ardupilot/ArduPlane/AP_Arming.cpp

488 lines
16 KiB
C++
Raw Permalink Normal View History

/*
additional arming checks for plane
*/
#include "AP_Arming.h"
#include "Plane.h"
#include "qautotune.h"
constexpr uint32_t AP_ARMING_DELAY_MS = 2000; // delay from arming to start of motor spoolup
const AP_Param::GroupInfo AP_Arming_Plane::var_info[] = {
// variables from parent vehicle
AP_NESTEDGROUPINFO(AP_Arming, 0),
// index 3 was RUDDER and should not be used
#if AP_PLANE_BLACKBOX_LOGGING
// @Param: BBOX_SPD
// @DisplayName: Blackbox speed
// @Description: This is a 3D GPS speed threshold above which we will force arm the vehicle to start logging. WARNING: This should only be used on a vehicle with no propellers attached to the flight controller and when the flight controller is not in control of the vehicle.
// @Units: m/s
// @Increment: 1
// @Range: 1 20
// @User: Advanced
AP_GROUPINFO("BBOX_SPD", 4, AP_Arming_Plane, blackbox_speed, 5),
#endif // AP_PLANE_BLACKBOX_LOGGING
AP_GROUPEND
};
// expected to return true if the terrain database is required to have
// all data loaded
bool AP_Arming_Plane::terrain_database_required() const
{
#if AP_TERRAIN_AVAILABLE
if (plane.g.terrain_follow) {
return true;
}
#endif
return AP_Arming::terrain_database_required();
}
/*
additional arming checks for plane
*/
bool AP_Arming_Plane::pre_arm_checks(bool display_failure)
{
if (armed || require == (uint8_t)Required::NO) {
// if we are already armed or don't need any arming checks
// then skip the checks
return true;
}
//are arming checks disabled?
if (checks_to_perform == 0) {
return mandatory_checks(display_failure);
}
if (hal.util->was_watchdog_armed()) {
// on watchdog reset bypass arming checks to allow for
// in-flight arming if we were armed before the reset. This
// allows a reset on a BVLOS flight to return home if the
// operator can command arming over telemetry
return true;
}
// call parent class checks
bool ret = AP_Arming::pre_arm_checks(display_failure);
#if AP_AIRSPEED_ENABLED
// Check airspeed sensor
ret &= AP_Arming::airspeed_checks(display_failure);
#endif
if (plane.g.fs_timeout_long < plane.g.fs_timeout_short && plane.g.fs_action_short != FS_ACTION_SHORT_DISABLED) {
check_failed(display_failure, "FS_LONG_TIMEOUT < FS_SHORT_TIMEOUT");
ret = false;
}
if (plane.aparm.roll_limit < 3) {
2024-01-19 05:48:27 -04:00
check_failed(display_failure, "ROLL_LIMIT_DEG too small (%.1f)", plane.aparm.roll_limit.get());
ret = false;
}
if (plane.aparm.pitch_limit_max < 3) {
check_failed(display_failure, "PTCH_LIM_MAX_DEG too small (%.1f)", plane.aparm.pitch_limit_max.get());
ret = false;
}
if (plane.aparm.pitch_limit_min > -3) {
check_failed(display_failure, "PTCH_LIM_MIN_DEG too large (%.1f)", plane.aparm.pitch_limit_min.get());
ret = false;
}
if (plane.aparm.airspeed_min < MIN_AIRSPEED_MIN) {
check_failed(display_failure, "AIRSPEED_MIN too low (%i < %i)", plane.aparm.airspeed_min.get(), MIN_AIRSPEED_MIN);
ret = false;
}
if (plane.channel_throttle->get_reverse() &&
Plane::ThrFailsafe(plane.g.throttle_fs_enabled.get()) != Plane::ThrFailsafe::Disabled &&
plane.g.throttle_fs_value <
ArduPlane: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:33:02 -03:00
plane.channel_throttle->get_radio_max()) {
check_failed(display_failure, "Invalid THR_FS_VALUE for rev throttle");
ret = false;
}
ret &= rc_received_if_enabled_check(display_failure);
#if HAL_QUADPLANE_ENABLED
ret &= quadplane_checks(display_failure);
#endif
// check adsb avoidance failsafe
if (plane.failsafe.adsb) {
check_failed(display_failure, "ADSB threat detected");
ret = false;
}
2023-04-26 00:27:13 -03:00
if (plane.flight_option_enabled(FlightOptions::CENTER_THROTTLE_TRIM)){
int16_t trim = plane.channel_throttle->get_radio_trim();
if (trim < 1250 || trim > 1750) {
check_failed(display_failure, "Throttle trim not near center stick(%u)",trim );
ret = false;
}
}
