ardupilot/ArduPlane/system.cpp

789 lines
20 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2015-05-13 03:09:36 -03:00
#include "Plane.h"
/*****************************************************************************
2012-08-21 23:19:51 -03:00
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
2015-05-13 03:09:36 -03:00
int8_t Plane::main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Commands:\n"
2012-08-21 23:19:51 -03:00
" logs log readback/setup mode\n"
" setup setup mode\n"
" test test mode\n"
" reboot reboot to flight mode\n"
2012-08-21 23:19:51 -03:00
"\n"));
return(0);
}
// Command/function table for the top-level menu.
static const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
2015-05-13 03:09:36 -03:00
{"logs", MENU_FUNC(process_logs)},
{"setup", MENU_FUNC(setup_mode)},
{"test", MENU_FUNC(test_mode)},
{"reboot", MENU_FUNC(reboot_board)},
{"help", MENU_FUNC(main_menu_help)},
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
2015-05-13 03:09:36 -03:00
int8_t Plane::reboot_board(uint8_t argc, const Menu::arg *argv)
{
2013-09-03 22:59:16 -03:00
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
2015-05-13 03:09:36 -03:00
void Plane::run_cli(AP_HAL::UARTDriver *port)
{
// disable the failsafe code in the CLI
2012-12-04 18:22:21 -04:00
hal.scheduler->register_timer_failsafe(NULL,1);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(NULL, 5);
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
2015-05-13 03:09:36 -03:00
static void mavlink_delay_cb_static()
{
plane.mavlink_delay_cb();
}
static void failsafe_check_static()
{
plane.failsafe_check();
}
2015-05-15 04:11:45 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
AP_ADC_ADS7844 apm1_adc;
#endif
2015-05-13 03:09:36 -03:00
void Plane::init_ardupilot()
{
// initialise serial port
serial_manager.init_console();
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING
2012-08-21 23:19:51 -03:00
"\n\nFree RAM: %u\n"),
hal.util->available_memory());
//
2012-12-04 18:22:21 -04:00
// Check the EEPROM format version before loading any parameters from EEPROM
2012-08-21 23:19:51 -03:00
//
2012-02-12 04:20:56 -04:00
load_parameters();
if (g.hil_mode == 1) {
// set sensors to HIL mode
ins.set_hil_mode();
compass.set_hil_mode();
barometer.set_hil_mode();
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
// this must be before BoardConfig.init() so if
// BRD_SAFETYENABLE==0 then we don't have safety off yet
setup_failsafe_mixing();
#endif
2014-01-19 21:58:49 -04:00
BoardConfig.init();
// initialise serial ports
serial_manager.init();
2014-01-20 00:36:31 -04:00
// allow servo set on all channels except first 4
ServoRelayEvents.set_channel_mask(0xFFF0);
set_control_channels();
// keep a record of how many resets have happened. This can be
// used to detect in-flight resets
g.num_resets.set_and_save(g.num_resets+1);
// init baro before we start the GCS, so that the CLI baro test works
barometer.init();
// initialise rangefinder
init_rangefinder();
// initialise battery monitoring
battery.init();
2012-08-21 23:19:51 -03:00
// init the GCS
gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);
2013-09-20 20:16:17 -03:00
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
usb_connected = true;
check_usb_mux();
// setup serial port for telem1
gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
#if MAVLINK_COMM_NUM_BUFFERS > 2
// setup serial port for telem2
gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);
#endif
#if MAVLINK_COMM_NUM_BUFFERS > 3
// setup serial port for fourth telemetry port (not used by default)
gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2);
#endif
// setup frsky
#if FRSKY_TELEM_ENABLED == ENABLED
frsky_telemetry.init(serial_manager);
#endif
2012-08-21 23:19:51 -03:00
mavlink_system.sysid = g.sysid_this_mav;
2011-12-21 08:29:22 -04:00
#if LOGGING_ENABLED == ENABLED
