ardupilot/libraries/AP_AHRS/AP_AHRS_NavEKF.cpp

325 lines
8.4 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* NavEKF based AHRS (Attitude Heading Reference System) interface for
* ArduPilot
*
*/
#include <AP_HAL.h>
#include <AP_AHRS.h>
#if AP_AHRS_NAVEKF_AVAILABLE
extern const AP_HAL::HAL& hal;
// return the smoothed gyro vector corrected for drift
const Vector3f &AP_AHRS_NavEKF::get_gyro(void) const
{
if (!using_EKF()) {
return AP_AHRS_DCM::get_gyro();
}
return _gyro_estimate;
}
const Matrix3f &AP_AHRS_NavEKF::get_dcm_matrix(void) const
{
if (!using_EKF()) {
return AP_AHRS_DCM::get_dcm_matrix();
}
return _dcm_matrix;
}
const Vector3f &AP_AHRS_NavEKF::get_gyro_drift(void) const
{
if (!using_EKF()) {
return AP_AHRS_DCM::get_gyro_drift();
}
return _gyro_bias;
}
2014-10-28 08:22:48 -03:00
// reset the current gyro drift estimate
// should be called if gyro offsets are recalculated
void AP_AHRS_NavEKF::reset_gyro_drift(void)
{
// update DCM
AP_AHRS_DCM::reset_gyro_drift();
// reset the EKF gyro bias states
EKF.resetGyroBias();
2014-10-28 08:22:48 -03:00
}
void AP_AHRS_NavEKF::update(void)
{
// we need to restore the old DCM attitude values as these are
// used internally in DCM to calculate error values for gyro drift
// correction
roll = _dcm_attitude.x;
pitch = _dcm_attitude.y;
yaw = _dcm_attitude.z;
update_cd_values();
AP_AHRS_DCM::update();
// keep DCM attitude available for get_secondary_attitude()
_dcm_attitude(roll, pitch, yaw);
if (!ekf_started) {
2014-10-28 21:55:53 -03:00
// wait 10 seconds
if (start_time_ms == 0) {
start_time_ms = hal.scheduler->millis();
}
if (hal.scheduler->millis() - start_time_ms > startup_delay_ms) {
ekf_started = true;
EKF.InitialiseFilterDynamic();
}
}
if (ekf_started) {
EKF.UpdateFilter();
EKF.getRotationBodyToNED(_dcm_matrix);
2014-01-02 01:16:29 -04:00
if (using_EKF()) {
Vector3f eulers;
EKF.getEulerAngles(eulers);
roll = eulers.x;
pitch = eulers.y;
yaw = eulers.z;
update_cd_values();
update_trig();
// keep _gyro_bias for get_gyro_drift()
EKF.getGyroBias(_gyro_bias);
_gyro_bias = -_gyro_bias;
// calculate corrected gryo estimate for get_gyro()
_gyro_estimate.zero();
uint8_t healthy_count = 0;
for (uint8_t i=0; i<_ins.get_gyro_count(); i++) {
if (_ins.get_gyro_health(i)) {
_gyro_estimate += _ins.get_gyro(i);
healthy_count++;
}
}
if (healthy_count > 1) {
_gyro_estimate /= healthy_count;
}
_gyro_estimate += _gyro_bias;
// update _accel_ef_ekf
for (uint8_t i=0; i<_ins.get_accel_count(); i++) {
if (_ins.get_accel_health(i)) {
_accel_ef_ekf[i] = _dcm_matrix * _ins.get_accel(i);
}
}
// update _accel_ef_ekf_blended
EKF.getAccelNED(_accel_ef_ekf_blended);
}
}
}
// accelerometer values in the earth frame in m/s/s
const Vector3f &AP_AHRS_NavEKF::get_accel_ef(uint8_t i) const
{
if(!using_EKF()) {
return AP_AHRS_DCM::get_accel_ef(i);
}
return _accel_ef_ekf[i];
}
// blended accelerometer values in the earth frame in m/s/s
const Vector3f &AP_AHRS_NavEKF::get_accel_ef_blended(void) const
{
if(!using_EKF()) {
return AP_AHRS_DCM::get_accel_ef_blended();
}
return _accel_ef_ekf_blended;
}
void AP_AHRS_NavEKF::reset(bool recover_eulers)
{
AP_AHRS_DCM::reset(recover_eulers);
if (ekf_started) {
EKF.InitialiseFilterBootstrap();
}
}
// reset the current attitude, used on new IMU calibration
void AP_AHRS_NavEKF::reset_attitude(const float &_roll, const float &_pitch, const float &_yaw)
{
AP_AHRS_DCM::reset_attitude(_roll, _pitch, _yaw);
if (ekf_started) {
EKF.InitialiseFilterBootstrap();
}
}
// dead-reckoning support
bool AP_AHRS_NavEKF::get_position(struct Location &loc) const