if (plane.mission.get_in_landing_sequence_flag() &&
!plane.mission.starts_with_takeoff_cmd()) {
check_failed(display_failure,"In landing sequence");
ret = false;
}
char failure_msg[50] {};
if (!plane.control_mode->pre_arm_checks(ARRAY_SIZE(failure_msg), failure_msg)) {
check_failed(display_failure, "%s %s", plane.control_mode->name(), failure_msg);
return false;
}
return ret;
}
2015-10-16 00:52:57 -03:00
bool AP_Arming_Plane::mandatory_checks(bool display_failure)
{
bool ret = true;
ret &= rc_received_if_enabled_check(display_failure);
// Call parent class checks
ret &= AP_Arming::mandatory_checks(display_failure);
return ret;
}
#if HAL_QUADPLANE_ENABLED
bool AP_Arming_Plane::quadplane_checks(bool display_failure)
{
if (!plane.quadplane.enabled()) {
return true;
}
if (!plane.quadplane.available()) {
check_failed(display_failure, "Quadplane enabled but not running");
return false;
}
bool ret = true;
if (plane.scheduler.get_loop_rate_hz() < 100) {
check_failed(display_failure, "quadplane needs SCHED_LOOP_RATE >= 100");
ret = false;
}
char failure_msg[50] {};
if (!plane.quadplane.motors->arming_checks(ARRAY_SIZE(failure_msg), failure_msg)) {
check_failed(display_failure, "Motors: %s", failure_msg);
ret = false;
}
// lean angle parameter check
if (plane.quadplane.aparm.angle_max < 1000 || plane.quadplane.aparm.angle_max > 8000) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check Q_ANGLE_MAX");
ret = false;
}
if ((plane.quadplane.tailsitter.enable > 0) && (plane.quadplane.tiltrotor.enable > 0)) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "set TAILSIT_ENABLE 0 or TILT_ENABLE 0");
ret = false;
} else {
if ((plane.quadplane.tailsitter.enable > 0) && !plane.quadplane.tailsitter.enabled()) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "tailsitter setup not complete, reboot");
ret = false;
}
if ((plane.quadplane.tiltrotor.enable > 0) && !plane.quadplane.tiltrotor.enabled()) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "tiltrotor setup not complete, reboot");
ret = false;
}
}
// ensure controllers are OK with us arming:
if (!plane.quadplane.pos_control->pre_arm_checks("PSC", failure_msg, ARRAY_SIZE(failure_msg))) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg);
ret = false;
}
if (!plane.quadplane.attitude_control->pre_arm_checks("ATC", failure_msg, ARRAY_SIZE(failure_msg))) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg);
ret = false;
}
/*
Q_ASSIST_SPEED really should be enabled for all quadplanes except tailsitters
*/
if (check_enabled(ARMING_CHECK_PARAMETERS) &&
is_zero(plane.quadplane.assist_speed) &&
!plane.quadplane.tailsitter.enabled()) {
check_failed(display_failure,"Q_ASSIST_SPEED is not set");
ret = false;
}
if ((plane.quadplane.tailsitter.enable > 0) && (plane.quadplane.q_fwd_thr_use != QuadPlane::FwdThrUse::OFF)) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "set Q_FWD_THR_USE to 0");
ret = false;
}
return ret;
}
#endif // HAL_QUADPLANE_ENABLED
bool AP_Arming_Plane::ins_checks(bool display_failure)
2015-10-16 00:52:57 -03:00
{
// call parent class checks
if (!AP_Arming::ins_checks(display_failure)) {
2015-10-16 00:52:57 -03:00
return false;
}
// additional plane specific checks
2023-01-21 09:23:07 -04:00
if (check_enabled(ARMING_CHECK_INS)) {
char failure_msg[50] = {};
if (!AP::ahrs().pre_arm_check(true, failure_msg, sizeof(failure_msg))) {
2020-10-06 02:21:20 -03:00
check_failed(ARMING_CHECK_INS, display_failure, "AHRS: %s", failure_msg);
2015-10-16 00:52:57 -03:00
return false;
}
}
return true;
}
bool AP_Arming_Plane::arm_checks(AP_Arming::Method method)
{
if (method == AP_Arming::Method::RUDDER) {
const AP_Arming::RudderArming arming_rudder = get_rudder_arming_type();
if (arming_rudder == AP_Arming::RudderArming::IS_DISABLED) {
//parameter disallows rudder arming/disabling
// if we emit a message here then someone doing surface
// checks may be bothered by the message being emitted.