2015-05-13 03:09:36 -03:00
log_init();
2011-12-21 08:29:22 -04:00
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
apm1_adc.Init(); // APM ADC library initialization
#endif
2011-11-12 22:47:54 -04:00
// initialise airspeed sensor
airspeed.init();
2012-08-21 23:19:51 -03:00
if (g.compass_enabled==true) {
if (!compass.init() || !compass.read()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
}
2012-08-21 23:19:51 -03:00
}
2015-01-02 20:09:02 -04:00
// make optflow available to libraries
ahrs.set_optflow(&optflow);
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
2015-05-13 03:09:36 -03:00
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
2012-08-10 19:57:44 -03:00
// give AHRS the airspeed sensor
ahrs.set_airspeed(&airspeed);
// GPS Initialization
gps.init(&DataFlash, serial_manager);
2013-12-21 07:27:15 -04:00
2012-08-21 23:19:51 -03:00
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
2012-12-04 18:22:21 -04:00
relay.init();
#if MOUNT == ENABLED
// initialise camera mount
camera_mount.init(serial_manager);
#endif
#if FENCE_TRIGGERED_PIN > 0
2014-06-01 20:28:27 -03:00
hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT);
hal.gpio->write(FENCE_TRIGGERED_PIN, 0);
#endif
/*
2012-08-21 23:19:51 -03:00
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
2015-05-13 03:09:36 -03:00
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
#if CLI_ENABLED == ENABLED
if (g.cli_enabled == 1) {
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
cliSerial->println_P(msg);
if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
gcs[1].get_uart()->println_P(msg);
}
if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
gcs[2].get_uart()->println_P(msg);
}
}
#endif // CLI_ENABLED
startup_ground();
if (should_log(MASK_LOG_CMD))
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
// choose the nav controller
set_nav_controller();
set_mode((FlightMode)g.initial_mode.get());
2012-08-21 23:19:51 -03:00
// set the correct flight mode
// ---------------------------
reset_control_switch();
// initialise sensor
#if OPTFLOW == ENABLED
optflow.init();
#endif
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
2015-05-13 03:09:36 -03:00
void Plane::startup_ground(void)
{
set_mode(INITIALISING);
2012-08-21 23:19:51 -03:00
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START"));
2012-08-21 23:19:51 -03:00
#if (GROUND_START_DELAY > 0)
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay"));
delay(GROUND_START_DELAY * 1000);
#endif
2012-08-21 23:19:51 -03:00
// Makes the servos wiggle
// step 1 = 1 wiggle
// -----------------------
if (!g.skip_gyro_cal) {
demo_servos(1);
}
//INS ground start
2012-08-21 23:19:51 -03:00
//------------------------
//
2015-03-10 20:16:59 -03:00
startup_INS_ground();
2012-08-21 23:19:51 -03:00
// read the radio to set trims
// ---------------------------
if (g.trim_rc_at_start != 0) {
trim_radio();
}
2012-08-21 23:19:51 -03:00
// Save the settings for in-air restart
// ------------------------------------
//save_EEPROM_groundstart();
// initialise mission library
mission.init();
2012-08-21 23:19:51 -03:00
// Makes the servos wiggle - 3 times signals ready to fly
// -----------------------
if (!g.skip_gyro_cal) {
demo_servos(3);
}
// reset last heartbeat time, so we don't trigger failsafe on slow
// startup
failsafe.last_heartbeat_ms = millis();
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
2015-05-06 23:11:52 -03:00
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
ins.set_dataflash(&DataFlash);
2012-08-21 23:19:51 -03:00
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY."));
}
2015-05-13 03:09:36 -03:00
enum FlightMode Plane::get_previous_mode() {
return previous_mode;
}
2015-05-13 03:09:36 -03:00
void Plane::set_mode(enum FlightMode mode)
{
2012-08-21 23:19:51 -03:00
if(control_mode == mode) {
// don't switch modes if we are already in the correct mode.
