2012-06-19 23:25:19 -03:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2013-08-29 02:34:34 -03:00
/*
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
2012-06-19 23:25:19 -03:00
/*
2012-08-17 03:09:23 -03:00
* APM_Baro . cpp - barometer driver
*
*/
2012-06-19 23:25:19 -03:00
2013-01-10 15:22:37 -04:00
# include <AP_Math.h>
2012-06-19 23:25:19 -03:00
# include <AP_Common.h>
# include <AP_Baro.h>
2012-10-11 14:53:21 -03:00
# include <AP_HAL.h>
extern const AP_HAL : : HAL & hal ;
2012-06-19 23:25:19 -03:00
2012-06-27 02:59:52 -03:00
// table of user settable parameters
const AP_Param : : GroupInfo AP_Baro : : var_info [ ] PROGMEM = {
2012-07-06 02:11:22 -03:00
// NOTE: Index numbers 0 and 1 were for the old integer
// ground temperature and pressure
2012-08-17 03:09:23 -03:00
// @Param: ABS_PRESS
// @DisplayName: Absolute Pressure
2013-06-26 05:32:20 -03:00
// @Description: calibrated ground pressure in Pascals
2014-10-14 00:42:27 -03:00
// @Units: pascals
2012-08-17 03:09:23 -03:00
// @Increment: 1
2014-10-19 16:22:51 -03:00
AP_GROUPINFO ( " ABS_PRESS " , 2 , AP_Baro , sensors [ 0 ] . ground_pressure , 0 ) ,
2012-06-27 02:59:52 -03:00
2013-06-17 23:28:08 -03:00
// @Param: TEMP
2012-08-17 03:09:23 -03:00
// @DisplayName: ground temperature
2013-06-26 05:32:20 -03:00
// @Description: calibrated ground temperature in degrees Celsius
2014-10-14 00:42:27 -03:00
// @Units: degrees celsius
2012-08-17 03:09:23 -03:00
// @Increment: 1
2014-10-19 16:22:51 -03:00
AP_GROUPINFO ( " TEMP " , 3 , AP_Baro , sensors [ 0 ] . ground_temperature , 0 ) ,
2013-06-26 05:32:20 -03:00
2013-07-10 01:38:57 -03:00
// @Param: ALT_OFFSET
// @DisplayName: altitude offset
// @Description: altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.
// @Units: meters
// @Range: -128 127
// @Increment: 1
AP_GROUPINFO ( " ALT_OFFSET " , 4 , AP_Baro , _alt_offset , 0 ) ,
2012-06-27 02:59:52 -03:00
AP_GROUPEND
} ;
2014-10-19 16:22:51 -03:00
/*
AP_Baro constructor
*/
AP_Baro : : AP_Baro ( ) :
2015-01-12 00:56:35 -04:00
_num_drivers ( 0 ) ,
_num_sensors ( 0 ) ,
_primary ( 0 ) ,
2014-10-19 16:22:51 -03:00
_last_altitude_EAS2TAS ( 0.0f ) ,
_EAS2TAS ( 0.0f ) ,
2015-01-12 00:56:35 -04:00
_external_temperature ( 0.0f ) ,
2015-02-09 16:39:48 -04:00
_last_external_temperature_ms ( 0 ) ,
_hil_mode ( false )
2014-10-19 16:22:51 -03:00
{
memset ( sensors , 0 , sizeof ( sensors ) ) ;
AP_Param : : setup_object_defaults ( this , var_info ) ;
}
2012-06-19 23:25:19 -03:00
// calibrate the barometer. This must be called at least once before
// the altitude() or climb_rate() interfaces can be used
2012-10-11 14:53:21 -03:00
void AP_Baro : : calibrate ( )
2012-06-19 23:25:19 -03:00
{
2013-07-10 01:38:57 -03:00
// reset the altitude offset when we calibrate. The altitude
// offset is supposed to be for within a flight
_alt_offset . set_and_save ( 0 ) ;
2015-01-08 21:59:01 -04:00
// start by assuming all sensors are calibrated (for healthy() test)
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
sensors [ i ] . calibrated = true ;
sensors [ i ] . alt_ok = true ;
}
2012-07-06 02:11:22 -03:00
// let the barometer settle for a full second after startup
// the MS5611 reads quite a long way off for the first second,
2012-08-17 03:09:23 -03:00
// leading to about 1m of error if we don't wait
2012-12-05 21:18:04 -04:00
for ( uint8_t i = 0 ; i < 10 ; i + + ) {
