2016-07-14 02:08:43 -03:00
/*
2017-01-30 02:31:12 -04:00
24 state EKF based on the derivation in https : //github.com/PX4/ecl/
blob / master / matlab / scripts / Inertial % 20 Nav % 20 EKF / GenerateNavFilterEquations . m
2016-07-14 02:08:43 -03:00
2017-01-30 02:31:12 -04:00
Converted from Matlab to C + + by Paul Riseborough
2016-07-14 02:08:43 -03:00
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# pragma once
# include <AP_Math/AP_Math.h>
# include <AP_Param/AP_Param.h>
# include <GCS_MAVLink/GCS_MAVLink.h>
# include <AP_NavEKF/AP_Nav_Common.h>
# include <AP_Airspeed/AP_Airspeed.h>
# include <AP_Compass/AP_Compass.h>
2019-07-02 22:48:50 -03:00
# include <AP_Logger/LogStructure.h>
2016-07-14 02:08:43 -03:00
class NavEKF3_core ;
class AP_AHRS ;
2017-08-30 04:41:41 -03:00
class NavEKF3 {
2016-07-14 02:08:43 -03:00
friend class NavEKF3_core ;
2017-08-30 04:41:41 -03:00
public :
2019-12-10 05:33:38 -04:00
NavEKF3 ( ) ;
2017-08-30 04:41:41 -03:00
/* Do not allow copies */
NavEKF3 ( const NavEKF3 & other ) = delete ;
NavEKF3 & operator = ( const NavEKF3 & ) = delete ;
static const struct AP_Param : : GroupInfo var_info [ ] ;
2016-07-14 02:08:43 -03:00
// allow logging to determine the number of active cores
uint8_t activeCores ( void ) const {
return num_cores ;
}
// Initialise the filter
bool InitialiseFilter ( void ) ;
// Update Filter States - this should be called whenever new IMU data is available
void UpdateFilter ( void ) ;
// check if we should write log messages
void check_log_write ( void ) ;
// Check basic filter health metrics and return a consolidated health status
bool healthy ( void ) const ;
2019-03-23 15:21:02 -03:00
// Check that all cores are started and healthy
bool all_cores_healthy ( void ) const ;
2016-07-14 02:08:43 -03:00
// returns the index of the primary core
// return -1 if no primary core selected
int8_t getPrimaryCoreIndex ( void ) const ;
// returns the index of the IMU of the primary core
// return -1 if no primary core selected
int8_t getPrimaryCoreIMUIndex ( void ) const ;
// Write the last calculated NE position relative to the reference point (m) for the specified instance.
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2016-07-14 02:08:43 -03:00
// If a calculated solution is not available, use the best available data and return false
// If false returned, do not use for flight control
2018-04-06 10:14:16 -03:00
bool getPosNE ( int8_t instance , Vector2f & posNE ) const ;
2016-07-14 02:08:43 -03:00
// Write the last calculated D position relative to the reference point (m) for the specified instance.
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2016-07-14 02:08:43 -03:00
// If a calculated solution is not available, use the best available data and return false
// If false returned, do not use for flight control
2018-04-06 10:14:16 -03:00
bool getPosD ( int8_t instance , float & posD ) const ;
2016-07-14 02:08:43 -03:00
// return NED velocity in m/s for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getVelNED ( int8_t instance , Vector3f & vel ) const ;
2016-07-14 02:08:43 -03:00
2017-05-17 19:22:51 -03:00
// Return the rate of change of vertical position in the down direction (dPosD/dt) in m/s for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2016-07-14 02:08:43 -03:00
// This can be different to the z component of the EKF velocity state because it will fluctuate with height errors and corrections in the EKF
// but will always be kinematically consistent with the z component of the EKF position state
2018-04-06 10:14:16 -03:00
float getPosDownDerivative ( int8_t instance ) const ;
2016-07-14 02:08:43 -03:00
// This returns the specific forces in the NED frame
void getAccelNED ( Vector3f & accelNED ) const ;
// return body axis gyro bias estimates in rad/sec for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getGyroBias ( int8_t instance , Vector3f & gyroBias ) const ;
2016-07-14 02:08:43 -03:00
// return accelerometer bias estimate in m/s/s
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getAccelBias ( int8_t instance , Vector3f & accelBias ) const ;
2016-07-14 02:08:43 -03:00
// return tilt error convergence metric for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getTiltError ( int8_t instance , float & ang ) const ;
2016-07-14 02:08:43 -03:00
// reset body axis gyro bias estimates
void resetGyroBias ( void ) ;
// Resets the baro so that it reads zero at the current height
// Resets the EKF height to zero
2019-02-22 19:35:24 -04:00
// Adjusts the EKF origin height so that the EKF height + origin height is the same as before
2016-07-14 02:08:43 -03:00
// Returns true if the height datum reset has been performed
// If using a range finder for height no reset is performed and it returns false
bool resetHeightDatum ( void ) ;
// Commands the EKF to not use GPS.