return;
}
if(g.auto_trim > 0 && control_mode == MANUAL)
trim_control_surfaces();
// perform any cleanup required for prev flight mode
exit_mode(control_mode);
// cancel inverted flight
auto_state.inverted_flight = false;
// don't cross-track when starting a mission
auto_state.next_wp_no_crosstrack = true;
// reset landing check
auto_state.checked_for_autoland = false;
// reset go around command
auto_state.commanded_go_around = false;
// zero locked course
steer_state.locked_course_err = 0;
// set mode
previous_mode = control_mode;
2012-08-21 23:19:51 -03:00
control_mode = mode;
if (previous_mode == AUTOTUNE && control_mode != AUTOTUNE) {
// restore last gains
autotune_restore();
}
// zero initial pitch and highest airspeed on mode change
auto_state.highest_airspeed = 0;
auto_state.initial_pitch_cd = ahrs.pitch_sensor;
// disable taildrag takeoff on mode change
auto_state.fbwa_tdrag_takeoff_mode = false;
2012-08-21 23:19:51 -03:00
switch(control_mode)
{
case INITIALISING:
auto_throttle_mode = true;
break;
2012-08-21 23:19:51 -03:00
case MANUAL:
case STABILIZE:
case TRAINING:
2012-08-21 23:19:51 -03:00
case FLY_BY_WIRE_A:
auto_throttle_mode = false;
break;
case AUTOTUNE:
auto_throttle_mode = false;
autotune_start();
break;
case ACRO:
auto_throttle_mode = false;
acro_state.locked_roll = false;
acro_state.locked_pitch = false;
break;
case CRUISE:
auto_throttle_mode = true;
cruise_state.locked_heading = false;
cruise_state.lock_timer_ms = 0;
set_target_altitude_current();
break;
2012-08-21 23:19:51 -03:00
case FLY_BY_WIRE_B:
auto_throttle_mode = true;
set_target_altitude_current();
2012-08-21 23:19:51 -03:00
break;
case CIRCLE:
// the altitude to circle at is taken from the current altitude
auto_throttle_mode = true;
next_WP_loc.alt = current_loc.alt;
break;
2012-08-21 23:19:51 -03:00
case AUTO:
auto_throttle_mode = true;
next_WP_loc = prev_WP_loc = current_loc;
// start or resume the mission, based on MIS_AUTORESET
mission.start_or_resume();
2012-08-21 23:19:51 -03:00
break;
case RTL:
auto_throttle_mode = true;
prev_WP_loc = current_loc;
2012-08-21 23:19:51 -03:00
do_RTL();
break;
case LOITER:
auto_throttle_mode = true;
2012-08-21 23:19:51 -03:00
do_loiter_at_location();
break;
case GUIDED:
auto_throttle_mode = true;
guided_throttle_passthru = false;
/*
when entering guided mode we set the target as the current
location. This matches the behaviour of the copter code
*/
guided_WP_loc = current_loc;
2012-08-21 23:19:51 -03:00
set_guided_WP();
break;
}
// start with throttle suppressed in auto_throttle modes
throttle_suppressed = auto_throttle_mode;
if (should_log(MASK_LOG_MODE))
DataFlash.Log_Write_Mode(control_mode);
// reset attitude integrators on mode change
2013-08-14 01:57:41 -03:00
rollController.reset_I();
pitchController.reset_I();
yawController.reset_I();
steerController.reset_I();
}
2014-10-01 01:19:20 -03:00
/*
set_mode() wrapper for MAVLink SET_MODE
*/
2015-05-13 03:09:36 -03:00
bool Plane::mavlink_set_mode(uint8_t mode)
2014-10-01 01:19:20 -03:00
{
switch (mode) {
case MANUAL:
case CIRCLE:
case STABILIZE:
case TRAINING:
case ACRO:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case FLY_BY_WIRE_B:
case CRUISE:
case GUIDED:
2014-10-01 01:19:20 -03:00
case AUTO:
case RTL:
case LOITER:
set_mode((enum FlightMode)mode);
return true;
}
return false;
}
// exit_mode - perform any cleanup required when leaving a flight mode
2015-05-13 03:09:36 -03:00
void Plane::exit_mode(enum FlightMode mode)
{
// stop mission when we leave auto
if (mode == AUTO) {
if (mission.state() == AP_Mission::MISSION_RUNNING) {
mission.stop();
}
}
}
2015-05-13 03:09:36 -03:00
void Plane::check_long_failsafe()
{