uint32_t tstart = hal . scheduler - > millis ( ) ;
2012-08-17 03:09:23 -03:00
do {
2014-10-19 16:22:51 -03:00
update ( ) ;
2012-12-05 21:18:04 -04:00
if ( hal . scheduler - > millis ( ) - tstart > 500 ) {
2012-12-17 20:29:05 -04:00
hal . scheduler - > panic ( PSTR ( " PANIC: AP_Baro::read unsuccessful "
2012-12-05 21:18:04 -04:00
" for more than 500ms in AP_Baro::calibrate [2] \r \n " ) ) ;
}
2015-03-12 23:48:41 -03:00
hal . scheduler - > delay ( 10 ) ;
2014-10-19 16:22:51 -03:00
} while ( ! healthy ( ) ) ;
2012-10-11 14:53:21 -03:00
hal . scheduler - > delay ( 100 ) ;
2012-07-06 02:11:22 -03:00
}
2012-06-19 23:25:19 -03:00
2012-07-06 02:11:22 -03:00
// now average over 5 values for the ground pressure and
2012-08-17 03:09:23 -03:00
// temperature settings
2014-10-19 16:22:51 -03:00
float sum_pressure [ BARO_MAX_INSTANCES ] = { 0 } ;
float sum_temperature [ BARO_MAX_INSTANCES ] = { 0 } ;
2015-01-08 21:59:01 -04:00
uint8_t count [ BARO_MAX_INSTANCES ] = { 0 } ;
2014-10-19 16:22:51 -03:00
const uint8_t num_samples = 5 ;
for ( uint8_t c = 0 ; c < num_samples ; c + + ) {
2012-12-05 21:18:04 -04:00
uint32_t tstart = hal . scheduler - > millis ( ) ;
2012-08-17 03:09:23 -03:00
do {
2014-10-19 16:22:51 -03:00
update ( ) ;
2012-12-05 21:18:04 -04:00
if ( hal . scheduler - > millis ( ) - tstart > 500 ) {
2012-12-17 20:29:05 -04:00
hal . scheduler - > panic ( PSTR ( " PANIC: AP_Baro::read unsuccessful "
2012-12-05 21:18:04 -04:00
" for more than 500ms in AP_Baro::calibrate [3] \r \n " ) ) ;
}
2015-01-08 21:59:01 -04:00
} while ( ! healthy ( ) ) ;
2014-10-19 16:22:51 -03:00
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
2015-01-08 21:59:01 -04:00
if ( healthy ( i ) ) {
sum_pressure [ i ] + = sensors [ i ] . pressure ;
sum_temperature [ i ] + = sensors [ i ] . temperature ;
count [ i ] + = 1 ;
}
2014-10-19 16:22:51 -03:00
}
2012-10-11 14:53:21 -03:00
hal . scheduler - > delay ( 100 ) ;
2012-08-17 03:09:23 -03:00
}
2014-10-19 16:22:51 -03:00
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
2015-01-08 21:59:01 -04:00
if ( count [ i ] = = 0 ) {
sensors [ i ] . calibrated = false ;
} else {
sensors [ i ] . ground_pressure . set_and_save ( sum_pressure [ i ] / count [ i ] ) ;
sensors [ i ] . ground_temperature . set_and_save ( sum_temperature [ i ] / count [ i ] ) ;
}
}
// panic if all sensors are not calibrated
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( sensors [ i ] . calibrated ) {
return ;
}
2014-10-19 16:22:51 -03:00
}
2015-01-08 21:59:01 -04:00
hal . scheduler - > panic ( PSTR ( " AP_Baro: all sensors uncalibrated " ) ) ;
2012-06-19 23:25:19 -03:00
}
2014-10-19 16:22:51 -03:00
/*
2013-10-05 05:44:00 -03:00
update the barometer calibration
this updates the baro ground calibration to the current values . It
can be used before arming to keep the baro well calibrated
*/
void AP_Baro : : update_calibration ( )
{
2014-10-19 16:22:51 -03:00
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( healthy ( i ) ) {
sensors [ i ] . ground_pressure . set ( get_pressure ( i ) ) ;
}
float last_temperature = sensors [ i ] . ground_temperature ;
sensors [ i ] . ground_temperature . set ( get_calibration_temperature ( i ) ) ;
if ( fabsf ( last_temperature - sensors [ i ] . ground_temperature ) > 3 ) {
// reset _EAS2TAS to force it to recalculate. This happens
// when a digital airspeed sensor comes online
_EAS2TAS = 0 ;
}
2014-11-11 20:26:28 -04:00