2016-12-13 01:48:15 -04:00
// This command must be sent prior to vehicle arming and EKF commencement of GPS usage
2016-07-14 02:08:43 -03:00
// Returns 0 if command rejected
2016-12-13 01:48:15 -04:00
// Returns 1 if command accepted
2016-07-14 02:08:43 -03:00
uint8_t setInhibitGPS ( void ) ;
2017-07-24 22:41:51 -03:00
// Set the argument to true to prevent the EKF using the GPS vertical velocity
// This can be used for situations where GPS velocity errors are causing problems with height accuracy
2017-10-22 00:34:18 -03:00
void setInhibitGpsVertVelUse ( const bool varIn ) { inhibitGpsVertVelUse = varIn ; } ;
2017-07-24 22:41:51 -03:00
2016-07-14 02:08:43 -03:00
// return the horizontal speed limit in m/s set by optical flow sensor limits
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
void getEkfControlLimits ( float & ekfGndSpdLimit , float & ekfNavVelGainScaler ) const ;
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getWind ( int8_t instance , Vector3f & wind ) const ;
2016-07-14 02:08:43 -03:00
// return earth magnetic field estimates in measurement units / 1000 for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getMagNED ( int8_t instance , Vector3f & magNED ) const ;
2016-07-14 02:08:43 -03:00
// return body magnetic field estimates in measurement units / 1000 for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getMagXYZ ( int8_t instance , Vector3f & magXYZ ) const ;
2016-07-14 02:08:43 -03:00
// return the magnetometer in use for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
uint8_t getActiveMag ( int8_t instance ) const ;
2016-07-14 02:08:43 -03:00
// Return estimated magnetometer offsets
// Return true if magnetometer offsets are valid
bool getMagOffsets ( uint8_t mag_idx , Vector3f & magOffsets ) const ;
// Return the last calculated latitude, longitude and height in WGS-84
// If a calculated location isn't available, return a raw GPS measurement
// The status will return true if a calculation or raw measurement is available
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
bool getLLH ( struct Location & loc ) const ;
2017-05-29 22:37:46 -03:00
// Return the latitude and longitude and height used to set the NED origin for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2016-07-14 02:08:43 -03:00
// All NED positions calculated by the filter are relative to this location
// Returns false if the origin has not been set
2017-05-29 22:37:46 -03:00
bool getOriginLLH ( int8_t instance , struct Location & loc ) const ;
2016-07-14 02:08:43 -03:00
// set the latitude and longitude and height used to set the NED origin
2017-05-01 07:15:42 -03:00
// All NED positions calculated by the filter will be relative to this location
2016-07-14 02:08:43 -03:00
// The origin cannot be set if the filter is in a flight mode (eg vehicle armed)
// Returns false if the filter has rejected the attempt to set the origin
2017-04-19 03:29:17 -03:00
bool setOriginLLH ( const Location & loc ) ;
2016-07-14 02:08:43 -03:00
// return estimated height above ground level
// return false if ground height is not being estimated.