uint32_t tnow = millis();
2012-08-21 23:19:51 -03:00
// only act on changes
// -------------------
if(failsafe.state != FAILSAFE_LONG && failsafe.state != FAILSAFE_GCS) {
if (failsafe.state == FAILSAFE_SHORT &&
(tnow - failsafe.ch3_timer_ms) > g.long_fs_timeout*1000) {
2012-08-21 23:19:51 -03:00
failsafe_long_on_event(FAILSAFE_LONG);
} else if (g.gcs_heartbeat_fs_enabled != GCS_FAILSAFE_OFF &&
failsafe.last_heartbeat_ms != 0 &&
(tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) {
failsafe_long_on_event(FAILSAFE_GCS);
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI &&
2014-03-18 18:34:35 -03:00
gcs[0].last_radio_status_remrssi_ms != 0 &&
(tnow - gcs[0].last_radio_status_remrssi_ms) > g.long_fs_timeout*1000) {
2012-08-21 23:19:51 -03:00
failsafe_long_on_event(FAILSAFE_GCS);
}
} else {
// We do not change state but allow for user to change mode
if (failsafe.state == FAILSAFE_GCS &&
(tnow - failsafe.last_heartbeat_ms) < g.short_fs_timeout*1000) {
failsafe.state = FAILSAFE_NONE;
} else if (failsafe.state == FAILSAFE_LONG &&
!failsafe.ch3_failsafe) {
failsafe.state = FAILSAFE_NONE;
}
2012-08-21 23:19:51 -03:00
}
}
2015-05-13 03:09:36 -03:00
void Plane::check_short_failsafe()
{
2012-08-21 23:19:51 -03:00
// only act on changes
// -------------------
if(failsafe.state == FAILSAFE_NONE) {
if(failsafe.ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde
2012-08-21 23:19:51 -03:00
failsafe_short_on_event(FAILSAFE_SHORT);
}
}
if(failsafe.state == FAILSAFE_SHORT) {
if(!failsafe.ch3_failsafe) {
2012-08-21 23:19:51 -03:00
failsafe_short_off_event();
}
}
}
2015-05-13 03:09:36 -03:00
void Plane::startup_INS_ground(void)
{
if (g.hil_mode == 1) {
while (barometer.get_last_update() == 0) {
// the barometer begins updating when we get the first
// HIL_STATE message
gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message"));
hal.scheduler->delay(1000);
}
}
AP_InertialSensor::Start_style style;
2015-03-10 20:16:59 -03:00
if (g.skip_gyro_cal) {
style = AP_InertialSensor::WARM_START;
arming.set_skip_gyro_cal(true);
} else {
style = AP_InertialSensor::COLD_START;
}
if (style == AP_InertialSensor::COLD_START) {
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move plane"));
2015-05-13 03:09:36 -03:00
hal.scheduler->delay(100);
}
2013-01-13 01:04:18 -04:00
ahrs.init();
ahrs.set_fly_forward(true);
2014-04-21 04:12:24 -03:00
ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING);
2013-05-23 22:21:32 -03:00
ahrs.set_wind_estimation(true);
2013-01-13 01:04:18 -04:00
2013-09-19 05:33:42 -03:00
ins.init(style, ins_sample_rate);
ahrs.reset();
2012-08-21 23:19:51 -03:00
// read Baro pressure at ground
//-----------------------------
init_barometer();
if (airspeed.enabled()) {
// initialize airspeed sensor
// --------------------------
2014-11-13 06:12:59 -04:00
zero_airspeed(true);
} else {
gcs_send_text_P(SEVERITY_LOW,PSTR("NO airspeed"));
}
}
2013-08-29 00:13:58 -03:00
// updates the status of the notify objects
2013-08-24 05:58:32 -03:00
// should be called at 50hz
2015-05-13 03:09:36 -03:00
void Plane::update_notify()
{
2013-08-29 00:13:58 -03:00
notify.update();
}
2015-05-13 03:09:36 -03:00
void Plane::resetPerfData(void)
{
2012-08-21 23:19:51 -03:00
mainLoop_count = 0;
G_Dt_max = 0;
G_Dt_min = 0;
perf_mon_timer = millis();
}
2015-05-13 03:09:36 -03:00
void Plane::check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
2013-09-20 20:16:17 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
// the APM2 has a MUX setup where the first serial port switches
// between USB and a TTL serial connection. When on USB we use
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
// at SERIAL1_BAUD.