{
2014-01-02 01:16:29 -04:00
if (using_EKF() && EKF.getLLH(loc)) {
return true;
}
return AP_AHRS_DCM::get_position(loc);
}
// status reporting of estimated errors
float AP_AHRS_NavEKF::get_error_rp(void)
{
return AP_AHRS_DCM::get_error_rp();
}
float AP_AHRS_NavEKF::get_error_yaw(void)
{
return AP_AHRS_DCM::get_error_yaw();
}
// return a wind estimation vector, in m/s
Vector3f AP_AHRS_NavEKF::wind_estimate(void)
{
if (!using_EKF()) {
// EKF does not estimate wind speed when there is no airspeed
// sensor active
return AP_AHRS_DCM::wind_estimate();
}
Vector3f wind;
EKF.getWind(wind);
return wind;
}
// return an airspeed estimate if available. return true
// if we have an estimate
bool AP_AHRS_NavEKF::airspeed_estimate(float *airspeed_ret) const
{
return AP_AHRS_DCM::airspeed_estimate(airspeed_ret);
}
// true if compass is being used
bool AP_AHRS_NavEKF::use_compass(void)
{
if (using_EKF()) {
return EKF.use_compass();
}
return AP_AHRS_DCM::use_compass();
}
// return secondary attitude solution if available, as eulers in radians
bool AP_AHRS_NavEKF::get_secondary_attitude(Vector3f &eulers)
{
2014-01-02 01:16:29 -04:00
if (using_EKF()) {
// return DCM attitude
eulers = _dcm_attitude;
return true;
}
if (ekf_started) {
// EKF is secondary
EKF.getEulerAngles(eulers);
return true;
}
// no secondary available
return false;
}
// return secondary position solution if available
bool AP_AHRS_NavEKF::get_secondary_position(struct Location &loc)
{
2014-01-02 01:16:29 -04:00
if (using_EKF()) {
// return DCM position
AP_AHRS_DCM::get_position(loc);
return true;
}
if (ekf_started) {
// EKF is secondary
EKF.getLLH(loc);
return true;
}
// no secondary available
return false;
}
// EKF has a better ground speed vector estimate
Vector2f AP_AHRS_NavEKF::groundspeed_vector(void)
{
2014-01-02 01:16:29 -04:00
if (!using_EKF()) {
return AP_AHRS_DCM::groundspeed_vector();
}
Vector3f vec;
EKF.getVelNED(vec);
return Vector2f(vec.x, vec.y);
}
2014-03-30 08:00:25 -03:00
void AP_AHRS_NavEKF::set_home(const Location &loc)
{
2014-03-30 08:00:25 -03:00
AP_AHRS_DCM::set_home(loc);
}
// return true if inertial navigation is active
bool AP_AHRS_NavEKF::have_inertial_nav(void) const
{
return using_EKF();
}
// return a ground velocity in meters/second, North/East/Down
// order. Must only be called if have_inertial_nav() is true
bool AP_AHRS_NavEKF::get_velocity_NED(Vector3f &vec) const
{
if (using_EKF()) {
EKF.getVelNED(vec);
return true;
}
return false;
}
// return a relative ground position in meters/second, North/East/Down
// order. Must only be called if have_inertial_nav() is true
bool AP_AHRS_NavEKF::get_relative_position_NED(Vector3f &vec) const
{
if (using_EKF()) {
return EKF.getPosNED(vec);
}
return false;
}
bool AP_AHRS_NavEKF::using_EKF(void) const
{
return ekf_started && _ekf_use && EKF.healthy();
}
/*
check if the AHRS subsystem is healthy
*/
bool AP_AHRS_NavEKF::healthy(void)
{
if (_ekf_use) {
return ekf_started && EKF.healthy();
}
return AP_AHRS_DCM::healthy();
}
// true if the AHRS has completed initialisation
bool AP_AHRS_NavEKF::initialised(void) const
{
// initialisation complete 10sec after ekf has started
return (ekf_started && (hal.scheduler->millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS));
};
// write optical flow data to EKF
void AP_AHRS_NavEKF::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, uint8_t &rangeHealth, float &rawSonarRange)
{
EKF.writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas, rangeHealth, rawSonarRange);
}
#endif // AP_AHRS_NAVEKF_AVAILABLE