bool getHAGL ( float & HAGL ) const ;
// return the Euler roll, pitch and yaw angle in radians for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getEulerAngles ( int8_t instance , Vector3f & eulers ) const ;
2016-07-14 02:08:43 -03:00
// return the transformation matrix from XYZ (body) to NED axes
void getRotationBodyToNED ( Matrix3f & mat ) const ;
// return the quaternions defining the rotation from NED to XYZ (body) axes
2019-03-20 14:46:23 -03:00
void getQuaternionBodyToNED ( int8_t instance , Quaternion & quat ) const ;
// return the quaternions defining the rotation from NED to XYZ (autopilot) axes
2017-04-15 07:36:39 -03:00
void getQuaternion ( int8_t instance , Quaternion & quat ) const ;
2016-07-14 02:08:43 -03:00
// return the innovations for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getInnovations ( int8_t index , Vector3f & velInnov , Vector3f & posInnov , Vector3f & magInnov , float & tasInnov , float & yawInnov ) const ;
2016-07-14 02:08:43 -03:00
// publish output observer angular, velocity and position tracking error
void getOutputTrackingError ( int8_t instance , Vector3f & error ) const ;
// return the innovation consistency test ratios for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getVariances ( int8_t instance , float & velVar , float & posVar , float & hgtVar , Vector3f & magVar , float & tasVar , Vector2f & offset ) const ;
2016-07-14 02:08:43 -03:00
2017-05-20 22:25:06 -03:00
// return the diagonals from the covariance matrix for the specified instance
2018-04-06 10:14:16 -03:00
void getStateVariances ( int8_t instance , float stateVar [ 24 ] ) const ;
2017-05-20 22:25:06 -03:00
2016-07-14 02:08:43 -03:00
// should we use the compass? This is public so it can be used for
// reporting via ahrs.use_compass()
bool use_compass ( void ) const ;
// write the raw optical flow measurements
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
// posOffset is the XYZ flow sensor position in the body frame in m
2018-09-02 08:25:38 -03:00
void writeOptFlowMeas ( const uint8_t rawFlowQuality , const Vector2f & rawFlowRates , const Vector2f & rawGyroRates , const uint32_t msecFlowMeas , const Vector3f & posOffset ) ;
2016-07-14 02:08:43 -03:00
2017-03-16 02:59:19 -03:00
/*
* Write body frame linear and angular displacement measurements from a visual odometry sensor
*
* quality is a normalised confidence value from 0 to 100
* delPos is the XYZ change in linear position measured in body frame and relative to the inertial reference at timeStamp_ms ( m )
* delAng is the XYZ angular rotation measured in body frame and relative to the inertial reference at timeStamp_ms ( rad )
* delTime is the time interval for the measurement of delPos and delAng ( sec )
* timeStamp_ms is the timestamp of the last image used to calculate delPos and delAng ( msec )
* posOffset is the XYZ body frame position of the camera focal point ( m )
*/
void writeBodyFrameOdom ( float quality , const Vector3f & delPos , const Vector3f & delAng , float delTime , uint32_t timeStamp_ms , const Vector3f & posOffset ) ;
2017-07-27 02:01:48 -03:00
/*
* Write odometry data from a wheel encoder . The axis of rotation is assumed to be parallel to the vehicle body axis
*
* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle ( rad )
* delTime is the time interval for the measurement of delAng ( sec )
* timeStamp_ms is the time when the rotation was last measured ( msec )
* posOffset is the XYZ body frame position of the wheel hub ( m )
* radius is the effective rolling radius of the wheel ( m )
2019-10-17 08:02:18 -03:00
* this should not be called at more than the EKF ' s update rate ( 50 hz or 100 hz )
2017-07-27 02:01:48 -03:00
*/
void writeWheelOdom ( float delAng , float delTime , uint32_t timeStamp_ms , const Vector3f & posOffset , float radius ) ;
2017-03-16 02:59:19 -03:00
/*
* Return data for debugging body frame odometry fusion :
*
* velInnov are the XYZ body frame velocity innovations ( m / s )
* velInnovVar are the XYZ body frame velocity innovation variances ( m / s ) * * 2
*
* Return the system time stamp of the last update ( msec )
*/
2018-04-06 10:14:16 -03:00
uint32_t getBodyFrameOdomDebug ( int8_t instance , Vector3f & velInnov , Vector3f & velInnovVar ) const ;
2017-03-16 02:59:19 -03:00
2016-07-14 02:08:43 -03:00
// return data for debugging optical flow fusion for the specified instance
2019-02-22 19:35:24 -04:00
// An out of range instance (eg -1) returns data for the primary instance
2018-04-06 10:14:16 -03:00
void getFlowDebug ( int8_t instance , float & varFlow , float & gndOffset , float & flowInnovX , float & flowInnovY , float & auxInnov , float & HAGL , float & rngInnov , float & range , float & gndOffsetErr ) const ;
2016-07-14 02:08:43 -03:00
/*
2016-12-17 06:00:33 -04:00
Returns the following data for debugging range beacon fusion
2016-07-14 02:08:43 -03:00
ID : beacon identifier
rng : measured range to beacon ( m )
innov : range innovation ( m )
innovVar : innovation variance ( m ^ 2 )
testRatio : innovation consistency test ratio
beaconPosNED : beacon NED position ( m )
2016-12-17 06:00:33 -04:00
offsetHigh : high hypothesis for range beacons system vertical offset ( m )
offsetLow : low hypothesis for range beacons system vertical offset ( m )
posNED : North , East , Down position estimate of receiver from 3 - state filter
2016-07-14 02:08:43 -03:00
returns true if data could be found , false if it could not
*/
2016-12-17 06:00:33 -04:00
bool getRangeBeaconDebug ( int8_t instance , uint8_t & ID , float & rng , float & innov , float & innovVar , float & testRatio , Vector3f & beaconPosNED ,
2018-04-06 10:14:16 -03:00
float & offsetHigh , float & offsetLow , Vector3f & posNED ) const ;
2016-07-14 02:08:43 -03:00
2017-05-28 08:25:07 -03:00
/*
* Writes the measurement from a yaw angle sensor
*
* yawAngle : Yaw angle of the vehicle relative to true north in radians where a positive angle is
* produced by a RH rotation about the Z body axis . The Yaw rotation is the first rotation in a
* 321 ( ZYX ) or a 312 ( ZXY ) rotation sequence as specified by the ' type ' argument .
