=%p STACK=%u/%u\n",
tp->name, unsigned(tp->prio), tp->wabase,
stack_free(tp->wabase), total_stack);
#endif
if (n > bufsize) {
n = bufsize;
}
buf += n;
bufsize -= n;
total += n;
2020-03-27 17:29:12 -03:00
}
}
2020-03-27 17:29:12 -03:00
return total;
}
#endif // CH_DBG_ENABLE_STACK_CHECK == TRUE
#if CH_CFG_USE_SEMAPHORES
// request information on dma contention
size_t Util::dma_info(char *buf, size_t bufsize) {
return ChibiOS::Shared_DMA::dma_info(buf, bufsize);
}
#endif