}
2013-10-05 05:44:00 -03:00
}
2014-04-11 03:34:02 -03:00
// return altitude difference in meters between current pressure and a
// given base_pressure in Pascal
2014-08-13 03:21:52 -03:00
float AP_Baro : : get_altitude_difference ( float base_pressure , float pressure ) const
2014-04-11 03:34:02 -03:00
{
float ret ;
# if HAL_CPU_CLASS <= HAL_CPU_CLASS_16
// on slower CPUs use a less exact, but faster, calculation
float scaling = base_pressure / pressure ;
2014-10-19 16:22:51 -03:00
float temp = get_calibration_temperature ( ) + 273.15f ;
2014-04-11 03:34:02 -03:00
ret = logf ( scaling ) * temp * 29.271267f ;
# else
// on faster CPUs use a more exact calculation
float scaling = pressure / base_pressure ;
2014-10-19 16:22:51 -03:00
float temp = get_calibration_temperature ( ) + 273.15f ;
2014-04-11 03:34:02 -03:00
// This is an exact calculation that is within +-2.5m of the standard atmosphere tables
// in the troposphere (up to 11,000 m amsl).
ret = 153.8462f * temp * ( 1.0f - expf ( 0.190259f * logf ( scaling ) ) ) ;
# endif
return ret ;
}
2012-06-19 23:25:19 -03:00
2013-06-26 05:32:37 -03:00
// return current scale factor that converts from equivalent to true airspeed
// valid for altitudes up to 10km AMSL
// assumes standard atmosphere lapse rate
float AP_Baro : : get_EAS2TAS ( void )
{
2014-10-19 16:22:51 -03:00
float altitude = get_altitude ( ) ;
if ( ( fabsf ( altitude - _last_altitude_EAS2TAS ) < 100.0f ) & & ( _EAS2TAS ! = 0.0f ) ) {
2013-06-26 05:32:37 -03:00
// not enough change to require re-calculating
return _EAS2TAS ;
}
2014-10-19 16:22:51 -03:00
float tempK = get_calibration_temperature ( ) + 273.15f - 0.0065f * altitude ;
2013-06-26 05:32:37 -03:00
_EAS2TAS = safe_sqrt ( 1.225f / ( ( float ) get_pressure ( ) / ( 287.26f * tempK ) ) ) ;
2014-10-19 16:22:51 -03:00
_last_altitude_EAS2TAS = altitude ;
2013-06-26 05:32:37 -03:00
return _EAS2TAS ;
}
2012-06-19 23:25:19 -03:00
// return current climb_rate estimeate relative to time that calibrate()
// was called. Returns climb rate in meters/s, positive means up
// note that this relies on read() being called regularly to get new data
float AP_Baro : : get_climb_rate ( void )
{
2012-07-06 02:11:22 -03:00
// we use a 7 point derivative filter on the climb rate. This seems
2012-06-19 23:25:19 -03:00
// to produce somewhat reasonable results on real hardware
2013-01-10 14:42:24 -04:00
return _climb_rate_filter . slope ( ) * 1.0e3 f ;
2012-06-19 23:25:19 -03:00
}
2012-08-07 22:29:53 -03:00
2014-11-11 20:26:28 -04:00
/*
set external temperature to be used for calibration ( degrees C )
*/
void AP_Baro : : set_external_temperature ( float temperature )
{
_external_temperature = temperature ;
_last_external_temperature_ms = hal . scheduler - > millis ( ) ;
}
/*
get the temperature in degrees C to be used for calibration purposes
*/
2014-10-19 16:22:51 -03:00
float AP_Baro : : get_calibration_temperature ( uint8_t instance ) const
2014-11-11 20:26:28 -04:00
{
// if we have a recent external temperature then use it
if ( _last_external_temperature_ms ! = 0 & & hal . scheduler - > millis ( ) - _last_external_temperature_ms < 10000 ) {
return _external_temperature ;
}
// if we don't have an external temperature then use the minimum
// of the barometer temperature and 25 degrees C. The reason for
// not just using the baro temperature is it tends to read high,