* yawAngleErr is the 1 SD accuracy of the yaw angle measurement in radians .
* timeStamp_ms : System time in msec when the yaw measurement was taken . This time stamp must include
* all measurement lag and transmission delays .
* type : An integer specifying Euler rotation order used to define the yaw angle .
* type = 1 specifies a 312 ( ZXY ) rotation order , type = 2 specifies a 321 ( ZYX ) rotation order .
*/
void writeEulerYawAngle ( float yawAngle , float yawAngleErr , uint32_t timeStamp_ms , uint8_t type ) ;
2020-04-14 21:56:28 -03:00
/*
* Write position and quaternion data from an external navigation system
*
* pos : position in the RH navigation frame . Frame is assumed to be NED if frameIsNED is true . ( m )
* quat : quaternion desribing the the rotation from navigation frame to body frame
* posErr : 1 - sigma spherical position error ( m )
* angErr : 1 - sigma spherical angle error ( rad )
* timeStamp_ms : system time the measurement was taken , not the time it was received ( mSec )
* resetTime_ms : system time of the last position reset request ( mSec )
*
*/
void writeExtNavData ( const Vector3f & pos , const Quaternion & quat , float posErr , float angErr , uint32_t timeStamp_ms , uint32_t resetTime_ms ) ;
2016-07-14 02:08:43 -03:00
// called by vehicle code to specify that a takeoff is happening
// causes the EKF to compensate for expected barometer errors due to ground effect
void setTakeoffExpected ( bool val ) ;
// called by vehicle code to specify that a touchdown is expected to happen
// causes the EKF to compensate for expected barometer errors due to ground effect
void setTouchdownExpected ( bool val ) ;
// Set to true if the terrain underneath is stable enough to be used as a height reference
// in combination with a range finder. Set to false if the terrain underneath the vehicle
// cannot be used as a height reference
void setTerrainHgtStable ( bool val ) ;
/*
return the filter fault status as a bitmasked integer for the specified instance
2019-02-22 19:35:24 -04:00
An out of range instance ( eg - 1 ) returns data for the primary instance
2016-07-14 02:08:43 -03:00
0 = quaternions are NaN
1 = velocities are NaN
2 = badly conditioned X magnetometer fusion
3 = badly conditioned Y magnetometer fusion
5 = badly conditioned Z magnetometer fusion
6 = badly conditioned airspeed fusion
7 = badly conditioned synthetic sideslip fusion
7 = filter is not initialised
*/
2018-04-06 10:14:16 -03:00
void getFilterFaults ( int8_t instance , uint16_t & faults ) const ;
2016-07-14 02:08:43 -03:00
/*
return filter timeout status as a bitmasked integer for the specified instance
2019-02-22 19:35:24 -04:00
An out of range instance ( eg - 1 ) returns data for the primary instance
2016-07-14 02:08:43 -03:00
0 = position measurement timeout
1 = velocity measurement timeout
2 = height measurement timeout
3 = magnetometer measurement timeout
5 = unassigned
6 = unassigned
7 = unassigned
7 = unassigned
*/
2018-04-06 10:14:16 -03:00
void getFilterTimeouts ( int8_t instance , uint8_t & timeouts ) const ;
2016-07-14 02:08:43 -03:00
/*
return filter gps quality check status for the specified instance
2019-02-22 19:35:24 -04:00
An out of range instance ( eg - 1 ) returns data for the primary instance
2016-07-14 02:08:43 -03:00
*/
2018-04-06 10:14:16 -03:00
void getFilterGpsStatus ( int8_t instance , nav_gps_status & faults ) const ;
2016-07-14 02:08:43 -03:00
/*
return filter status flags for the specified instance
2019-02-22 19:35:24 -04:00
An out of range instance ( eg - 1 ) returns data for the primary instance
2016-07-14 02:08:43 -03:00
*/
2018-04-06 10:14:16 -03:00
void getFilterStatus ( int8_t instance , nav_filter_status & status ) const ;
2016-07-14 02:08:43 -03:00
// send an EKF_STATUS_REPORT message to GCS
2019-12-10 03:04:21 -04:00
void send_status_report ( mavlink_channel_t chan ) const ;
2016-07-14 02:08:43 -03:00
// provides the height limit to be observed by the control loops