if (usb_connected) {
2015-04-01 19:13:20 -03:00
serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_Console, 0);
} else {
serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_MAVLink, 0);
}
2013-09-20 20:16:17 -03:00
#endif
}
2015-05-13 03:09:36 -03:00
void Plane::print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode)
{
switch (mode) {
case MANUAL:
port->print_P(PSTR("Manual"));
break;
case CIRCLE:
port->print_P(PSTR("Circle"));
break;
case STABILIZE:
port->print_P(PSTR("Stabilize"));
break;
case TRAINING:
port->print_P(PSTR("Training"));
break;
case ACRO:
port->print_P(PSTR("ACRO"));
break;
case FLY_BY_WIRE_A:
port->print_P(PSTR("FBW_A"));
break;
case AUTOTUNE:
port->print_P(PSTR("AUTOTUNE"));
break;
case FLY_BY_WIRE_B:
port->print_P(PSTR("FBW_B"));
break;
case CRUISE:
port->print_P(PSTR("CRUISE"));
break;
case AUTO:
port->print_P(PSTR("AUTO"));
break;
case RTL:
port->print_P(PSTR("RTL"));
break;
case LOITER:
port->print_P(PSTR("Loiter"));
break;
case GUIDED:
port->print_P(PSTR("Guided"));
break;
default:
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode);
break;
}
}
2012-09-18 00:48:08 -03:00
#if CLI_ENABLED == ENABLED
2015-05-13 03:09:36 -03:00
void Plane::print_comma(void)
2012-09-18 00:48:08 -03:00
{
cliSerial->print_P(PSTR(","));
2012-09-18 00:48:08 -03:00
}
#endif
2012-12-04 18:22:21 -04:00
/*
write to a servo
*/
2015-05-13 03:09:36 -03:00
void Plane::servo_write(uint8_t ch, uint16_t pwm)
{
if (g.hil_mode==1 && !g.hil_servos) {
if (ch < 8) {
RC_Channel::rc_channel(ch)->radio_out = pwm;
}
return;
}
hal.rcout->enable_ch(ch);
hal.rcout->write(ch, pwm);
}
/*
should we log a message type now?
*/
2015-05-13 03:09:36 -03:00
bool Plane::should_log(uint32_t mask)
{
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
return false;
}
2015-01-28 19:30:00 -04:00
bool ret = hal.util->get_soft_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0;
2014-01-13 22:51:49 -04:00
if (ret && !DataFlash.logging_started() && !in_log_download) {
// we have to set in_mavlink_delay to prevent logging while
// writing headers
in_mavlink_delay = true;
#if LOGGING_ENABLED == ENABLED
2014-01-13 22:51:49 -04:00
start_logging();
#endif
in_mavlink_delay = false;
2014-01-13 22:51:49 -04:00
}
return ret;
}
/*
send FrSky telemetry. Should be called at 5Hz by scheduler
*/
#if FRSKY_TELEM_ENABLED == ENABLED
2015-05-13 03:09:36 -03:00
void Plane::frsky_telemetry_send(void)
{
frsky_telemetry.send_frames((uint8_t)control_mode);
}
#endif
/*
return throttle percentage from 0 to 100
*/
2015-05-13 03:09:36 -03:00
uint8_t Plane::throttle_percentage(void)
{
// to get the real throttle we need to use norm_output() which
// returns a number from -1 to 1.
return constrain_int16(50*(channel_throttle->norm_output()+1), 0, 100);
}
/*
update AHRS soft arm state and log as needed
*/
2015-05-13 03:09:36 -03:00
void Plane::change_arm_state(void)
{
Log_Arm_Disarm();
hal.util->set_soft_armed(arming.is_armed() &&
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED);
// log the mode, so the following log is recorded as the correct mode
if (should_log(MASK_LOG_MODE)) {
DataFlash.Log_Write_Mode(control_mode);
}
}
/*
arm motors
*/
2015-05-13 03:09:36 -03:00
bool Plane::arm_motors(AP_Arming::ArmingMethod method)
{
if (!arming.arm(method)) {
return false;
}
//only log if arming was successful
channel_throttle->enable_out();
change_arm_state();
return true;
}
/*
disarm motors
*/
2015-05-13 03:09:36 -03:00
bool Plane::disarm_motors(void)
{
if (!arming.disarm()) {
return false;
}
if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) {
channel_throttle->disable_out();
}
if (control_mode != AUTO) {
// reset the mission on disarm if we are not in auto
mission.reset();
}
// suppress the throttle in auto-throttle modes
throttle_suppressed = auto_throttle_mode;
//only log if disarming was successful
change_arm_state();
return true;
}
/*
having local millis() and micros() reduces code size a bit on AVR
*/
uint32_t Plane::millis(void) const
{
return hal.scheduler->millis();
}
uint32_t Plane::micros(void) const
{
return hal.scheduler->micros();
}