// check_failed(true, "Rudder arming disabled");
return false;
}
// if throttle is not down, then pilot cannot rudder arm/disarm
2021-09-18 15:03:54 -03:00
if (!is_zero(plane.get_throttle_input())){
check_failed(true, "Non-zero throttle");
return false;
}
}
//are arming checks disabled?
if (checks_to_perform == 0) {
return true;
}
if (hal.util->was_watchdog_armed()) {
// on watchdog reset bypass arming checks to allow for
// in-flight arming if we were armed before the reset. This
// allows a reset on a BVLOS flight to return home if the
// operator can command arming over telemetry
gcs().send_text(MAV_SEVERITY_WARNING, "watchdog: Bypassing arming checks");
return true;
}
// call parent class checks
return AP_Arming::arm_checks(method);
}
/*
update HAL soft arm state
*/
void AP_Arming_Plane::change_arm_state(void)
{
update_soft_armed();
#if HAL_QUADPLANE_ENABLED
plane.quadplane.set_armed(hal.util->get_soft_armed());
#endif
}
bool AP_Arming_Plane::arm(const AP_Arming::Method method, const bool do_arming_checks)
{
if (!AP_Arming::arm(method, do_arming_checks)) {
return false;
}
if (plane.update_home()) {
// after update_home the home position could still be
// different from the current_loc if the EKF refused the
// resetHeightDatum call. If we are updating home then we want
// to force the home to be the current_loc so relative alt
// takeoffs work correctly
if (plane.ahrs.set_home(plane.current_loc)) {
// update current_loc
plane.update_current_loc();
}
}
change_arm_state();
// rising edge of delay_arming oneshot
delay_arming = true;
send_arm_disarm_statustext("Throttle armed");
return true;
}
/*
disarm motors
*/
bool AP_Arming_Plane::disarm(const AP_Arming::Method method, bool do_disarm_checks)
{
if (do_disarm_checks &&
(AP_Arming::method_is_GCS(method) ||
method == AP_Arming::Method::RUDDER)) {
if (plane.is_flying()) {
// don't allow mavlink or rudder disarm while flying
return false;
}
}
if (do_disarm_checks && method == AP_Arming::Method::RUDDER) {
// option must be enabled:
if (get_rudder_arming_type() != AP_Arming::RudderArming::ARMDISARM) {
gcs().send_text(MAV_SEVERITY_INFO, "Rudder disarm: disabled");
return false;
}
}
if (!AP_Arming::disarm(method, do_disarm_checks)) {
return false;
}
if (plane.control_mode != &plane.mode_auto) {
// reset the mission on disarm if we are not in auto
plane.mission.reset();
}
// suppress the throttle in auto-throttle modes
plane.throttle_suppressed = plane.control_mode->does_auto_throttle();
// if no airmode switch assigned, ensure airmode is off:
#if HAL_QUADPLANE_ENABLED
if ((plane.quadplane.air_mode == AirMode::ON) && (rc().find_channel_for_option(RC_Channel::AUX_FUNC::AIRMODE) == nullptr)) {
plane.quadplane.air_mode = AirMode::OFF;
}
#endif
//only log if disarming was successful
change_arm_state();
#if QAUTOTUNE_ENABLED
//save qautotune gains if enabled and success
if (plane.control_mode == &plane.mode_qautotune) {
plane.quadplane.qautotune.save_tuning_gains();
} else {
plane.quadplane.qautotune.reset();
}
#endif
// re-initialize speed variable used in AUTO and GUIDED for