// returns false if no height limiting is required
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
bool getHeightControlLimit ( float & height ) const ;
// return the amount of yaw angle change (in radians) due to the last yaw angle reset or core selection switch
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
uint32_t getLastYawResetAngle ( float & yawAngDelta ) ;
// return the amount of NE position change due to the last position reset in metres
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t getLastPosNorthEastReset ( Vector2f & posDelta ) ;
// return the amount of NE velocity change due to the last velocity reset in metres/sec
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t getLastVelNorthEastReset ( Vector2f & vel ) const ;
// return the amount of vertical position change due to the last reset in metres
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t getLastPosDownReset ( float & posDelta ) ;
// report any reason for why the backend is refusing to initialise
const char * prearm_failure_reason ( void ) const ;
2017-01-31 13:00:06 -04:00
// set and save the _baroAltNoise parameter
void set_baro_alt_noise ( float noise ) { _baroAltNoise . set_and_save ( noise ) ; } ;
2016-07-14 02:08:43 -03:00
// allow the enable flag to be set by Replay
2020-04-18 19:35:19 -03:00
void set_enable ( bool enable ) { _enable . set_enable ( enable ) ; }
2016-07-14 02:08:43 -03:00
// are we doing sensor logging inside the EKF?
bool have_ekf_logging ( void ) const { return logging . enabled & & _logging_mask ! = 0 ; }
2017-04-27 22:33:41 -03:00
// get timing statistics structure
2018-04-06 10:14:16 -03:00
void getTimingStatistics ( int8_t instance , struct ekf_timing & timing ) const ;
2017-08-30 04:41:41 -03:00
2019-06-07 20:25:23 -03:00
/*
check if switching lanes will reduce the normalised
innovations . This is called when the vehicle code is about to
trigger an EKF failsafe , and it would like to avoid that by
using a different EKF lane
*/
void checkLaneSwitch ( void ) ;
2019-07-02 20:52:45 -03:00
2020-03-10 03:48:08 -03:00
/*
Request a reset of the EKF yaw . This is called when the vehicle code is about to
trigger an EKF failsafe , and it would like to avoid that .
*/
void requestYawReset ( void ) ;
2019-07-02 20:52:45 -03:00
// write EKF information to on-board logs
void Log_Write ( ) ;
2020-04-04 20:53:49 -03:00
// are we using an external yaw source? This is needed by AHRS attitudes_consistent check
bool using_external_yaw ( void ) const ;
2020-03-10 03:48:08 -03:00
// Writes the default equivalent airspeed in m/s to be used in forward flight if a measured airspeed is required and not available.
void writeDefaultAirSpeed ( float airspeed ) ;
// log debug data for yaw estimator
// return false if data not available
2020-04-23 01:12:56 -03:00
bool getDataEKFGSF ( int8_t instance , float & yaw_composite , float & yaw_composite_variance , float yaw [ N_MODELS_EKFGSF ] , float innov_VN [ N_MODELS_EKFGSF ] , float innov_VE [ N_MODELS_EKFGSF ] , float weight [ N_MODELS_EKFGSF ] ) const ;
2020-03-10 03:48:08 -03:00
2016-07-14 02:08:43 -03:00
private :
uint8_t num_cores ; // number of allocated cores
uint8_t primary ; // current primary core
NavEKF3_core * core = nullptr ;
const AP_AHRS * _ahrs ;
2017-04-28 21:48:49 -03:00
uint32_t _frameTimeUsec ; // time per IMU frame
uint8_t _framesPerPrediction ; // expected number of IMU frames per prediction
2016-07-14 02:08:43 -03:00
// EKF Mavlink Tuneable Parameters
AP_Int8 _enable ; // zero to disable EKF3
AP_Float _gpsHorizVelNoise ; // GPS horizontal velocity measurement noise : m/s
AP_Float _gpsVertVelNoise ; // GPS vertical velocity measurement noise : m/s
AP_Float _gpsHorizPosNoise ; // GPS horizontal position measurement noise m
AP_Float _baroAltNoise ; // Baro height measurement noise : m
AP_Float _magNoise ; // magnetometer measurement noise : gauss
AP_Float _easNoise ; // equivalent airspeed measurement noise : m/s
AP_Float _windVelProcessNoise ; // wind velocity state process noise : m/s^2