// often 30 degrees above the actual temperature. That means the
// EAS2TAS tends to be off by quite a large margin
2014-10-19 16:22:51 -03:00
float ret = get_temperature ( instance ) ;
2014-11-11 20:26:28 -04:00
if ( ret > 25 ) {
ret = 25 ;
}
return ret ;
}
2014-10-19 16:22:51 -03:00
/*
initialise the barometer object , loading backend drivers
*/
void AP_Baro : : init ( void )
{
# if HAL_BARO_DEFAULT == HAL_BARO_PX4 || HAL_BARO_DEFAULT == HAL_BARO_VRBRAIN
drivers [ 0 ] = new AP_Baro_PX4 ( * this ) ;
_num_drivers = 1 ;
# elif HAL_BARO_DEFAULT == HAL_BARO_HIL
drivers [ 0 ] = new AP_Baro_HIL ( * this ) ;
_num_drivers = 1 ;
2015-01-05 07:00:32 -04:00
# elif HAL_BARO_DEFAULT == HAL_BARO_BMP085
{
drivers [ 0 ] = new AP_Baro_BMP085 ( * this ) ;
_num_drivers = 1 ;
}
2014-10-19 16:22:51 -03:00
# elif HAL_BARO_DEFAULT == HAL_BARO_MS5611
{
2015-01-06 01:28:11 -04:00
drivers [ 0 ] = new AP_Baro_MS5611 ( * this , new AP_SerialBus_I2C ( MS5611_I2C_ADDR ) , false ) ;
2014-10-19 16:22:51 -03:00
_num_drivers = 1 ;
}
# elif HAL_BARO_DEFAULT == HAL_BARO_MS5611_SPI
{
drivers [ 0 ] = new AP_Baro_MS5611 ( * this ,
new AP_SerialBus_SPI ( AP_HAL : : SPIDevice_MS5611 ,
2015-01-06 01:28:11 -04:00
AP_HAL : : SPIDeviceDriver : : SPI_SPEED_HIGH ) ,
true ) ;
2014-10-19 16:22:51 -03:00
_num_drivers = 1 ;
}
# endif
if ( _num_drivers = = 0 | | _num_sensors = = 0 | | drivers [ 0 ] = = NULL ) {
hal . scheduler - > panic ( PSTR ( " Baro: unable to initialise driver " ) ) ;
}
}
/*
call update on all drivers
*/
void AP_Baro : : update ( void )
{
2015-02-09 16:39:48 -04:00
if ( ! _hil_mode ) {
for ( uint8_t i = 0 ; i < _num_drivers ; i + + ) {
drivers [ i ] - > update ( ) ;
}
2014-10-19 16:22:51 -03:00
}
// consider a sensor as healthy if it has had an update in the
// last 0.5 seconds
uint32_t now = hal . scheduler - > millis ( ) ;
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
sensors [ i ] . healthy = ( now - sensors [ i ] . last_update_ms < 500 ) & & sensors [ i ] . pressure ! = 0 ;
}
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( sensors [ i ] . healthy ) {
// update altitude calculation
if ( sensors [ i ] . ground_pressure = = 0 ) {
sensors [ i ] . ground_pressure = sensors [ i ] . pressure ;
}
sensors [ i ] . altitude = get_altitude_difference ( sensors [ i ] . ground_pressure , sensors [ i ] . pressure ) ;
// sanity check altitude
sensors [ i ] . alt_ok = ! ( isnan ( sensors [ i ] . altitude ) | | isinf ( sensors [ i ] . altitude ) ) ;
}
}
// choose primary sensor
_primary = 0 ;
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( healthy ( i ) ) {
_primary = i ;
break ;
}
}
// ensure the climb rate filter is updated
_climb_rate_filter . update ( get_altitude ( ) , get_last_update ( ) ) ;
}
/*
call accululate on all drivers
*/
void AP_Baro : : accumulate ( void )
{
for ( uint8_t i = 0 ; i < _num_drivers ; i + + ) {
drivers [ i ] - > accumulate ( ) ;
}
}
/* register a new sensor, claiming a sensor slot. If we are out of
slots it will panic
*/
uint8_t AP_Baro : : register_sensor ( void )
{
if ( _num_sensors > = BARO_MAX_INSTANCES ) {
hal . scheduler - > panic ( PSTR ( " Too many barometers " ) ) ;
}
return _num_sensors + + ;
}
2015-01-06 21:45:01 -04:00
/*
check if all barometers are healthy
*/
bool AP_Baro : : all_healthy ( void ) const
{
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( ! healthy ( i ) ) {
return false ;
}
}
return _num_sensors > 0 ;
}