// DO_CHANGE_SPEED commands
plane.new_airspeed_cm = -1;
send_arm_disarm_statustext("Throttle disarmed");
return true;
}
void AP_Arming_Plane::update_soft_armed()
{
bool _armed = is_armed();
#if HAL_QUADPLANE_ENABLED
if (plane.quadplane.motor_test.running){
_armed = true;
}
#endif
hal.util->set_soft_armed(_armed);
#if HAL_LOGGING_ENABLED
AP::logger().set_vehicle_armed(hal.util->get_soft_armed());
#endif
// update delay_arming oneshot
if (delay_arming &&
(AP_HAL::millis() - hal.util->get_last_armed_change() >= AP_ARMING_DELAY_MS)) {
delay_arming = false;
}
#if AP_PLANE_BLACKBOX_LOGGING
if (blackbox_speed > 0) {
const float speed3d = plane.gps.status() >= AP_GPS::GPS_OK_FIX_3D?plane.gps.velocity().length():0;
const uint32_t now = AP_HAL::millis();
if (speed3d > blackbox_speed) {
last_over_3dspeed_ms = now;
}
if (!_armed && speed3d > blackbox_speed) {
// force safety on so we don't run motors
hal.rcout->force_safety_on();
AP_Param::set_by_name("RC_PROTOCOLS", 0);
arm(Method::BLACKBOX, false);
gcs().send_text(MAV_SEVERITY_WARNING, "BlackBox: arming at %.1f m/s", speed3d);
}
if (_armed && now - last_over_3dspeed_ms > 20000U) {
gcs().send_text(MAV_SEVERITY_WARNING, "BlackBox: disarming at %.1f m/s", speed3d);
disarm(Method::BLACKBOX, false);
}
}
#endif
}
/*
extra plane mission checks
*/
bool AP_Arming_Plane::mission_checks(bool report)
{
// base checks
bool ret = AP_Arming::mission_checks(report);
if (plane.mission.get_landing_sequence_start() > 0 && plane.g.rtl_autoland == RtlAutoland::RTL_DISABLE) {
ret = false;
check_failed(ARMING_CHECK_MISSION, report, "DO_LAND_START set and RTL_AUTOLAND disabled");
}
#if HAL_QUADPLANE_ENABLED
if (plane.quadplane.available()) {
const uint16_t num_commands = plane.mission.num_commands();
AP_Mission::Mission_Command prev_cmd {};
for (uint16_t i=1; i<num_commands; i++) {
AP_Mission::Mission_Command cmd;
if (!plane.mission.read_cmd_from_storage(i, cmd)) {
break;
}
if (plane.is_land_command(cmd.id) &&
prev_cmd.id == MAV_CMD_NAV_WAYPOINT) {
const float dist = cmd.content.location.get_distance(prev_cmd.content.location);
const float tecs_land_speed = plane.TECS_controller.get_land_airspeed();
const float landing_speed = is_positive(tecs_land_speed)?tecs_land_speed:plane.aparm.airspeed_cruise;
const float min_dist = 0.75 * plane.quadplane.stopping_distance(sq(landing_speed));
if (dist < min_dist) {
ret = false;
check_failed(ARMING_CHECK_MISSION, report, "VTOL land too short, min %.0fm", min_dist);
}
}
prev_cmd = cmd;
}
}
#endif
return ret;
}
// Checks rc has been received if it is configured to be used
bool AP_Arming_Plane::rc_received_if_enabled_check(bool display_failure)
{
if (rc().enabled_protocols() == 0) {
// No protocols enabled, will never get RC, don't block arming
return true;
}
// If RC failsafe is enabled we must receive RC before arming
if ((Plane::ThrFailsafe(plane.g.throttle_fs_enabled.get()) == Plane::ThrFailsafe::Enabled) &&
!(rc().has_had_rc_receiver() || rc().has_had_rc_override())) {
check_failed(display_failure, "Waiting for RC");
return false;
}
return true;
}