AP_Float _wndVarHgtRateScale ; // scale factor applied to wind process noise due to height rate
AP_Float _magEarthProcessNoise ; // Earth magnetic field process noise : gauss/sec
AP_Float _magBodyProcessNoise ; // Body magnetic field process noise : gauss/sec
AP_Float _gyrNoise ; // gyro process noise : rad/s
AP_Float _accNoise ; // accelerometer process noise : m/s^2
AP_Float _gyroBiasProcessNoise ; // gyro bias state process noise : rad/s
AP_Float _accelBiasProcessNoise ; // accel bias state process noise : m/s^2
AP_Int16 _hgtDelay_ms ; // effective average delay of Height measurements relative to inertial measurements (msec)
2020-04-15 02:32:52 -03:00
AP_Int8 _fusionModeGPS ; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity, 3 = do not use GPS
2016-07-14 02:08:43 -03:00
AP_Int16 _gpsVelInnovGate ; // Percentage number of standard deviations applied to GPS velocity innovation consistency check
AP_Int16 _gpsPosInnovGate ; // Percentage number of standard deviations applied to GPS position innovation consistency check
AP_Int16 _hgtInnovGate ; // Percentage number of standard deviations applied to height innovation consistency check
AP_Int16 _magInnovGate ; // Percentage number of standard deviations applied to magnetometer innovation consistency check
AP_Int16 _tasInnovGate ; // Percentage number of standard deviations applied to true airspeed innovation consistency check
AP_Int8 _magCal ; // Sets activation condition for in-flight magnetometer calibration
AP_Int8 _gpsGlitchRadiusMax ; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m
AP_Float _flowNoise ; // optical flow rate measurement noise
AP_Int16 _flowInnovGate ; // Percentage number of standard deviations applied to optical flow innovation consistency check
AP_Int8 _flowDelay_ms ; // effective average delay of optical flow measurements rel to IMU (msec)
AP_Int16 _rngInnovGate ; // Percentage number of standard deviations applied to range finder innovation consistency check
AP_Float _maxFlowRate ; // Maximum flow rate magnitude that will be accepted by the filter
2020-04-14 21:56:28 -03:00
AP_Int8 _altSource ; // Primary alt source. 0 = Baro, 1 = range finder, 2 = GPS, 3 = range beacons, 4 = external nav
2016-07-14 02:08:43 -03:00
AP_Float _rngNoise ; // Range finder noise : m
AP_Int8 _gpsCheck ; // Bitmask controlling which preflight GPS checks are bypassed
AP_Int8 _imuMask ; // Bitmask of IMUs to instantiate EKF3 for
AP_Int16 _gpsCheckScaler ; // Percentage increase to be applied to GPS pre-flight accuracy and drift thresholds
AP_Float _noaidHorizNoise ; // horizontal position measurement noise assumed when synthesised zero position measurements are used to constrain attitude drift : m
AP_Int8 _logging_mask ; // mask of IMUs to log
AP_Float _yawNoise ; // magnetic yaw measurement noise : rad
AP_Int16 _yawInnovGate ; // Percentage number of standard deviations applied to magnetic yaw innovation consistency check
AP_Int8 _tauVelPosOutput ; // Time constant of output complementary filter : csec (centi-seconds)
2016-12-12 18:08:39 -04:00
AP_Int8 _useRngSwHgt ; // Maximum valid range of the range finder as a percentage of the maximum range specified by the sensor driver
2016-07-14 02:08:43 -03:00
AP_Float _terrGradMax ; // Maximum terrain gradient below the vehicle
AP_Float _rngBcnNoise ; // Range beacon measurement noise (m)
AP_Int16 _rngBcnInnovGate ; // Percentage number of standard deviations applied to range beacon innovation consistency check
AP_Int8 _rngBcnDelay_ms ; // effective average delay of range beacon measurements rel to IMU (msec)
2016-12-12 18:08:39 -04:00
AP_Float _useRngSwSpd ; // Maximum horizontal ground speed to use range finder as the primary height source (m/s)
2016-12-18 16:58:27 -04:00
AP_Float _accBiasLim ; // Accelerometer bias limit (m/s/s)
2019-02-22 19:35:24 -04:00
AP_Int8 _magMask ; // Bitmask forcing specific EKF core instances to use simple heading magnetometer fusion.
2017-05-09 03:23:58 -03:00
AP_Int8 _originHgtMode ; // Bitmask controlling post alignment correction and reporting of the EKF origin height.
2017-07-27 01:51:17 -03:00
AP_Float _visOdmVelErrMax ; // Observation 1-STD velocity error assumed for visual odometry sensor at lowest reported quality (m/s)
AP_Float _visOdmVelErrMin ; // Observation 1-STD velocity error assumed for visual odometry sensor at highest reported quality (m/s)
2017-07-27 02:01:48 -03:00
AP_Float _wencOdmVelErr ; // Observation 1-STD velocity error assumed for wheel odometry sensor (m/s)
2019-03-14 15:49:33 -03:00
AP_Int8 _flowUse ; // Controls if the optical flow data is fused into the main navigation estimator and/or the terrain estimator.
2019-10-12 19:26:47 -03:00
AP_Float _hrt_filt_freq ; // frequency of output observer height rate complementary filter in Hz
2019-09-22 09:28:19 -03:00
AP_Int16 _mag_ef_limit ; // limit on difference between WMM tables and learned earth field.
2020-03-10 03:48:08 -03:00
AP_Int8 _gsfRunMask ; // mask controlling which EKF3 instances run a separate EKF-GSF yaw estimator
AP_Int8 _gsfUseMask ; // mask controlling which EKF3 instances will use EKF-GSF yaw estimator data to assit with yaw resets
AP_Int16 _gsfResetDelay ; // number of mSec from loss of navigation to requesting a reset using EKF-GSF yaw estimator data
AP_Int8 _gsfResetMaxCount ; // maximum number of times the EKF3 is allowed to reset it's yaw to the EKF-GSF estimate
2019-03-14 15:49:33 -03:00
// Possible values for _flowUse
# define FLOW_USE_NONE 0
# define FLOW_USE_NAV 1
# define FLOW_USE_TERRAIN 2
2016-07-14 02:08:43 -03:00
// Tuning parameters
2018-04-06 09:39:24 -03:00
const float gpsNEVelVarAccScale = 0.05f ; // Scale factor applied to NE velocity measurement variance due to manoeuvre acceleration
const float gpsDVelVarAccScale = 0.07f ; // Scale factor applied to vertical velocity measurement variance due to manoeuvre acceleration
const float gpsPosVarAccScale = 0.05f ; // Scale factor applied to horizontal position measurement variance due to manoeuvre acceleration
const uint16_t magDelay_ms = 60 ; // Magnetometer measurement delay (msec)
const uint16_t tasDelay_ms = 100 ; // Airspeed measurement delay (msec)
const uint16_t tiltDriftTimeMax_ms = 15000 ; // Maximum number of ms allowed without any form of tilt aiding (GPS, flow, TAS, etc)
const uint16_t posRetryTimeUseVel_ms = 10000 ; // Position aiding retry time with velocity measurements (msec)
const uint16_t posRetryTimeNoVel_ms = 7000 ; // Position aiding retry time without velocity measurements (msec)
const uint16_t hgtRetryTimeMode0_ms = 10000 ; // Height retry time with vertical velocity measurement (msec)
const uint16_t hgtRetryTimeMode12_ms = 5000 ; // Height retry time without vertical velocity measurement (msec)
const uint16_t tasRetryTime_ms = 5000 ; // True airspeed timeout and retry interval (msec)
const uint32_t magFailTimeLimit_ms = 10000 ; // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec)
const float magVarRateScale = 0.005f ; // scale factor applied to magnetometer variance due to angular rate
const float gyroBiasNoiseScaler = 2.0f ; // scale factor applied to gyro bias state process noise when on ground
const uint16_t hgtAvg_ms = 100 ; // average number of msec between height measurements
const uint16_t betaAvg_ms = 100 ; // average number of msec between synthetic sideslip measurements
const float covTimeStepMax = 0.1f ; // maximum time (sec) between covariance prediction updates
const float covDelAngMax = 0.05f ; // maximum delta angle between covariance prediction updates
const float DCM33FlowMin = 0.71f ; // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high.
const float fScaleFactorPnoise = 1e-10 f ; // Process noise added to focal length scale factor state variance at each time step
const uint8_t flowTimeDeltaAvg_ms = 100 ; // average interval between optical flow measurements (msec)
const uint32_t flowIntervalMax_ms = 100 ; // maximum allowable time between flow fusion events
const uint16_t gndEffectTimeout_ms = 1000 ; // time in msec that ground effect mode is active after being activated
const float gndEffectBaroScaler = 4.0f ; // scaler applied to the barometer observation variance when ground effect mode is active
const uint8_t gndGradientSigma = 50 ; // RMS terrain gradient percentage assumed by the terrain height estimation
const uint16_t fusionTimeStep_ms = 10 ; // The minimum time interval between covariance predictions and measurement fusions in msec
const uint8_t sensorIntervalMin_ms = 50 ; // The minimum allowed time between measurements from any non-IMU sensor (msec)
2019-04-15 23:36:54 -03:00
const uint8_t flowIntervalMin_ms = 20 ; // The minimum allowed time between measurements from optical flow sensors (msec)
2016-07-14 02:08:43 -03:00
struct {
bool enabled : 1 ;
bool log_compass : 1 ;
bool log_baro : 1 ;
bool log_imu : 1 ;
} logging ;
// time at start of current filter update
uint64_t imuSampleTime_us ;
2019-06-07 20:25:23 -03:00
// time of last lane switch
uint32_t lastLaneSwitch_ms ;
2019-09-20 21:57:40 -03:00
2016-07-14 02:08:43 -03:00
struct {
uint32_t last_function_call ; // last time getLastYawYawResetAngle was called
bool core_changed ; // true when a core change happened and hasn't been consumed, false otherwise
uint32_t last_primary_change ; // last time a primary has changed
float core_delta ; // the amount of yaw change between cores when a change happened
} yaw_reset_data ;
struct {
uint32_t last_function_call ; // last time getLastPosNorthEastReset was called
bool core_changed ; // true when a core change happened and hasn't been consumed, false otherwise
uint32_t last_primary_change ; // last time a primary has changed
Vector2f core_delta ; // the amount of NE position change between cores when a change happened
} pos_reset_data ;
struct {
uint32_t last_function_call ; // last time getLastPosDownReset was called
bool core_changed ; // true when a core change happened and hasn't been consumed, false otherwise
uint32_t last_primary_change ; // last time a primary has changed
float core_delta ; // the amount of D position change between cores when a change happened
} pos_down_reset_data ;
2016-12-12 19:04:50 -04:00
bool runCoreSelection ; // true when the primary core has stabilised and the core selection logic can be started
2016-12-18 20:43:11 -04:00
bool coreSetupRequired [ 7 ] ; // true when this core index needs to be setup
uint8_t coreImuIndex [ 7 ] ; // IMU index used by this core
2017-07-24 22:41:51 -03:00
bool inhibitGpsVertVelUse ; // true when GPS vertical velocity use is prohibited
2019-07-27 04:00:10 -03:00
// origin set by one of the cores
struct Location common_EKF_origin ;
bool common_origin_valid ;
2016-07-14 02:08:43 -03:00
// update the yaw reset data to capture changes due to a lane switch
// new_primary - index of the ekf instance that we are about to switch to as the primary
// old_primary - index of the ekf instance that we are currently using as the primary
void updateLaneSwitchYawResetData ( uint8_t new_primary , uint8_t old_primary ) ;
// update the position reset data to capture changes due to a lane switch
// new_primary - index of the ekf instance that we are about to switch to as the primary
// old_primary - index of the ekf instance that we are currently using as the primary
void updateLaneSwitchPosResetData ( uint8_t new_primary , uint8_t old_primary ) ;
// update the position down reset data to capture changes due to a lane switch
// new_primary - index of the ekf instance that we are about to switch to as the primary
// old_primary - index of the ekf instance that we are currently using as the primary
void updateLaneSwitchPosDownResetData ( uint8_t new_primary , uint8_t old_primary ) ;
2019-07-02 22:48:50 -03:00
// logging functions shared by cores:
2019-12-06 03:16:12 -04:00
void Log_Write_XKF1 ( uint8_t core , uint64_t time_us ) const ;
void Log_Write_XKF2 ( uint8_t core , uint64_t time_us ) const ;
void Log_Write_XKF3 ( uint8_t core , uint64_t time_us ) const ;
void Log_Write_XKF4 ( uint8_t core , uint64_t time_us ) const ;
void Log_Write_XKF5 ( uint64_t time_us ) const ;
void Log_Write_Quaternion ( uint8_t core , uint64_t time_us ) const ;
2019-07-02 22:48:50 -03:00
void Log_Write_Beacon ( uint64_t time_us ) const ;
void Log_Write_BodyOdom ( uint64_t time_us ) const ;
void Log_Write_State_Variances ( uint64_t time_us ) const ;
2020-03-10 03:48:08 -03:00
void Log_Write_GSF ( uint8_t core , uint64_t time_us ) const ;
2016-07-14 02:08:43 -03:00
} ;